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Colour constancy refers to the constant perceived or apparent colour of a
surface despite changes in illumination spectrum. Laboratory measurements
have often found it imperfect. The aim here was to estimate the frequency of
constancy failures in natural outdoor environments and relate them to
colorimetric surface properties. A computational analysis was performed
with 50 hyperspectral reflectance images of outdoor scenes undergoing
simulated daylight changes. For a chromatically adapted observer, estimated
colour appearance changed noticeably for at least 5% of the surface area in
60% of scenes, and at least 10% of the surface area in 44% of scenes. Some-
what higher frequencies were found for estimated changes in perceived
colour relations represented by spatial ratios of cone-photoreceptor exci-
tations. These estimated changes correlated with surface chroma and
saturation. Outdoors, the colour constancy of some individual surfaces
seems likely to fail, particularly if those surfaces are colourful.
1. Introduction
Ideally, for an object or surface to be recognizable by its colour, it should appear
or be perceived as the same independent of the accident of illumination, whether,
for example, from a blue sky or a yellow-orange sun. But in practice, the extent of
this colour constancy with changes in the intensity and spectral composition of
the illumination has been found to vary [1–4]. Based on more than 60 measure-
ments from different laboratories, the most common report has been of human
observers’ performance falling short, with a level of constancy of around 0.74
on a scale of 0 to 1, where 0 is no constancy and 1 is perfect constancy [2,5].

These failures in colour constancy have been attributed to the methods of
measurement, the incompleteness of sensory adaptation, and the instructions
given to observers or how they are interpreted. Only occasionally have the colori-
metric properties of the surfaces under test been considered. Yet some coloured
surfaces have long been known to change their appearance, in brightness or hue,
as the illumination colour changes, even when the eye is allowed to adapt [6,7].
Analyses of Munsell paint samples [8] and model reflectance spectra [9], and
theoretical arguments [10], have suggested that departures from constancy
should increase as colourfulness increases. Experimental measurements with
mosaic and chequerboard displays of coloured surfaces made from Munsell
reflectances have offered some support for these claims [11,12], but have not
been extended to real-world scenes, with their different colour gamuts.

What do constancy failures with natural surfaces look like? Figure 1 shows
colour images rendered from a hyperspectral reflectance image of a garden
scene [14] under different simulated daylight illuminants: on the left, a mixture
of skylight and sunlight representing average daylight with a correlated colour
temperature (CCT) of 6500 K, and on the right, light from the setting sun with a
CCT of 4000 K. The square patches around the images are enlarged copies of
the pixels indicated by the connecting lines. The small neutral sphere
near the top of the scene reveals the colour of the illuminant. Sample spectra
from the scene are given in [14].
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6500 K 4000 K

Figure 1. Colour images of a scene under different simulated daylights. The images are rendered as sRGB images [13] from a hyperspectral reflectance image [14]
with a daylight illuminant of correlated colour temperature of 6500 K in the left panel and 4000 K in the right panel. The square patches are enlarged copies of the
indicated pixels. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212483

2

The colour appearance of the surfaces is clearly different
in the two conditions. The sphere appears predictably
bluish under the 6500 K illuminant and orangish under the
4000 K illuminant, the purple flower appears redder, and
the orange flower on the left of the scene a little lighter.
Viewed successively rather than side-by-side, and with an
adapted eye, the sphere should appear much the same, but
the purple and orange flowers are still likely to differ [6,7].

There are parallel changes in the perceived relations
between surface colours [15–18]. Most obviously, the hue
difference between the purple and orange flowers under the
6500 K illuminant appears smaller under the 4000 K illumi-
nant, an effect which is largely independent of adaptation.
This kind of change has been taken as a failure of relational
colour constancy [15,19]

The foregoing considerations prompt two basic questions
about colour constancy in the real world. First, are failures of
constancy rare? Second, if they do occur within a scene, are
they correlated with measures of colourfulness? After all,
most outdoor scenes do not consist of orange and purple
flowers [20–25], nor do their gamuts span the spaces of
Munsell or model reflectance spectra mentioned earlier.

