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Predicting siRNA efficacy based 
on multiple selective siRNA 
representations and their 
combination at score level
Fei He1,2,3, Ye Han4,5, Jianting Gong1,3, Jiazhi Song1,3, Han Wang1,3 & Yanwen Li1,3

Small interfering RNAs (siRNAs) may induce to targeted gene knockdown, and the gene silencing 
effectiveness relies on the efficacy of the siRNA. Therefore, the task of this paper is to construct an 
effective siRNA prediction method. In our work, we try to describe siRNA from both quantitative and 
qualitative aspects. For quantitative analyses, we form four groups of effective features, including 
nucleotide frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction, 
and mRNA related features, as a new mixed representation, in which thermodynamic of siRNA-mRNA 
interaction is introduced to siRNA efficacy prediction for the first time to our best knowledge. And 
then an F-score based feature selection is employed to investigate the contribution of each feature 
and remove the weak relevant features. Meanwhile, we encode the siRNA sequence and existed 
empirical design rules as a qualitative siRNA representation. These two kinds of siRNA representations 
are combined to predict siRNA efficacy by supported Vector Regression (SVR) at score level. The 
experimental results indicate that our method may select the features with powerful discriminative 
ability and make the two kinds of siRNA representations work at full capacity. The prediction results 
also demonstrate that our method can outperform other popular siRNA efficacy prediction algorithms.

At 1998, Fire first introduced RNA interference (RNAi) mechanism, in which ribonuclease III enzyme Dicer is 
able to cleave a long double stranded RNA (dsRNA) duplex into small interfering RNAs (siRNAs) with 19 nucle-
otides (nt) sequences and 2 nt overhangs at the 3′  ends1. Then siRNAs bind to RNA-induced silencing complex 
(RISC), which may guide to the degradation of complementary targeted messenger RNA (mRNA) and gene 
knockdown. Due to its gene silencing function, RNAi has been considered a promising approach to help treat tar-
geted diseases such as AIDS2, neurodegenerative diseases3, and cancer4. However, the gene silencing effectiveness 
of RNAi relies on the siRNA efficacy in targeting a specific gene. Thereby, an effective siRNA efficacy prediction 
method constitutes a huge challenge for selecting the most active siRNA.

In the early works, researchers depended on several sets of empirical rules from experimental data to select 
potent siRNA. The first rules proposed by Elbashir indicate that an efficient siRNA should have 19 nt sequence 
with 2 nt overhangs at the 3′  ends5. In addition, Scherer6 pointed out that the thermodynamic properties to target 
specific mRNAs need to be considered in siRNA design. Subsequently, many rational rules for designing active 
siRNA were found. For example, Reynolds analyzed 180 siRNA targeted the mRNA of two genes, and reported 
eight rule: (1) rich G/C content, (2) three or more A/U at positions 15–19 (3) absence of internal repeats, (4) 
position 19 with A, (5) position 3 with A, (6) position 10 with U, (7) position 19 without G/C, and (8) position 13 
without G7. Ui-Tei studied 72 siRNAs targeted the mRNA of six genes, and suggested a serial criterions: (1) posi-
tion 19 with A/T, (2) position 1 with G/C, (3) five or more T/A at positions 13–19, and (4) maximum of 9 nt long 
GC stretch8. Although these empirical rules are indispensable for siRNA design, the tools only using empirical 
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rules can hardly reach our acceptable level. Because these rules are summarized from small scale dataset and 
focus on some specific gene only.

In recent years, several machine learning based algorithms emerged as siRNA data rates grew, especially after 
Huesken published a dataset consisting of 2431 siRNAs, whose knockdown efficacies and targeted mRNAs may 
experimentally observed9. These approaches involved more siRNAs and their characteristics, and exhibited more 
accuracy and reliability. For example, Huesken developed a tool named Biopredsi and applied artificial neural 
networks to predict siRNA efficacy9. Another tool ThermoComposition 21 combined position features and ther-
modynamic features to an artificial neural network model for further improving the prediction accuracy10. DSIR 
used basic sequence information and a simple linear model LASSO, which also achieved good performance11. 
In addition, two more models i-Score and Scales utilized linear regression models to perform art-of-the-state 
accuracy rates12,13. The five popular methods are considered as the best predictors13,14. These approaches almost 
employed heterogeneous siRNA features, including sequence composition and thermodynamic stability profile, 
and a regression or classification computational model to achieve great improvement compared with previous 
rule-based methods.

The machine learning methods suggested that the sequence and thermodynamic parameters of siRNA are 
strongly associated with the effectiveness of gene silencing. However, there are some shortcomings in existed 
methods: (1) several methods focused on characterizing siRNAs according to their sequences and profiles, but 
missed the application of the empirical rules; (2) few method took the thermodynamic of siRNA-mRNA inter-
action and mRNA-related features into consideration. And the literature15 demonstrated that the mRNA related 
feature might help predict siRNA efficacy; (3) Even though the tool siPred tried to combine the features together 
with the rules as input16, it neglected to deal with the data heterogeneity between the continuous and binary data, 
which may influence the accuracy of modeling a linear regression system.

