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Abstract: A MIL series metal-organic framework (MOF), MIL-100(Fe), was successfully synthesized
at the nanoscale and fully characterized by TEM, TGA, XRD, FTIR, DLS, and BET. A toxicological
assessment was performed using two different cell lines: human normal liver cells (HL-7702) and
hepatocellular carcinoma (HepG2). In vitro cytotoxicity of MIL-100(Fe) was evaluated by the MTT
assay, LDH releasing rate assay, DAPI staining, and annexin V/PI double staining assay. The safe
dose of MIL-100(Fe) was 80 µg/mL. It exhibited good biocompatibility, low cytotoxicity, and high
cell survival rate (HL-7702 cells’ viability >85.97%, HepG2 cells’ viability >91.20%). Therefore,
MIL-100(Fe) has a potential application as a drug carrier.

Keywords: MIL-100(Fe); in vitro toxicity; HL-7702 cells; HepG2 cells

1. Introduction

Metal-organic frameworks (MOFs) are the latest class of crystalline hybrid materials developed
over the last 20 years [1]. MOFs are built from virtually infinite combinations of metal subunits and
organic ligands (aromatic acids or bases) through coordination bonds, and are also named porous
coordination polymers (PCPs) [2–4]. MOFs are rich in composition, crystal structure, and crystal shape,
and have irreplaceable advantages compared with other types of materials [5]. The high versatility of
MOFs is shown by their various applications over the past 10 years, including catalysis [6], sensing [7],
gas storage [8], bio-imaging [9], and magnetism [10]. Because of their large specific surface area,
connectivity polyhedron, high pore volume, high stability, non-toxicity, biocompatibility, and small
size, MOFs have become the most promising nanocarriers in the biomedical field [11–14]. Therefore,
MOFs can be used in a variety of designs, such as imaging agents for early and minimally invasive
diagnostics [15], specific cell and tissue (more commonly tumor tissue) targeting [16], high drug
loading [17], increased local drug concentration [18], and developing drug delivery preparations [19].
As described above, nanomedical MOFs are considered promising candidates for developing more
effective therapies and reducing side effects.

However, the increasing potential uses of MOFs may pose health risks to the patient. Therefore,
this has led to controversies about whether MOFs are biocompatible in biomedical applications.
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To date, the safety assessment of MOFs has been largely limited by the metals and linkers. Preliminary
studies showed that, owing to differences in chemical formulations, the toxicity of Zn, Zr, Mg, and Fe,
as assessed by LD50, rose from several µg/kg to more than 1 g/kg [20]. The organic ligands, such as the
commonly used polycarboxylic acids, are less toxic and easily removed under physiological conditions
because of their high polarity [21,22]. The diversity of metal clusters and organic ligands, as well as
the functional modification inside and outside the surface, represents further advantages of MOFs,
but can also change the chemical and physical properties of materials [23,24]. The range of cytotoxicity,
hydrophobic/hydrophilic balance, host-guest interaction, body distribution, biodegradability, tissue
accumulation, and excretion determines their toxicity and whether they could be used for medical
applications. Therefore, before the practical application of any new MOFs, a detailed study of their
toxicity and biosafety is urgently needed. In particular, it is required that MOFs have minimal
interference with the main effector cells [25], so the study of their possible toxic effects is very important.