It is difficult to address these questions by asking observers
to match surfaces outdoors under changes in natural illumina-
tion. In addition to the challenge of sampling and adjusting
stimuli in these conditions, the continuous variation in the
spectral and spatial distribution of the illumination makes
perceptual measurements difficult [26,27]. Unsurprisingly,
there have been few attempts at this task [28].

Here, instead, a computational approach was taken using
data from 50 hyperspectral reflectance images of natural out-
door scenes, as illustrated in figure 2. The analysis drew on
reference data from previous psychophysical measurements
[29]. The results suggest that outdoor environments may
well contain individual colourful surfaces or parts of surfaces
that fail to be colour constant.
2. Methods
(a) Hyperspectral reflectance data
Scene data were taken from a set of 50 hyperspectral images
of outdoor scenes drawn from the main land-cover classes
[30,31], either predominantly vegetated, containing woodland,
shrubland, herbaceous vegetation (e.g. grasses, ferns, flowers)
and cultivated land (fields), or predominantly non-vegetated,
containing barren land (e.g. rock), urban development (residen-
tial and commercial buildings), as well as farm outbuildings,
and painted or treated surfaces. They were acquired from the
Minho region of Portugal in 2002 and 2003 and are similar to
those used in other studies [32,33]. Details of image acquisition
and calibration are described elsewhere [14,32]. Each image
had dimensions approximately 1344 × 1024 pixels, correspond-
ing to a camera angle of approximately 6.9° × 5.3°, and spectral
range 400–720 nm sampled at 10 nm intervals.

Each image was processed as an effective spectral reflectance
image R(ξ, η; λ), indexed by spatial coordinates ξ, η and wave-
length λ (notation differs a little from [14]). The viewing
geometry was assumed fixed and orientation dependence is
therefore suppressed here. The reflectance is effective in the
sense of being derived by spectrally scaling the radiance image
by the reflectance of one or more reference surfaces embedded
in the scene [14]. Because surfaces oriented at an angle to the
camera may reflect more light than the reference surface,
values of R(ξ, η; λ) sometimes exceeded unity. If so, the whole
image was scaled by its maximum. By definition R(ξ, η; λ) con-
founds reflectance and spatial variation in illumination, such as
from direct to indirect illumination (typically shade), but the con-
found may be eliminated as explained in the following section.
A separate control calculation demonstrated that results are simi-
lar whether points with low reflectance values, usually in darker,
shadowed image areas, are included or not.
(b) Scene illuminant changes
Illumination changes were simulated with spectral changes in a
spatially uniform, global illuminant E(λ). This device ensures
that equal changes in illumination spectrum occur at each
point in the scene, isolating the role of surface reflecting proper-
ties [32]. The alternative of simulating the spatial and spectral
variation of natural illumination changes due to cloud and
solar elevation [26,27] introduces different spectral changes at
each point, which complicates the interpretation of reflecting
properties. As to the use of an effective spectral reflectance R(ξ,
η; λ), multiplying R(ξ, η; λ) at a point (ξ, η) by successive spectra
E(λ) is equivalent to multiplying the true local spectral reflec-
tance at that point by successive local illumination spectra
undergoing the same spectral change. Details are given in the
electronic supplementary material.

The illuminants E(λ) were drawn from the CIE daylight spec-
tral distributions [34] with CCTs in the test condition of 4000 K
and 25 000 K and in the reference condition 6500 K. Recall that



Figure 2. Colour images of the 50 scenes used in the analysis. Each image is rendered as an sRGB image from a hyperspectral reflectance image with a daylight
illuminant of correlated colour temperature 6500 K. White circles show the location of the largest estimated colour difference under changes in daylight illuminant
(some locations appear dark in these images). (Online version in colour.)
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the 4000 K illuminant represents light from the setting sun and
the 6500 K illuminant average daylight. The 25 000 K illuminant
represents light from the north or polar sky. On a reciprocal
colour temperature scale, 6500 K falls roughly midway between
4000 K and 25 000 K.