Aiming at developing a more reliable and stable model to predict the siRNA knockdown efficacy, in our work, 
we focus on three main tasks: (1) constructing meaningful and rich representations of siRNAs, (2) selecting the 
most related features to represent siRNAs, (3) rationally combining these representations to build a improved 
siRNA efficacy predictor. In the first task, in order to objectively and comprehensively represent siRNA, we define 
two different types of representations to describe siRNA from both quantitative and qualitative analyses. The first 
description is a hybrid feature vector combining sequence frequencies, thermodynamic stability profile, ther-
modynamic of siRNA-mRNA interaction together with mRNA related information. All these features can be 
quantified, thus they are integrated into a continuum feature vector. For further analyzing the contribution of 
each component in the hybrid feature, we try to implement a feature selection algorithm to assess each compo-
nent feature, and find out the optimal feature subset to remove the features with weak relevancy. In the second 
representation, we encode empirical siRNA design rules to qualitatively characterize siRNA. Subsequently, we 
consider the third task that fuses the two incompatible types of representations to level up the performance of 
prediction. Generally speaking, the common way to combine multiple types of features as a vector, also called 
feature fusion, is difficult to achieve improvement due to the heterogeneity and incompatibleness among different 
forms of features. Instead, score level fusion is more feasible and effective17. Therefore, we would like to address 
this combination problem by respectively using two Supported Vector Regression (SVR) models with different 
kernels to map the two heterogeneous siRNA representations into two scores. Finally, another linear SVR model 
will map the two scores into a final result, as the predicted siRNA efficacy.

Material and Method
Datasets. In siRNA researches, Huesken’s dataset is broadly adopted as benchmark, which consists of 2431 
siRNA targeted 34 different mRNA. In order to test the machine learning based algorithm, it is commonly divided 
into a training subset with 2182 siRNA and a testing subset with 249 siRNAs9. Another three independent data-
sets are also accepted to validate the stability of our proposed method in this paper. They include Vicker dataset 
with 76 siRNAs18, Reynolds dataset with 240 siRNAs7, and Haborth dataset with 44 siRNAs19. Although these 
datasets provide inhibitions as observed labels, some of them also may be used in classification mode. In such 
case, 70% targeted gene knockdown is generally considered as the threshold to define active and inactive siRNA.

Quantitative Representations of siRNA. In this section, we employ several siRNA features formed a 
representation of siRNA FQt. These features have one common property: they describe siRNA in quantitative 
manner. Thereby, the real number values of the features reflect the degree of certain attribute of siRNA. The sum-
mary of FQt is shown in Table 1.

Nucleotide Frequencies. The nucleotide frequencies are the descriptors of nucleotide distribution in siRNA 
sequence. They were broadly adopted in existed literatures20–22. In FQt, we calculate three groups of nucleotide 
frequencies by the following rules. The first group indicates the frequencies of A, U, G or C in a siRNA sequence. 
The second group computes the frequencies of all dinucleotides (e.g., AG, UC, etc), which has 16 possible per-
mutations. The third group represents the frequencies of all trinucleotides (e.g., CAG, UCC, etc), which has 64 
possible permutations.

Thermodynamic stability profile. The thermodynamic stability is another popular descriptor of siRNA, which 
demonstrates a guide strand selection mechanism. Many studies had confirmed that the siRNA potency depends 
strongly on the thermodynamic stability22. The thermodynamic stability profile includes Watson-Crick pair free 
energy Δ G, which may be calculated between each two neighboring nucleotides along the siRNA duplex anti-
sense strand in the 5′  to 3′  direction, the sum of all the siRNA local duplex Δ Gduplex, and the difference of duplex 
formation at the 5′  and 3′  end of siRNA for 5 terminal nucleotides Δ Δ G. The calculations and results of thermo-
dynamic stability profile may be referred in literatures23.
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Thermodynamic of siRNA-mRNA interaction. Recently, there is mounting evidence that siRNA activity is influ-
enced by the thermodynamic stability of the ends of siRNAs and the energy gain due to hybridization at the 
siRNA binding site, which determine the accessibility for an interaction between siRNA and mRNA target24. 
Therefore, we would like to include this impact into our predict model, and try to take such thermodynamic 
parameters into FQt. To our best knowledge, this is the first work introduces the thermodynamic parameters of 
siRNA-mRNA binding into siRNA efficacy prediction.