Up to this point, among the thousands of MOFs reported, the most commonly used biomedical
materials are MIL (Material Institute Lavoisier) series [26]. MIL-100(Fe) is synthesized from FeCl3.6H2O and
H3BTC under hydrothermal conditions. The molecular formula is Fe3(H2O)2O-BTC and the nanoporous
structure is shown in Figure 1. There are two kinds of mesoporous cages in the skeletal structure with pore
diameters of 2.5 nm and 2.9 nm [27–29]. MIL-100(Fe) has been widely studied as an anticancer drug
carrier owing to its high specific surface area (1700 BET), high porosity, large drug-loading capacity,
stability in a biological medium, and eco-friendly nature [30,31]. For instance, MIL-100(Fe) has a
surface functionalization of maghemite nanoparticles, encapsulated doxorubicin with 14 wt % loading,
and progressive delivery of drug (PBS, 37 ◦C) exceeding 25 days [32]. Doxycycline monohydrate
and tetracycline hydrochloride, loaded separately on nano-MIL-100, were able to give a sustainable
release at SGF and PBS [33]. The effect of pH and temperature on the adsorption of cephalexin and
release behavior of MIL-100(Fe) was studied [34]. Docetaxel was encapsulated in MIL-100(Fe) with a
drug payload up to 57.2 wt %; the release rate of the drug after 96 h was measured in neutral (pH 7.4,
5.08%) and acidic (pH 5.5, 15.53%) PBS that included polysorbate 80 (1% v/v) [35]. To date MOFs have,
surprisingly, not been comprehensively analyzed for their adverse effects on hepatic cells, but have
only been preliminarily studied for their in vitro toxicity in cancer cells (see Table 1). As is well known,
the liver is a detoxifying organ, and nanomaterials tend to accumulate in the liver tissue after entering
the body [36]. Therefore, it is important to determine whether they cause hepatotoxicity.
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Table 1. The Effect of MIL-100 (Fe) on Various Cells,
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Table 1. The Effect of MIL-100 (Fe) on Various Cells,      :biocompatible;      :adverse effects. 

MOFs and MOFs-
Objects 

Cells Dose 
(μg/mL) 

Cell 
Viability 

Toxic 
Grade 

Reference 

MIL-100(Fe) PC3 100 (24 h) 75% low Saad et al. [32] 
MIL/USPIO-cit(10) PC3 100 (24 h) 75% low Saad et al. [32] 

MIL-100(Fe) 

HUVEC 200 (24 h) 100% none 
Stefan et al. 

[37] 

HMEC 200 (72 h) 85% low 
Stefan et al. 

[37] 

MLE12 200 (24 h) 10% high 
Stefan et al. 

[37] 

MH-S 200 (24 h) 10% high 
Stefan et al. 

[37] 
Gingival 

Fibroblasts 
200 (24 h) 100% none 

Stefan et al. 
[37] 

Human 
Schwann 

200(24 h) 60% medium 
Stefan et al. 

[37] 

MIL-100(Fe)@DOPC 

HUVEC 200 (24 h) 100% none 
Stefan et al. 

[37] 

HMEC 200 (72 h) 60% medium 
Stefan et al. 

[37] 

MLE12 200 (24 h) 40% high 
Stefan et al. 

[37] 

MH-S 200 (24 h) 20% high 
Stefan et al. 

[37] 

nanoMIL-100(Fe) MCF-7 100 (72 h) 94% none 
Mahsa et al. 

[35] 

MIL-100(Fe） 

CCRF-CEM 5000(48 h) ＞85% low 
Patricia et al. 

[38] 

RPMI-8226 5000(48 h) ＞85% low 
Patricia et al. 

[38] 

J744 5000(48 h) ＞85% low 
Patricia et al. 

[38] 

The toxic effect of MIL-100(Fe) on different types of cells varies greatly, so one must ensure the 
biocompatibility of MIL-100(Fe) to target cells and that its intrinsic toxicity does not exceed the 
benefits of reducing the toxicity of drugs or treatments. The in vitro toxicity test is fast, effective, and 
has a low cost. It provides information about the possible interaction between cells and nanoparticles 
to evaluate the potential hazards of nanomaterials. Therefore, these assays are appropriate for HTS 
(high-throughput screening) of most new medical nanomaterials and are useful in establishing 
cytotoxicity levels [39]. In accordance with the above statements, we synthesized MIL-100(Fe) by the 
solventthermal method and focused on the influence of MIL-100(Fe) on two types of hepatocytes to 
analyze its cytotoxicity in vitro. The synthesized MIL-100(Fe) was analyzed by TEM, TGA, XRD, 
FTIR, DLS, and BET. The in vitro cytotoxicity of MIL-100(Fe) in HL-7702 and HepG2 cells was 
evaluated by the MTT assay, the LDH releasing rate assay, DAPI staining, and annexin V/PI double 
staining assay. In conclusion, our study evaluates the in vitro safety of MIL-100(Fe) and provides a 
reference for medical applications. 