(c) Image sampling
Reflectance images were downsampled by spatial averaging over
4 × 4 pixels in order to reduce non-imaging noise in the unaver-
aged source data [14] and pixel-pixel correlations with the
1.3-pixel line-spread function of the hyperspectral camera [32].
In what follows, points sampled from scenes refer to these 4 ×
4-pixel surface elements. To further reduce noise, images were
smoothed spectrally by averaging over adjacent wavelengths.
Estimates of expected colour errors were made with and without
points with low reflectance values (less than 10% over 420–
700 nm).

This point-based sampling approach is neutral with respect
to physical scene structure [32]. No attempt was made to associ-
ate the effective reflectance at each point with an extended
physical object, whose bidirectional reflectance distribution
function may itself be difficult to define [35,36].

(d) Estimating colour differences
Expected changes in colour appearance were estimated with
formulae standardized by the Commission Internationale de
l’Eclairage (CIE). These formulae were used in the same practical
way as in psychophysical experiments where observers discrimi-
nated between images of natural scenes [29], that is, as a physical
measure of colour differences rather than as a model of the
underlying perceptual processes [37].

At each point (ξ, η) in the scene, the reflected radiance spec-
trum L(ξ, η; λ) was converted into CIE XYZ tristimulus values,
which were then mapped into an approximately uniform
colour space. Details of this procedure, including the approxi-
mations involved, are described in [14]. The observer was
assumed to be chromatically fully adapted to each illuminant
[38,39]. Although intended to minimize colour differences, adap-
tation does not itself imply that colour constancy should be
perfect at the level of cone photoreceptors. The reason is that
given a reflectance image R(ξ, η; λ) and a change in illuminant
from E1(λ) to E2(λ), there is no transformation guaranteed to con-
vert the cone response to one radiance image E1(λ)R(ξ, η; λ) into
the response to the other E2(λ)R(ξ, η; λ) [40].

For generality, two approximately uniform colour spaces
were used, each with an associated colour difference metric ΔE
(the same symbol is used for both and should not be confused
with E(λ) used for illuminant spectra). One of the two colour
spaces was CIELAB space [34], which has coordinates L*, a*,
b*, where L* represents lightness and a* and b* represent red-
ness–greenness and yellowness–blueness, respectively, each
derived from the corresponding CIE XYZ tristimulus coordi-
nates. Let ΔL*, Δa*, Δb* be the differences in L*, a*, b* values
produced by a particular pair of illuminants. As illustrated by
figure 1, changes can take the form of chromatic differences or
lightness differences. The total colour difference [41] at a point
is given by ΔE = [(ΔL*)2 + (Δa*)2 + (Δb*)2]1/2. Since CIELAB space
does not tolerate illuminants very different from average day-
light [34,42], a result of what has sometimes been called the
wrong von Kries transformation [43], a conventional chromatic
adaptation transform CMCCAT2000 [44] was introduced before
the calculation of colour differences. The latter can also be
improved, but for compatibility with previously published
work, no more adjustments were made.

The other colour space was CAM02-UCS [34], which has
coordinates J0, a0M, b0M, analogous to L*, a*, b* of CIELAB space.
Colour differences ΔE were calculated in the same way as for
CIELAB space. The uniformity of CAM02-UCS is better
than that of CIELAB space, though still not perfect [45]. Its
inbuilt chromatic adaptation transform is modified from
CMCCAT2000 [46].

Estimated colour differences ΔE were averaged over illumi-
nant changes from 4000 K to 6500 K and 25 000 K to 6500 K
and then compared with an estimated threshold ΔEthr for detec-
tion. Values were not scaled by the magnitude of the illuminant
change, as with some colour constancy indices [47]. Representa-
tive values of ΔEthr of about 1.0 have been usually quoted for
CIELAB space [46,48,49]. But for detecting colour differences in
whole images of natural scenes, as distinct from isolated samples,
CIELAB threshold values averaged over observers have been
estimated [29] as about 2.2, although smaller values have also
been obtained [50]. The relevance of these estimates to natural
illumination changes is discussed later. The CIELAB threshold
was thus set as ΔEthr = 2.2.

Converting from CIELAB thresholds to CAM02-UCS
thresholds is not straightforward since there is no unique map-
ping between the spaces. But empirically, averaged across the
50 scenes, CIELAB colour differences around 2.2 were found to
correspond to CAM02-UCS colour differences of about 1.5. The
CAM02-UCS threshold was therefore set as ΔEthr = 1.5.