The thermodynamic of siRNA-mRNA interaction consists of two components: the energy necessary to make a 
potential binding region accessible and the energy gained from the base pairing of the two interaction partners25. 
The first component needs two dimensional real numbers to record the free energy for exposing the binding site 
in siRNA Δ Gs and mRNA Δ Gm. The second component describes the energy gained by siRNA-mRNA interac-
tion Δ Gh. We can obtain the three thermodynamic parameters using a simple web server tool RNAup developed 
by Mückstein U in University of Vienna26. The tool only needs the sequences of siRNA and targeted mRNA, and 
will output the three thermodynamic parameters soon. We use RNAup to calculate the thermodynamic param-
eters of siRNA-mRNA interaction of siRNAs in Huesken’s dataset, and compute their Pearson correlation coeffi-
cients (PCC) between the three thermodynamic parameters and observed inhibitions as Fig. 1 shown.

In Fig. 1, we also collect the PCCs between some main features in other groups of FQt and observed inhibi-
tions. It may be observed that Δ Gh achieves the highest PCC among the three thermodynamic parameters. And 
the PCCs of three thermodynamic parameters are comparable to those of the features with high PCCs from 
nucleotide frequencies and thermodynamic stability. Thus they explore the strong correlations between ther-
modynamic of siRNA-mRNA interaction and siRNA efficacy. Meanwhile, we further investigate their discrimi-
native ability for distinguishing active siRNA from inactive siRNA. We divide siRNAs in Huesken’s dataset into 
two classes according to the discipline of 70% inhibition of targeted mRNA, and draw the box plots of the three 
thermodynamic parameters to indicate their distributions between active siRNA and inactive siRNA as Fig. 2.

From Fig. 2, we can observe that the three thermodynamic parameters are discriminative to active and inac-
tive siRNA. Therefore, we believe that they are effective and meaningful for siRNA efficacy prediction.

Group Feature Dimension

Nucleotide frequencies

Single-nucleotide frequencies 4

Dinucleotide frequencies 16

Trinucleotide frequencies 64

Thermodynamic stability profile

Watson-Crick pair free energy 18

The sum of all the siRNA local duplex 1

The difference of duplex formation at the 5′  and 3′  end of siRNA for 5 terminal nucleotides. 1

Thermodynamic of siRNA-mRNA interaction
the energy necessary to make a potential binding region accessible 2

the energy gained from siRNA-mRNA interaction 1

mRNA related features

Single-nucleotide frequencies in mRNA 4

Dinucleotide frequencies in mRNA 16

Trinucleotide frequencies in mRNA 64

Single-nucleotide frequencies in near siRNA binding site region of mRNA 4

Dinucleotide frequencies in near siRNA binding site region of mRNA 16

Trinucleotide frequencies in near siRNA binding site region of mRNA 64

Table 1.  The brief introduction of FQt.

Figure 1. The PCCs between parts of features and siRNA inhibitions on Huesken’s dataset. 
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mRNA related features. From the above analyses, we may discover the strong correlations between siRNA effi-
cacy and the thermodynamic parameters of siRNA-mRNA binding. Naturally, we would like to consider using the 
siRNA-mRNA binding site and corresponding mRNA features for involving more helpful information in FQt. The 
literature15 shows that less GC content of mRNA at both global and local flanking regions of the siRNA binding 
sites lead to siRNA inhibition. Inspired by this, we would like to include the mRNA sequence composition and 
near siRNA binding site into FQt. We firstly count the frequencies of single-nucleotides, dinucleotides, and trinu-
cleotides in the targeted mRNA sequence, which also have 4, 16, 64 possible permutations respectively. Further, 
we add up the frequencies of single-nucleotides, dinucleotides, and trinucleotides near siRNA binding site of the 
targeted mRNA sequence, which also have 4, 16, 64 possible permutations respectively.

Feature Selection by F-score. The above introduced four groups of features are formed a mix feature 
vector as the quantitative representations FQt of siRNA. They quantitatively characterize siRNA from the views of 
sequence frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction and the tar-
geted mRNA. However, because of the lack of direct experimental evidence of these quantitative features linked 
to siRNA activity, we would like to investigate the contributions among these features in FQt by a feature selection 
method.

F-score is a straightforward indicator to measure the discriminative ability of two sets27, which is a frequently 
used feature selection tool for two-class classification problem. The F-score of the i-th feature can be defined as:
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is the i-th feature of the k-th positive sample, and −xk i,

( ) is the i-th feature of the k-th negative sample. The larger the 
F-score suggests that the involved feature is more discriminative. Therefore it may be a feature selection criterion 
to select the subset features with more importance. In our algorithm, we label siRNAs in Huesken’s dataset to two 
categories according to the above mentioned 70% division discipline. Then we calculate the F-score of each fea-
ture in FQt using the simple tool provided by libSVM28, and conduct the binary search to choose the best feature 
subset.

Algorithm 1: the binary search for optimal subset feature selection

Input: A data set = −L f m S F score{ ( ), , }n
1, where f(m) =  {f1, f2, ... , fm} are the quantitative representations FQt of involving siRNAs, and S 

are their experimentally determined inhibitions. m is the dimension of f(m) and n is the number of involving siRNAs.