2. Results 

2.1. Preparation and Characterization of MIL-100(Fe) 

According to previous studies, MIL-100(Fe) was synthesized by the hydro-thermal method. The 
structure of MIL-100(Fe) was analyzed by TEM, TGA, XRD, FTIR, DLS, and BET. The TEM image of 
the synthesized materials, shown in Figure 2a, shows irregular polyhedron-shaped nanoparticles for 
MIL-100(Fe) of 200–500 nm diameter, similar to the reported results [25]. 

: biocompatible;
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MIL-100(Fe)

HUVEC 200 (24 h) 100% none Stefan et al. [37]
HMEC 200 (72 h) 85% low Stefan et al. [37]
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HUVEC 200 (24 h) 100% none Stefan et al. [37]
HMEC 200 (72 h) 60% medium Stefan et al. [37]
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MIL-100(Fe)
CCRF-CEM 5000(48 h) >85% low Patricia et al. [38]
RPMI-8226 5000(48 h) >85% low Patricia et al. [38]

J744 5000(48 h) >85% low Patricia et al. [38]

The toxic effect of MIL-100(Fe) on different types of cells varies greatly, so one must ensure the
biocompatibility of MIL-100(Fe) to target cells and that its intrinsic toxicity does not exceed the benefits
of reducing the toxicity of drugs or treatments. The in vitro toxicity test is fast, effective, and has a
low cost. It provides information about the possible interaction between cells and nanoparticles
to evaluate the potential hazards of nanomaterials. Therefore, these assays are appropriate for
HTS (high-throughput screening) of most new medical nanomaterials and are useful in establishing
cytotoxicity levels [39]. In accordance with the above statements, we synthesized MIL-100(Fe) by the
solventthermal method and focused on the influence of MIL-100(Fe) on two types of hepatocytes to
analyze its cytotoxicity in vitro. The synthesized MIL-100(Fe) was analyzed by TEM, TGA, XRD, FTIR,
DLS, and BET. The in vitro cytotoxicity of MIL-100(Fe) in HL-7702 and HepG2 cells was evaluated
by the MTT assay, the LDH releasing rate assay, DAPI staining, and annexin V/PI double staining
assay. In conclusion, our study evaluates the in vitro safety of MIL-100(Fe) and provides a reference
for medical applications.

2. Results

2.1. Preparation and Characterization of MIL-100(Fe)

According to previous studies, MIL-100(Fe) was synthesized by the hydro-thermal method.
The structure of MIL-100(Fe) was analyzed by TEM, TGA, XRD, FTIR, DLS, and BET. The TEM image
of the synthesized materials, shown in Figure 2a, shows irregular polyhedron-shaped nanoparticles
for MIL-100(Fe) of 200–500 nm diameter, similar to the reported results [25].

As shown in Figure 2b, in the temperature range of 40–600 ◦C, the first weight loss occurs between
80 and 150 ◦C (about 23 wt %) due to the volatilization of free water in the material. In the range of
150–350 ◦C, there is a slow weight loss, which is due to the release of some anionic small molecules
used to balance the skeleton charge and bound water interrelated with the iron metal trimers. The third
weight loss occurs at 350–500 ◦C, with the largest reduction in weight (about 30 wt %) mainly due to
the collapse of the sample frame structure and the decomposition of organic connectors [40]. The above
thermogravimetric characteristics match MIL-100 (Fe).

The XRD patterns of the synthesized materials are presented in Figure 2c. Compared with
the MIL-100(Fe) simulated pattern, the diffraction peaks of the experimental group match well,
which indicates that the synthesis of MIL-100(Fe) crystal is successful.