(e) Estimating changes in colour relations
Expected changes in colour relations were characterized by the
sizes of the deviations in spatial ratios of cone excitations.
These deviations correlate well with observers’ performance in
discriminating illuminant changes from reflectance changes in
an operational approach to colour constancy [51–54].

At each point (ξ, η) in the scene, the radiance spectrum L(ξ, η; λ)
was converted into long-, medium-, and short-wavelength-
sensitive-cone excitations. Cone spectral sensitivities were taken
from the Stockman and Sharpe 2° cone fundamentals [55,56]. For
each cone class, let ri be the ratio of excitations at the ith pair of
points chosen randomly and independently in the scene.

As with colour differences, this point-based sampling
approach is neutral with respect to physical scene structure. Let
ri,1 and ri,2 be the ratios with illuminants 1 and 2 [27]. The observer
was not assumed necessarily to be chromatically adapted to each
illuminant since ratios of cone excitations are independent of
response scaling (within practical limits). To stabilize the variance,
the difference ri;1 � ri;2 was normalized by the mean of ri,1 and ri,2,
giving a relative deviation RD ¼ jri;1 � ri;2j=½ðri;1 þ ri;2Þ=2�, again
averaged over illuminant changes from 4000 K to 6500 K and
25 000 K to 6500 K.

For compatibility with the colour difference data, a threshold
RD was derived in the same way as the CAM02-UCS threshold.
Averaged across the 50 scenes, CIELAB colour differences
around 2.2 corresponded to relative deviations of about 4.8%.
The RD threshold was thus set as RDthr = 4.8%, which falls
between two values estimated in [19].

( f ) Correlation with colorimetric and physical properties
Estimated colour differences and deviations in spatial cone-
excitation ratios were tested for an association with the surface
colour attributes of chroma and saturation, and, for comparison,
the achromatic attribute of lightness, each evaluated under the
reference 6500 K illuminant. Chroma measures the colourfulness
of an area judged in proportion to the brightness of a similarly
illuminated area that appears white, whereas saturation measures
the colourfulness of an area judged in proportion to its own
brightness (and so is constant with luminance except at very
high levels) [41].

These three attributes were quantified by the CIECAM02
model [34], which offers the best descriptor, in particular for sat-
uration with natural scenes [57]. Because deviations in spatial
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cone-excitation ratios refer to pairs of points, comparisons were
made with the (unsigned) differences in the attribute values at
those points.

Estimated colour differences and deviations in spatial
cone-excitation ratios were also tested for an association with
non-colorimetric physical properties of reflectances.

(g) Statistics
The main reporting statistics for the 50 scenes are (1) the pro-
portion of scenes in which the upper 5% and upper 10% of
expected colour differences or deviations in spatial ratios of
cone excitations exceed detection threshold and (2) the median
over scenes of the correlations between expected colour differ-
ences or deviations in ratios and colorimetric or physical
reflectance properties. Correlation was quantified by the Pearson
product moment correlation coefficient ρ, evaluated where
necessary as the square root of the proportion R2 of the variance
accounted for in a linear regression. Spearman’s rank correlation
coefficient offered no advantage. Confidence intervals (CIs) were
95% intervals estimated by Efron’s BCa bootstrap method with
1000 bootstrap replications [58].
3. Results and comment
(a) Colour differences in single scenes
Figure 3a shows estimated colour differences for 5000 points
drawn randomly from the scene in figure 1. The CAM02-UCS
colour difference ΔE, averaged over daylight illuminant
changes from CCTs of 4000 K to 6500 K and 25 000 K to
6500 K, is plotted against CIECAM02 chroma for the 6500 K
reference illuminant. Data points are coloured with the corre-
sponding pixel colours in figure 1.

About half of the colour differences ΔE for this scene
exceed the CAM02-UCS detection threshold ΔEthr = 1.5, with
the purple flowers producing the largest failures in colour con-
stancy. Values of ΔE tend to increasewith chroma, but at a rate
dependent on hue [12]. Because of this dependence, the overall
correlation with chroma is reduced, with ρ = 0.47.