Output: the optimal subset ′FQt

Initialization: 

– Sort f(m) in descending order by F −  score

– Divide L into two parts: = − × .L f m S F score{ ( ), , }train
n
1

0 9 and = − × .L f m S F score{ ( ), , }test
n
1

0 1 by random sampling

Continued

Figure 2. The distributions between active siRNA and inactive siRNA of (a) Δ Gh (b) Δ Gm (c) Δ Gs.

group Encoding rule
Dimension of 

features

Sequence codes Map nucleotides at each sequence position 
to four dimensions in vector space 84

Rule codes Encode nucleotides at each sequence 
position with rule sets 19

Table 2.  The brief introduction of FQl.
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– Train a predicted model M using Ltrain

– Predict the siRNA efficacy Ŝtest of Ltest using M

– Calculate the Pearson Correlation Coefficient (details in “Model Evaluation” section) PCC between Stest and Ŝtest

– plow =  1 and pup =  m {search range}

repeat 

  k =  pup +  plow/2

  Let ′ = −L f k S F score{ ( ), , }n
1

  Divide L′  into two parts: ′ = − × .L f k S F score{ ( ), , }train
n
1

0 9 and ′ = − × .L f k S F score{ ( ), , }test
n
1

0 1 by random sampling

  Train a predicted model M′  using ′Ltrain

  Predict the siRNA efficacy ′Ŝtest of ′Ltest using M′ 

  Calculate PCC′  between Stest and ′Ŝtest

  if PCC′  >  PCC then

    PCC =  PCC′ 

    pup =  k

  else

    plow =  k

  end if

until (pup <  k) or (plow >  k)

′FQt =  f(k)

The selective features are deemed strongly relevant to siRNA efficacy, while the absent features are considered 
weakly relevant. From the experiments (details in “Results of feature selection” section), we obtained 68 dimen-
sional selective features formed the optimal quantitative representations ′FQt.

Qualitative Representations of siRNA. As previously mentioned, there is another category of important 
siRNA profiles, i.e empirical rules. The empirical rules experimentally define several patterns regarding siRNA 
sequence positions for active and inactive siRNA. Differing from FQt, they are unable to use real number values 
to accurately describe whether the siRNAs satisfy the rules or not. In this paper, we define another kind of siRNA 
representations FQl using trihedral encoding way (i.e. − 1, 0, 1). Because these empirical rules have been validated 
by biological experiments and analyses, it is unnecessary to conduct feature selection to FQl. The summary of FQl 
is shown in Table 2.

Sequence codes. The siRNA sequence may be seen as the information source for siRNA features. We assign a 
four dimensional binary code for each nucleotide at sequence. Specifically, the binary coding is A =  〈 1, 0, 0, 0〉 ,  
C =  〈 0, 1, 0, 0〉 , G =  〈 0, 0, 1, 0〉 , U =  〈 0, 0, 0, 1〉 . The two 3′  overhang nucleotide at position 20 and 21 are also 
encoded in this features. This encoding way is adopted by several studies16,22.

Rule codes. Several empirical rules suggest that certain nucleotide at certain sequence position may lead to 
active or inactive siRNA. Such rules for designing siRNA are formulated to a table in literature16. In the formu-
lated table, it lists the performance of nucleotide at each position to siRNA efficacy combining 12 rules from the 
published reports, including Reynolds’s, Ui_tei’s, and Hsieh’s rules7,8,10,13,29–33. We can understand that the nucleo-
tide at each position may prefer for active siRNA or inactive siRNA by seeking the table. Thus we can use the tri-
hedral method to encode each nucleotide at sequence position. The encoding is 1 when the nucleotide prefers for 
efficient siRNA, while the encoding is − 1 when the nucleotide prefers for inefficient siRNA. If no rule mentions 
such preference, the encoding is 0. However, not all rules provide the preference for all possible nucleotide at a 
position. In such case, as long as one rule offers a preference suggestion, we will encode the nucleotide at this posi-
tion by the only rule. For example, if there is an adenine at the seventh position, which satisfies the high-efficacy 
rule in Svetlana’s, Matveeva’s and Jiang’s rule sets. But other rule sets hardly reveal any preference for adenine at 
the same seventh position. Therefore, the positional code at seventh position still gets 1 in our works. Further, 
for a nucleotide at certain position, different rules may possibly explain different preferences. In this paper, we 
simplify this situation by the principle of majority criterion. For instance, if there is a uracil at the ninth position, 
which satisfies both the low-efficacy rule in Takasaki’s rule set and the high-efficacy rule in Svetlana’s and Jiang’s 
rule set. Under this circumstance, we will adopt the positional code at ninth position as 1, because more rules 
support this kind of preference. In light of out simplified approach, the table of preference for nucleotides at each 
position from literature16 may be re-formulated as Table 3 shown. Thereby, one can rapidly find out the encoding 
for nucleotides at each position.