According to Figure 2d, peaks near 1624 and 1381 cm−1 belong to the stretching vibrations of C=O.
In addition, bending vibration of aromatics is observed at 760 and 712 cm−1, The wide absorption near
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3500 cm−1 is due to the O–H stretching vibrations of H2O molecules. All the above are characteristic
peaks of MIL-100(Fe) [38].

Molecules 2019, 24, x FOR PEER REVIEW 4 of 15 

 

As shown in Figure 2b, in the temperature range of 40–600 °C, the first weight loss occurs 
between 80 and 150 °C (about 23 wt %) due to the volatilization of free water in the material. In the 
range of 150–350 °C, there is a slow weight loss, which is due to the release of some anionic small 
molecules used to balance the skeleton charge and bound water interrelated with the iron metal 
trimers. The third weight loss occurs at 350–500 °C, with the largest reduction in weight (about 30 wt 
%) mainly due to the collapse of the sample frame structure and the decomposition of organic 
connectors [40]. The above thermogravimetric characteristics match MIL-100 (Fe). 

The XRD patterns of the synthesized materials are presented in Figure 2c. Compared with the 
MIL-100(Fe) simulated pattern, the diffraction peaks of the experimental group match well, which 
indicates that the synthesis of MIL-100(Fe) crystal is successful. 

According to Figure 2d, peaks near 1624 and 1381 cm−1 belong to the stretching vibrations of 
C=O. In addition, bending vibration of aromatics is observed at 760 and 712 cm−1, The wide absorption 
near 3500 cm−1 is due to the O–H stretching vibrations of H2O molecules. All the above are 
characteristic peaks of MIL-100(Fe) [38]. 

 
Figure 2. Characteristics of MIL-100(Fe): (a) TEM, (b) TG, (c) XRD, (d) FTIR. 

The particle size distribution of MIL-100(Fe) was measured by a Malvern Zetasizer Nano ZS 90 
(Malvern, UK). The particle size analysis (Figure 3a) shows an average particle size of 345.3 nm (Pdi: 
0.181; Intercept: 0.956). The porosity of MIL-100(Fe) was characterized by N2 adsorption–desorption 
isotherms at 77 K, as shown in Figure 3b. The Brunauer–Emmett–Teller (BET) specific surface area is 
1750 m2/g and the pore volume is 0.83 cc/g, large enough for efficient mass transfer of drug loading 
and releasing. 

Figure 2. Characteristics of MIL-100(Fe): (a) TEM, (b) TG, (c) XRD, (d) FTIR.

The particle size distribution of MIL-100(Fe) was measured by a Malvern Zetasizer Nano ZS 90
(Malvern, UK). The particle size analysis (Figure 3a) shows an average particle size of 345.3 nm (Pdi: 0.181;
Intercept: 0.956). The porosity of MIL-100(Fe) was characterized by N2 adsorption–desorption isotherms
at 77 K, as shown in Figure 3b. The Brunauer–Emmett–Teller (BET) specific surface area is 1750 m2/g
and the pore volume is 0.83 cc/g, large enough for efficient mass transfer of drug loading and releasing.
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2.2. Effect of MIL-100(Fe) on HL-7702 Cells

The MTT assays were carried out on HL-7702 cells. The cells were treated with different
concentrations of MIL-100(Fe) and the toxicity was determined (Figure 4a). The results showed
that MIL-100(Fe) particles with a concentration of less than 80 µg/mL were nontoxic (cell viability
>85%). Moreover, the amount of LDH was measured in the medium, which was regarded as an
important indicator of cell membrane integrity, as illustrated in Figure 4b. MIL-100(Fe) of high
concentrations (160 µg/mL) was toxic to HL-7702 cells and would destroy the cell membrane, leading
to significant LDH release. Fortunately, cells treated with 160 µg/mL MIL-100(Fe) for 48 h retain a cell
survival rate of 79.81 ± 3.01%, and IC50 is up to 1.37 mg/mL. DAPI staining for HL-7702 cells did
reveal a high concentration of MIL-100(Fe)-induced morphological changes associated with apoptosis,
as demonstrated in Figure 4c.
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After the treatment of HL-7702 cells with MIL-100(Fe) for 48 h, the higher dose of MIL-100(Fe)
(160 µg/mL) had a significant effect on the apoptosis of HL-7702 cells (Figure 5). The percentage
of necrotic cells only reached 6.07%. The results indicated that MIL-100(Fe) particles had good
biocompatibility with HL-7702 cells.
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apoptosis with FITC-annexin V/PI double staining. (b) The percentages of viable, necrotic, and
apoptotic HL-7702 cells after incubation with different concentrations of MIL-100(Fe) for 48 h. The data
are expressed as means ± S.D. from three independent experiments. (* p < 0.05 vs. Control.)