By contrast, figure 3b shows analogous data for 2000
points drawn randomly from a scene that was more
homogeneous, primarily green foliage (see thumbnail
image). Just 1% of the colour differences ΔE exceed ΔEthr =
1.5, though they also tend to increase with chroma, and
with a much higher correlation, ρ = 0.85, than with the
more inhomogeneous scene in figure 3a.

These two examples are solely for illustration. In what
follows, summary data are presented for the full set of
50 images.

(b) Frequencies of large colour differences
The locations of the largest CAM02-UCS colour differences
ΔE in each of the 50 scenes are ringed in figure 2. Almost
all these values exceeded the estimated detection threshold
ΔEthr, but they give an uncertain guide to the frequency of
large colour differences. A more robust measure is provided
by percentiles.

Figure 4a,b shows histograms of the upper 5th percentiles
of ΔE in each scene for CAM02-UCS and CIELAB colour
differences under the same daylight illuminant changes
with a chromatically adapted observer. The vertical dashed
lines mark the estimated detection thresholds ΔEthr.

The proportion of scenes with the upper 5th percentile
exceeding threshold was 60% (CI 46% to 72%) with CAM02-
UCS and a little higher at 68% (CI 54% to 80%) with CIELAB.
Including surfaces with low reflectances as a control (see
Methods) changed these proportions by no more than 10%.

As expected, the proportion of scenes with the upper 10th
percentile of ΔE exceeding threshold was smaller, at 44%
(CI 30% to 56%) with CAM02-UCS and 54% (CI 40% to
66%) with CIELAB.

If, contrary to assumption, observers were not chromati-
cally adapted, then the proportions of scenes affected
increase. Thus, with a default adaptation level [46], the pro-
portion with the upper 10th percentile of ΔE exceeding
threshold was 90% (CI 76% to 96%) with CAM02-UCS and
86% (CI 74% to 94%) with CIELAB. Conversely, if thresholds
ΔEthr were set larger or changes in illuminant spectrum made
smaller, then these proportions decrease.

For clarity, these results do not so much imply that colour
constancy does not hold predominantly in these scenes but
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that, in around half of them, there exist some individual sur-
faces or parts of surfaces within those scenes where it is
expected to fail.

(c) Frequencies of large deviations in cone-excitation
ratios

Relative deviations (RDs) in spatial cone-excitation ratios
were analysed in the same way. Figure 4c shows a histogram
of the upper 5th percentiles of RDs under the same daylight
illuminant changes. The vertical dashed line marks the esti-
mated detection threshold ΔEthr. The proportion of scenes
with the upper 5th percentile exceeding threshold was 80%
(CI 68% to 90%), and the proportion with the upper 10th
percentile exceeding threshold was 60% (CI 46% to 72%).

Despite the differences between relational colour con-
stancy and colour constancy, the percentiles of RDs and
colour differences ΔE were correlated over scenes. For the
upper 5th percentiles, ρ = 0.74 (CI 0.54 to 0.83) and for the
upper 10th percentiles, ρ = 0.70 (CI 0.45 to 0.83).

(d) Colorimetric attributes accounting for variance
Figure 5 shows histograms of the correlation coefficients ρ
between CAM02-UCS colour differences ΔE and chroma, sat-
uration and lightness. As noted earlier, appearance attributes
were evaluated under the 6500 K illuminant.

For correlations of ΔE with chroma, median ρ = 0.65 (CI
0.54 to 0.74), and with saturation, median ρ = 0.63 (CI 0.52
to 0.69). For correlations of ΔE with lightness, however,
median ρ = 0.09 (CI 0.01 to 0.30). The pattern of correlations
was similar for CIELAB colour differences ΔE, with some-
what higher values.