Multiple representations fusion model based on SVR at score level. Next, we would like to propose 
a fusion model for combining the selective quantitative representation ′FQt and qualitative representations FQl of 
siRNA at score level. The key of this model is to use Supported Vector Regression (SVR) with regard to the two 
kinds of siRNA representations. The SVR is an effective and widely applicable regression tool34. The idea of SVR 
is based on the computation of a regression function in a high-dimensional feature space where the input data are 
mapped via a linear or nonlinear function. Its regression function is defined as follows:
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Position Nucleotide Encoding Rule providers

1

A − 1 Ui-Tei, Amarzguioui, Takasaki, Svetlana, Matveeva 

C + 1 Ui-Tei, Amarzguioui, Jagla 1, Jagla 2, Jagla 3, Matveeva

G + 1 Ui-Tei, Amarzguioui, Takasaki, Svetlana, Jagla 1, Jagla 2, Jagla 3, Matveeva, Jiang

U − 1 Ui-Tei, Amarzguioui, Takasaki, Svetlana, Matveeva, Jiang

2

A − 1 Amarzguioui

C 0

G + 1 Svetlana, Jiang

U − 1 Amarzguioui, Matveeva

3

A + 1 Reynolds

C − 1 Matveeva

G + 1 Svetlana, Jiang

U − 1 Amarzguioui, Svetlana, Jiang 

4

A 0

C − 1 Svetlana

G 0

U + 1 Matveeva

5

A + 1 Jagla 4

C 0

G 0

U + 1 Jagla 4

6

A + 1 Amarzguioui, Takasaki, Svetlana, Jagla 4, Matveeva, Jiang

C − 1 Hsieh, Takasaki, Svetlana, Matveeva, Jiang

G − 1 Svetlana, Svetlana

U + 1 Svetlana, Jagla 4, Matveeva, Jiang

7

A + 1 Svetlana, Matveeva, Jiang

C − 1 Svetlana, Matveeva, Jiang

G + 1 Takasaki

U − 1 Takasaki

8

A + 1 Takasaki

C 0

G − 1 Takasaki

U 0

9

A 0

C 0

G − 1 Takasaki, Matveeva

U − 1 Jagla 1, Jiang

10

A + 1 Jagla 1 

C + 1 Jagla 2

G + 1 Jagla 2

U + 1 Reynolds, Svetlana, Jagla 1, Matveeva, Jiang

11

A 0

C + 1 Hsieh, Jagla 3

G + 1 Hsieh, Jagla 3

U 0

12

A + 1 Matveeva

C 0

G − 1 Matveeva

U 0

13

A + 1 Svetlana, Matveeva, Jiang

C − 1 Svetlana, Jiang

G − 1 Reynolds, Svetlana, Jiang 

U + 1 Svetlana, Matveeva, Jiang

14

A 0

C − 1 Svetlana, Jiang

G 0

U 0

Continued
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∑ β β= − + = …
=

⁎f x K x x b i k( ) ( ) ( , ) 1, 2, ,
(2)i

k

i i i
1

where k is the number of training data. The Lagrangian multipliers β β⁎,i i are found by solving a quadratic pro-
gramming problem35. And b is the bias. The kernel function performs a linear or non-linear mapping, which can 
employ any symmetric function satisfied Mercer’s condition. The most widely used kernels include linear, poly-
nomial, radial basis function (RBF), and sigmoid kernel36, which extend SVR’s ability to handle all types of data.

In our model, the first stage is to model two SVRs with reasonable kernels for distinctively mapping the two 
kinds of siRNA representations ′FQt and FQl to their corresponding predicted scores. By our traversing experi-
ments (details in “Performance of two representations and their fusion” section), the linear-SVR and RBF-SVR 
are more appropriate with regard to ′FQt and FQl respectively. The two estimated scores independently represent 
the predicted activities by the single siRNA representation ′FQt and FQl. In the second stage, the remaining problem 
is transformed to find another regression function using the two estimated scores as input. We thus train another 
linear-SVR model to map the two scores into a final result. This final label may be seen as the predicted siRNA 
efficacy by fusing multiple the siRNA representations ′FQt and FQl for consolidating the siRNA efficacy prediction. 
In summary, Algorithm 2 formulizes the steps described above.

Position Nucleotide Encoding Rule providers

15

A + 1 Svetlana, Jiang

C − 1 Matveeva

G 0

U − 1 Svetlana, Jiang

16

A 0

C 0

G + 1 Hsieh

U + 1 Matveeva

17

A + 1 Amarzguioui, Svetlana, Matveeva, Jiang

C 0

G − 1 Matveeva

U + 1 Amarzguioui

18

A + 1 Amarzguioui, Svetlana, Matveeva, Jiang

C − 1 Svetlana, Matveeva, Jiang

G − 1 Matveeva

U + 1 Svetlana

19

A + 1 Ui-Tei, Amarzguioui, Svetlana, Jagla 1, Jagla 2, Jagla 4, Matveeva, Jiang

C − 1 Reynolds, Ui-Tei, Matveeva, Jiang

G − 1 Reynolds, Ui-Tei, Amarzguioui, Hsieh, Takasaki, Svetlana, Matveeva, Jiang

U + 1 Ui-Tei, Amarzguioui, Hsieh, Svetlana, Jagla 1, Jagla 2, Jagla 4, Matveeva, Jiang

Table 3.  The encoding for nucleotide at each position in light of empirical rules. + 1: Preference for high 
siRNA efficacy. − 1: Preference for low siRNA efficacy. 0: No rule followed.