2.3. Effect of MIL-100(Fe) on HepG2 Cells

The MTT toxicity test was performed by treating HepG2 cells with different concentrations of
MIL-100(Fe). As depicted in Figure 6a, MIL-100(Fe) shows no cytotoxic effect on the cells. It reveals
89.98 ± 4.96% cell viability at the high concentration (160 µg/mL). Remarkably, the LDH release
assay showed that HepG2 cells had good tolerance to MIL-100(Fe), even at higher doses (Figure 6b).
At a MIL-100(Fe) concentration of 160 µg/mL, LDH release was significantly increased, but there
was no significant decrease in cellular metabolic activity, indicating that they were well tolerated.
DAPI staining of HepG2 cells indicated that high concentrations of MIL-100(Fe) did induce nucleus
morphological changes, as shown in Figure 6c.
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After a 48-h treatment of HepG2 cells with MIL-100(Fe), there was no significant change in the
percentage change of viable cells and early apoptotic cells. The late apoptotic cells were significantly
affected at concentrations of 40–80 µg/mL, but the overall difference was small (Figure 7). MIL-100(Fe)
had little effect on cells’ morphological changes, indicating the good biocompatibility of MIL-100(Fe)
with HepG2 cells.Molecules 2019, 24, x FOR PEER REVIEW 8 of 15 
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Molecules 2019, 24, 1211 8 of 14

Molecules 2019, 24, x FOR PEER REVIEW 9 of 15 

 

 
Figure 7. Effects of MIL-100(Fe) on apoptosis in HepG2 cells. (a) Flow cytometry detection of 
apoptosis with FITC-annexin V/PI double staining. (b) The percentages of viable, necrosis and 
apoptotic HepG2 cells after incubation with different concentrations of MIL-100(Fe) for 48 h. The data 
are expressed as means ± S.D. from three independent experiments. (* p < 0.05 vs. Control.) 

3. Discussion 

This study was designed to assess the potential toxicity of MIL-100(Fe) and explore its safe dose. 
To date, few studies have used normal cells to study the toxic effects of MIL-100(Fe), so there is 
currently no comparison of the effects of MIL-100(Fe) between normal hepatocytes and liver cancer 
cells. Recently, Wang et al. [41] demonstrated a low toxicity of zinc-based MOFs by MTT experiments, 
and also tested drug loading and evaluated the efficacy. Another report by Sun et al. [42] used a novel 
Gd(III) MOF-loaded anticancer drug, and, using MTT, evaluated its toxicity to both cell lines and its 
anticancer activity after drug delivery. The cytotoxicity of these materials depends not only on the 
composition of the MOFs, but also on the choice of cell model. In other words, different MOFs have 
different toxicities to different cell lines. The current study aimed to determine the toxicity of MIL-
100(Fe) on normal human liver cells and liver cancer cells and compare them. 

We recently reported the in vitro hepatotoxicity of MIL-53(Fe), loaded the antitumor drug 
oridonin, and conducted in vitro sustained release and pharmacodynamic studies [43]. Although in 
vitro cell models are not a substitute for animal experiments, they can serve as a basis for further 
evaluation of the potential toxicity. 