When colour differences were restricted to just lightness
differences, so that ΔE = ΔJ

0
in CAM02-UCS, the dependence

on colourfulness measures persisted. For correlations of ΔJ
0

with chroma, median ρ = 0.75 (CI 0.64 to 0.78) and with sat-
uration, median ρ = 0.67 (CI 0.63 to 0.72). For the correlation
of ΔJ

0
with lightness, median ρ = 0.03 (CI −0.05 to 0.07). The

lack of correlation can be understood with reference to the
orange flower in figure 1. The small increase ΔJ0 with a
change in illuminant is associated not with its lightness but
its colourfulness [41].

Although colour differences are associated with colour-
fulness measures, the plot in figure 3a for the flower scene
suggests they are also associated with hue. With a linear-cir-
cular regression [59] of ΔE on hue angle for each of the 50
scenes, median ρ = 0.52 (CI 0.38 to 0.58), lower than with
chroma, where median ρ = 0.65. Even so, the role of chroma
seems not to be secondary to hue angle. In separate linear
regressions, the median proportion R2 of variance accounted
for by chroma was 43%, by hue angle 27%, and by the two
together in a linear and linear-circular regression on chroma
and hue angle 66%.

Spatial cone-excitation ratios revealed similar correlations.
Figure 6 shows histograms of the correlation coefficients ρ
between the relative deviation RD in cone-excitation ratios
across a pair of points and the difference in chroma, satur-
ation, and lightness at those points. Illuminant changes
were again from 4000 K to 6500 K and 25 000 K to 6500 K
and the appearance attributes were evaluated under the
6500 K illuminant.
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For chroma, median ρ = 0.66 (CI 0.60 to 0.71); for satur-
ation, median ρ = 0.68 (CI 0.58 to 0.78); and for lightness,
median ρ = 0.20 (CI 0.15 to 0.25), paralleling the corresponding
medians for correlations of colour differences.

(e) Reflectance properties accounting for variance
It could be argued that the correlation of estimated colour
differences with measures of colourfulness is not due to
these attributes per se, but that both are due to the under-
lying properties of the surface spectral reflectance.
Departures from spectral uniformity can be quantified in var-
ious ways, for example, by the size of the peaks in the
reflectance spectrum, the slopes at each point, and the coeffi-
cients of the discrete Fourier transform. How well do any of
these properties account for the variance in ΔE values?

Peak size at each point (ξ, η) can be quantified by the
average difference R(ξ, η; λi)− [R(ξ, η; λi−1) +R(ξ, η; λi+1)]/2
in adjacent reflectance values at each wavelength λi in the
interior of the spectrum. With a linear regression of ΔE on
the maximum peak size in each of the 50 scenes, the
median R2 was small, just 5% (CI 1% to 10%).

These low values may be due to broader maxima being
discounted, a problem avoided in regressing on slopes
rather than peaks. With a linear regression of ΔE on the maxi-
mum absolute slope at each point (ξ, η), the median R2 was
larger, though still only 10% (CI 6% to 17%), and much less
than with chroma, where the median R2 was 43%.

The Fourier coefficients capture instead more extended
spectral properties. With a linear regression of ΔE on the
maximum of the Fourier amplitude spectrum at each (ξ, η),
the median R2 was 44% (CI 35% to 49%), indistinguishable
from the value with chroma.

That none of these reflectance properties accounted for
more variance than chroma might be because chroma is
derived from differences in transformed cone signals. These
differences also measure departures from spectral uniformity
but moderated by cone spectral sampling characteristics.
4. Discussion
Colour constancy failures of some individual surfaces or parts
of surfaces seem likely in natural outdoor environments. With
a change in the spectrum of a daylight illuminant, 60% of the
50 scenes in figure 2 revealed changes in estimated colour
appearance in at least 5% of the surface area and 44% in at
least 10% of the surface area, all with a chromatically fully
adapted observer. Somewhat higher frequencies of occurrence
were found for changes in colour relations estimated by spatial
ratios of cone excitations, independent of the observer’s
adaptation. Both estimated colour differences and deviations
in spatial ratios were correlated with measures of surface
colourfulness, and with each other.

Are predicted failures of this kind important in the real-
world recognition of objects and surfaces? There are several fac-
tors to consider, including the way observers view scenes; the
changes in natural illumination; the spatial distributions of
surfaces within scenes; and the role of cognitive discounting.