Iteration Number of features
Pearson Correlation 

Coefficient

1 275 0.670

2 275/2 =  137 0.682

3 137/2 = 68 0.691

4 68/2 =  34 0.684

5 34 +  (68–34)/2 =  51 0.688

6 51 +  (68–51)/2 =  59 0.687

7 59 +  (68–59)/2 =  63 0.685

8 63 +  (68–63)/2 =  65 0.684

9 65 +  (68–65)/2 =  66 0.687

Table 4.  The processes of binary search for the optimal subset features ′FQt.
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Algorithm 2: Multiple representations fusion model based on SVR

Input: A data set = ′{ }( ) ( )L F F,Qt Ql

n

68 108 1
 where ′FQt and FQl are the quantitative and qualitative representations of involving 

siRNAs. n is the number of involving siRNAs.

Output: the predict siRNA efficacy S

– Divide L into two parts: = ′
× .{ }( ) ( )L F F,train Qt Ql

n

68 108 1

0 9
 and = ′

× .{ }( ) ( )L F F,test Qt Ql

n

68 108 1

0 1
 by random sampling

– Train a RBF-SVR model M using FQl in Ltrain

– Predict the score Strain of FQl in Ltrain using M

– Train a linear-SVR model M′  using ′FQt in Ltrain

– Predict the score ′Strain of ′FQt in Ltrain using M′ 

– Train a linear-SVR model Mfusion using ′S S{ , }train train

– Predict the score Stest of FQl in Ltest using M

– Predict the score ′Strain of ′FQt in Ltest using M′  

– Predict the siRNA efficacy S of using Mfusion and ′S S{ , }test test

Model Evaluation. In this article, we adopt Pearson Correlation Coefficient (PCC) to measure the corre-
lation between the predicted efficacy and observed inhibitions, which is the most common use in a regression 
system. Its definition is as follow:

∑ σ σ
=

−





− 








− 


=

PCC
n

X X Y Y1
1 (3)i

n
i

X

i

Y1

Where X and Y represents the predicted values and observed labels. n is their common size. X and σX denote the 
mean and standard deviation of X respectively. Likewise, Y and σY denote the mean and standard deviation of Y 
respectively.

As above mentioned, some literatures also conducted the experiments of predicting siRNA efficacy in classifi-
cation way. Therefore, some classification indicators, including sensitivity and specificity are also employed in our 
work. These indicators can be calculated as follows:

= +Sensitivity TP TP FN/( ) (4)

= +Specificity TN TN FP/( ) (5)

Where TN, FN, TP and FP are the number of true negatives, false negatives, true positives and false positives 
respectively.

In addition, the Receiver Operating Characteristic (ROC) curve is also used to exhibit the overall performance 
of algorithms. The ROC curve is drawn by plotting the true positive rate (i.e. sensitivity) versus the false positive 
rate (i.e. 1 – specificity) with different thresholds. In ROC, we may further observe the area under ROC curve 
(AUC) to evaluate the reliability of classification system. A perfect classification system may obtain the maximum 
AUC value 1, while the AUC value 0.5 implies a random classification.

Results
Results of feature selection. We would like to report the details of feature selection for FQt first. We respec-
tively calculate the F-scores of 275 features in FQt according to section 2.3, and employ binary search strategy to 
find the optimal subset features by the descending sorted 

��
FQt. The Table 4 shows the processes of binary search for 

the optimal subset features ′FQt.
In Table 3, we firstly use all 275 features 

��
FQt to train a SVR model with linear kernel on Huesken_train dataset, 

and then test the regression model on Huesken_test dataset. Although the PCC of 275 features has achieved 
0.670, we need to continuously try the half part of 

��
FQt. Such an attempt will go on until the PCC drops for the first 

time at the fourth iteration. At that time, we will try to obtain the optimal feature subset between 34 dimensional 
subset of 

��
FQt and 68 dimensional subset of 

��
FQt. The binary search continues until it can reach an optimal subset 

of 
��
FQt with a higher PCC than 0.691. After the whole searching, we get the 68 dimensional subset of 

��
FQt with the 

highest PCC 0.691 as selected representation ′FQt. The comparisons between two linear-SVR models using FQt and 
′FQt are shown as Fig. 3.

We also exhibit the 68 selective features in ′FQt as Fig. 4 shown. In Fig. 4, the selective features are listed 
descending order by F-scores. We can note that the selective features are from all four groups, where our proposed 
the thermodynamic parameters of siRNA-mRNA interaction Δ Gh, Δ Gm and Δ Gs rank the first, the fifth and the 
ninth according to their F-scores. Their highest 100% selected rate demonstrates such category of features may 
provide significant contributions to siRNA efficacy prediction.