Our results showed that both cell lines, which were treated with the same concentration gradient 
of MIL-100(Fe) for 48 h, showed a dose-dependent increase in LDH leakage and a decrease in cell 
viability. Compared with HepG2 cells, HL-7702 cells were significantly affected by the dose change 

Figure 7. Effects of MIL-100(Fe) on apoptosis in HepG2 cells. (a) Flow cytometry detection of apoptosis
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means ± S.D. from three independent experiments. (* p < 0.05 vs. Control.)

3. Discussion

This study was designed to assess the potential toxicity of MIL-100(Fe) and explore its safe dose.
To date, few studies have used normal cells to study the toxic effects of MIL-100(Fe), so there is
currently no comparison of the effects of MIL-100(Fe) between normal hepatocytes and liver cancer
cells. Recently, Wang et al. [41] demonstrated a low toxicity of zinc-based MOFs by MTT experiments,
and also tested drug loading and evaluated the efficacy. Another report by Sun et al. [42] used a novel
Gd(III) MOF-loaded anticancer drug, and, using MTT, evaluated its toxicity to both cell lines and
its anticancer activity after drug delivery. The cytotoxicity of these materials depends not only on
the composition of the MOFs, but also on the choice of cell model. In other words, different MOFs
have different toxicities to different cell lines. The current study aimed to determine the toxicity of
MIL-100(Fe) on normal human liver cells and liver cancer cells and compare them.

We recently reported the in vitro hepatotoxicity of MIL-53(Fe), loaded the antitumor drug
oridonin, and conducted in vitro sustained release and pharmacodynamic studies [43]. Although
in vitro cell models are not a substitute for animal experiments, they can serve as a basis for further
evaluation of the potential toxicity.
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Our results showed that both cell lines, which were treated with the same concentration gradient
of MIL-100(Fe) for 48 h, showed a dose-dependent increase in LDH leakage and a decrease in cell
viability. Compared with HepG2 cells, HL-7702 cells were significantly affected by the dose change
of MIL-100(Fe), which showed strong cytotoxicity (cell viability <85%) at a high dose (160 µg/mL).
With the same treatment, HepG2 cells had less damage. Both cell types showed obvious membrane
damage (LDH leakage) at the highest concentration. LDH enzymes are highly sensitive indicators of
cellular metabolic status, aerobic or anaerobic directions of glycolysis, activation status, and malignant
transformation [44]. It is unclear whether the rapid sedimentation of MIL-100(Fe) particles in the
medium has an effect on the state of the cells. Normal hepatocytes and liver cancer cells have different
tolerances to MIL-100(Fe) particles, and it is unclear whether this is related to cell metabolism or cell
membrane changes after carcinogenesis [45]. Overall, based on MTT and LDH data, MIL-100(Fe)
showed low toxicity to HepG2 and HL-7702 cells at a dose of 80 µg/mL.

Additional studies were performed using DAPI staining to observe changes in the nuclear
morphology of the two cell lines after MIL-100(Fe) treatment. In a study on the role of polyadenylation
in apoptosis and drug resistance of K562 cells, Lallas used DAPI staining to detect apoptotic cell
nuclear division [46]. DAPI (4′,6-diamidino-2-phenylindole) is a fluorescent dye that binds strongly
to DNA and can be utilized for staining living and fixed cells [47]. Our results show that the
nuclear morphological changes of the two cell lines gradually became obvious with an increased
dose, indicating that a high concentration of MIL-100(Fe) induced morphological changes related to
apoptosis. annexin V combined with PI can distinguish early apoptotic cells from late apoptotic and
dead cells, and is the ideal quantitative detection method for apoptosis at present [48]. Han et al. [49]
used the MTT assay to detect the biocompatibility of the Zr-based MOF, UiO-66, against SMMC-7721
and HeLa cells, and evaluated the apoptosis-inducing effect of AgNPs@UiO-66 by annexin V/PI
staining. To more clearly elucidate the effects of apoptosis, we performed annexin V/PI staining. Our
results indicate that the percentage of apoptotic normal hepatocytes increases in a dose-dependent
manner as the concentration of MIL-100(Fe) increases, with significant differences at the highest dose.
It has been demonstrated that MIL-100(Fe) particles at a dose of 80 µg/mL had little effect on the
degree of apoptosis in the two cell models. There are several problems with determining how high
concentrations of MIL-100(Fe) particles induce toxicity. For example, we need to address the questions
of whether the particles enter the cell or adhere to the cell membrane, and whether the toxicity of
materials with different shapes and sizes is the same. MIL-100(Fe) is one of the most studied MOFs
today, and its toxicity and safe dose are currently unclear. It is therefore necessary to study their
toxicology, and this report provides some preliminary information in this regard.