First, no assumptions were made here about an observer’s
viewing strategy. This was also true for the psychophysical
experiments [29,50] used to guide the choice of thresholds
for detecting colour differences. In [29], observers judged
simply whether a pair of simultaneous side-by-side images of
outdoor scenes, one with added colour errors, were the same
or different. Similarly, in [50], where images were presented
simultaneously and sequentially. Of course, with any individ-
ual scene, either outdoors or in the laboratory, detection
depends on an observer’s colour awareness [60] and on how
global colour properties guide attention [53,61,62].

Second, natural illumination changes take many forms.
They may be sequential and rapid, as with a cloud passing
over the sun or a shift in shadows cast more locally [26,63];
or they can be spatial, with light from different directions
[64], or variegated [65] with surfaces partly in direct sunlight
and partly in shade [66]. Thresholds for detecting colour
differences in these and corresponding laboratory conditions
[29,50] depend little on memory [67,68]. By contrast, when
illumination changes occur over minutes or hours, as with
the spectrum of the direct beam during solar elevation [69],
thresholds depend much more on memory and are generally
larger [67,68,70,71]. Thresholds are also larger in tasks such
as those requiring colour categorization [5].

Third, whether surfaces yielding large colour differences
are scattered over the scene or concentrated in one area
may affect their detectability. Since localized changes in
reflected light can still attract observers’ attention by pro-
cesses that are largely automatic and unconscious [72,73],
surface area may not be decisive, as long as it can be resolved.
Similar considerations apply to the effect of changes in colour
relations [19,51].

Fourth, and last, a case can be made that even if colour
differences are detectable, then higher-level, more cognitive
processes can discount them. Experimentally, with suitable
instructions, observers can indeed separate judgements of
colour appearance from judgements of the objective proper-
ties of reflecting surfaces under different illuminants [74,75],
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though the extent to which the processes are perceptual has
been debated [76,77]. Colour constancy may then be con-
strued as the capacity to associate particular colours with
particular surface spectral reflectances, in so far as they are
defined [35,36]. Crucially, the capacity to make judgements
about the origin of perceived changes seems possible only
because differences in appearance are attributable to illumi-
nation changes that are not coextensive with object surfaces.

This is not the situation here where changes in appear-
ance are localized and bounded by object surfaces. Such
changes may be interpreted by observers as unnatural.
Thus, in an experiment with chequerboard displays of Mun-
sell surfaces [19], observers compared surfaces undergoing an
illuminant change with surfaces undergoing the same illumi-
nant change but where the images were corrected for
deviations in spatial cone-excitation ratios. Observers system-
atically mislabelled the corrected images as appearing more
natural, with the probability of mislabelling increasing with
the size of the deviations.

There is other observational evidence that localized
changes in reflected light, albeit from a different physical pro-
cess, are perceived as reflectance changes. A tower half lit by
a low sun acquires an orange hue ([78], fig. 10), and Ayers
Rock, or Uluru, in Australia appears to change ‘from bright
orange through deep russet to dark purplish-brown’ over
several minutes at sunset ([79], fig. 9).

One reason that these perceptual effects cannot easily be
discounted is that they are optically indistinguishable, or
nearly so, from those due to genuine changes in surface reflec-
tance. Given that distinguishing surfaces with different
reflectances may be as consequential as recognizing surfaces
with the same reflectances, failures of colour constancy with
some surfaces may be a necessary trade-off between these
two abilities.
Ultimately the limitations of the present approach remain.
Despite the widespread use of colour difference metrics in
practical applications [41,46], it is possible that colour differ-
ences that are obvious in laboratory images are less obvious
in the real world. Likewise with deviations in spatial ratios
of cone excitations. On the other hand, as indicated earlier,
real-world changes in the spatial distribution of light [27]
may actually be more disruptive than purely spectral
changes.

Notwithstanding these uncertainties, failures of colour
constancy in outdoor environments should be expected
with some individual surfaces or parts of surfaces, especially
colourful ones. Rather than representing a fundamental lapse
of veridical perception, however, these failures may be a
by-product of sensory mechanisms or processes designed to
detect genuine changes in surface reflectance, whenever
they occur.
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