In the group of mRNA related features, 53 features are selected: A% of neighbourhood, AAU% of mRNA, 
AA% of neighbourhood, UAG% of mRNA, CGU% of mRNA, UUA% of mRNA, AAU% of neighbourhood, 
AA% of mRNA, C% of mRNA, AAA% of mRNA, UA% of mRNA, A% of mRNA, GGG% of mRNA, AAA% of 
neighbourhood, ACU% of mRNA, ACA% of mRNA, G% of mRNA, GG% of mRNA, AU% of mRNA, GG% of 
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neighbourhood, GGC% of mRNA, CG% of mRNA, GC% of mRNA, UA% of neighbourhood, UAU% of mRNA, 
GC% of neighbourhood, AGC% of mRNA, C% of neighbourhood, GGC% of neighbourhood, CGG% of mRNA, 
UAA% of mRNA, CG% of neighbourhood, U% of mRNA, G% of neighbourhood, GCC% of mRNA, UU% of 
mRNA, GUU% of mRNA, CUG% of mRNA, CC% of mRNA, GAA% of mRNA, CGA% of mRNA, UCG% of 
mRNA, AU% of neighbourhood, ACC% of mRNA, UGU% of mRNA, CCG% of mRNA, GGG% of mRNA, 
CUG% of neighbourhood, UAA% of neighbourhood, AUA% of mRNA, GCC% of neighbourhood, ACA% of 
neighbourhood, and CGG% of neighbourhood. Such a large quantity of selective features and high selective rate 
indicate that the mRNA related features needs to be part of siRNA representation.

In the group of thermodynamic stability profile, five features are selected: Δ G for position 1 and 2, Δ Gduplex,  
Δ Δ G, Δ G for position 18 and 19, Δ G for position 13 and 14. Their 25% selective rate and high F-scores show that 
such category of features may help to improve siRNA efficacy prediction.

In the group of nucleotide frequencies, seven features are selected: U%, G%, GG%, UA%, GGG%, CC% and 
GC% of siRNA in the order. Their 8.33% selective rate exhibits that only a small number of them have strong 
correlation to siRNA efficacy prediction. But the above selective features imply that the content of G/GC/UA in 
siRNA sequence should be considered as important siRNA design rules, which are consistent with the conclu-
sions of Reynolds and Tei7,8.

Performance of two representations and their fusion. After obtaining the selective quantitative rep-
resentation ′FQt, we may separately create two SVR models for mapping the two categories of siRNA representa-
tions ′FQt and FQl into two sets of predicted scores on Hencken_train dataset. Further, let ′SQt and SQl as the two sets 
of scores from Hencken_train dataset, and they are arranged to train another SVR model to produce the final 

Figure 3. The comparisons between two linear-SVR models using (a) FQt and (b) ′FQt.

Figure 4. The 68 dimensional selective features by F-scores. 
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predicted results. We train these SVR models with 10-fold cross validation using the libSVM tool28, and then test 
the trained model using the siRNAs in Hencken_test dataset.

In order to construct rational SVR models, we attempt to separately traverse 4 popular SVR kernels for the 
single siRNA representations ′FQt and FQl, and the predicted scores ′SQt and SQl as inputs. Furthermore, we also 
perform the way of combining the ′FQt and FQl into a feature vector FQl+Qt using the same experimental protocol 
for comparisons. The combined vectors FQl+Qt with 171(= 68 +  103) dimensional real and discrete components of 
siRNAs in Hencken_train dataset are used to train SVR models and traverse the four kernels. The Table 5 shows 
the PCCs produced by these SVR models on Hencken_test dataset.

In Table 5, the best performed kernels regarding different siRNA representations and inputs are diverse. For 
′FQt, the highest PCC emerges when SVR using linear kernel, while the excellent performance of FQl is achieved by 

RBF kernel. We believe that the difference comes from their different data types. The phenomenon also prompts 
us that it is not so reasonable to combine these fundamental different representations into one feature vector. 
Putting the PCCs of the experiment using ′SQt and SQl and the experiment using FQl+Qt together, we may note that 
the best PCC among four kernels using FQl+Qt as input is 0.693, which is 5.3% lower than our score level fusion 
method. When we train the SVR model for fusing the two predicted scores ′SQt and SQl, the linear-SVR model acts 
the outperformance. It demonstrates that the predicted scores ′SQt and SQl are prone to a simple linear combination 
way due to their homogeneity. The predicted results from the models for ′FQt, FQl, FQl+Qt and our proposed fusion 
method are shown in Fig. 5. From these figures, we can conclude that our score level fusion algorithm may take 
advantage of the two kinds of siRNA representations, and achieve better performance than the model with only 

Input

PCC

Linear polynomial RBF sigmoid

′FQt 0.691 0.613 0.401 0.017

FQl 0.430 0.589 0.663 0.366

′SQt and SQl 0.730 0.667 0.697 0.007

FQl+Qt 0.577 0.454 0.693 0.002

Table 5.  The PCCs produced by the SVR models with different kernels and different inputs on Hencken_
test dataset.

Figure 5. The predicted results from the models for (a) ′FQt (b) FQl (c) FQl+Qt and (d) our proposed fusion 
method.
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single siRNA representation. Moreover, it can be considered a more rational combination approach for multiple 
siRNA features than the popular way of forming multiple features as an input vector.

Comparisons of algorithms. In order to further exhibit the advantage of our proposed methods, we con-
duct a serial of comparative experiments among our approaches and the most state-of-the-art systems Biopredsi9, 
ThermoComposition-2110, DSIR11 and i-score12 both in the classification and regression modes. The 70% thresh-
old of targeted gene knockdown is also used to separate active and inactive siRNAs in Hencken dataset. All mod-
els of these methods are trained on Hencken_train dataset and tested on Hencken_test dataset. The ROC curves 
with sensitivity, specificity and AUC of our method and the four systems are plotted in Fig. 6. In Fig. 6, we may 
discover that our method the highest ROC curve and the best AUC of 0.901 perform among the comparative five 
algorithms. Table 6 details the performance of our method and the four systems. As Table 6 shown, the PCC of 
our method achieves 0.730, which is 10.61%, 11.62%, 10.77% and 8.96% higher than the algorithms of Biopredsi, 
i-score, ThermoComposition-21 and DSIR respectively. In siRNA design, false positives prediction will take more 
experimental cost, thus siRNA design tools are expected to be capable of controlling false positives (high specific-
ity) and retaining the maximum number of true positives (high sensitivity). In order to exhibit such requirements, 
Table 6 also compares three groups of sensitivities together with high specificities 90.7%, 96.5% and 99% for each 
algorithm. In these groups, our model may achieve highest sensitivities among all the algorithms, when the spe-
cificities get high. It well indicates the high confidence of our algorithm.

For testing the stability of our method, we conducted extensive comparative experiment among the five algo-
rithms. In these experiments, the models of the five algorithms are trained on Hencken_train dataset but tested 

Figure 6. The ROC curves of the five algorithms. 

Method PCC AUC Sensitivity Specificity

Biopredsi 0.660 0.867

45.2% 90.7%

17% 96.9%

9.6% 99.0%

i-score 0.654 0.863

48.1% 90.7%

24.4% 96.9%

8.9% 99.0%

ThermoComposition-21 0.659 0.858

50.4% 90.7%

28.9% 96.9%

16.5% 99.0%

DSIR 0.670 0.874

58.5% 90.7%

25.9% 96.9%

14.8% 99.0%

Ours 0.730 0.901

67.4% 90.7%

20.7% 96.9%

17.8% 99.0%

Table 6.  The details of performance of the five algorithms.
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on the three independent datasets of Vickers, Reynolds and Harborth. We collect the PCCs and AUCs generated 
from the experiments in Fig. 7.

In Fig. 7, it shows that our method also can achieve the highest PCCs compared with other four algorithms 
on all three independent testing datasets and obtained higher AUCs except when tested on Vickers’ dataset. 
Otherwise, our method may produce more stable results across each of the independent siRNA datasets. In sum-
mary, our method outperforms other four algorithms in term of effectiveness and stability in all comparative 
experiments. We believe that such improvement is ascribed to the synthetical process of the thermodynamic of 
siRNA-mRNA interaction, targeted mRNA, our feature selection method and the multiple representation fusion 
at score level.

Conclusion
In this article, we present a siRNA efficacy prediction method by combining two kinds of siRNA representations 
at score level. We first introduce the thermodynamic of siRNA-mRNA interaction together with nucleotide fre-
quencies, the thermodynamic stability profile, and mRNA-related features as a 275 dimensional siRNA quanti-
tative representation. Further, we adopt F-score as an importance measure to evaluate all features in such siRNA 
quantitative representation. The top-ranked 68 dimensional features are chosen, which performs highest F-scores 
among all possible feature subsets. Our proposed thermodynamic parameters of siRNA-mRNA interaction are 
100% included in selective features with high F-scores, which suggests that such category of features may provide 
significant contributions to siRNA activity prediction. We also find that the features selected from nucleotide fre-
quencies are consistent with the design rules from the researches of Reynolds and Tei. In addition, we also encode 
siRNA sequence and several empirical rules as the qualitative representations of siRNA. In order to maximize the 
strengths of both quantitative and qualitative representations of siRNA, we trained a fusion model based on SVR 
for combining the two kinds of representations at score level. The experimental data validate the outperformance 
of our model. Even in the extensive experiments on the independent datasets of Vickers, Reynolds and Harborth, 
our method also show more stability and better performance than several popular siRNA efficacy prediction 
systems.
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