Due to the complexity of toxicity, the next step is to study whether the toxicity of MIL-100(Fe)
is related to intracellular pathways such as autophagy, mitochondrial membrane potential change,
lysosomal membrane permeability, and endoplasmic reticulum stress, so as to more comprehensively
evaluate the toxicity mechanism of MIL-100(Fe).

4. Conclusions

In conclusion, high concentrations of MIL-100(Fe) particles resulted in decreased viability of
HepG2 and HL-7702 cells, LDH leakage, and induction of apoptosis. The safe dose of MIL-100(Fe)
was determined to be 80 µg/mL by the MTT assay, the LDH release assay, the DAPI staining assay,
and the annexin V/PI double staining assay. MIL-100(Fe) particles had excellent biocompatibility with
HL-7702 and HepG2 cells, low cytotoxicity, and allowed a high cell survival rate. Therefore, the metal
organic framework material MIL-100(Fe) has a potential application as a drug carrier.
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5. Experimental Section

5.1. Materials

All general reagents and solvents (AR grade) were commercially available. Ethanol, nitric acid
(HNO3, 65%~68%), and hydrofluoric acid (HF ≥ 40%) were purchased from Beijing Chemical Works
(Beijing, China). 1,3,5-benzenetricarboxylic acid (H3BTC, 99%) was supplied by TCI (Shanghai, China).
Iron powder (Fe ≥ 99.5%) was obtained from Aladdin Chemistry Co. Ltd. (Aladdin, Shanghai,
China). DMEM, FBS, penicillin-streptomycin solution and 0.25% trypsin were purchased from Corning
(Corning, NY, USA). PBS was obtained from Solarbio (Beijing, China). MTT was acquired from
Biotopped (Beijing, China). The LDH Assay Kit, DAPI Assay Kit, and annexin V-FITC Apoptosis
Assay Kit were purchased from Beyotime (Nanjing, China).

5.2. Synthesis and Characterization of MIL-100(Fe)

MIL-100(Fe) was synthesized and activated according to previous studies [50,51]. Typically,
Fe powder (0.82 g), H3BTC (2.06 g), HF (40%, 0.6 mL), HNO3 (65%, 1.14 mL), and deionized water
(80 mL) were mixed in a Teflon liner (Yushen, Shanghai, China), which was placed in an oven,
and progressively heated to 150 ◦C within 8 h. The temperature was maintained at 150 ◦C for 96 h
and then the oven was cooled down to room temperature for 24 h. The resulting orange powder was
collected after filtration and then washed with water. To remove the residual ligand and metal ions
from the pore of the MOF, the sample was dispersed in hot water (80 ◦C) for 8 h (about 1 g sample in
300 mL water) and then in hot ethanol for 8 h. Finally, the solid was dried overnight in a vacuum at
120 ◦C.

5.3. Cell Culture

HL-7702 cells and HepG2 cells were purchased from Guangzhou Jeniobio Biotechnology (Beijing,
China). The cells were cultured in a high-glucose DMEM medium supplemented with 10% (v/v) FBS
and 1% (v/v) penicillin (100 µg/mL)-streptomycin (100 µg/mL) at 37 ◦C in a humidified atmosphere
containing 5% CO2. Cells were passaged at 1:3 after 3–4 days. MIL-100(Fe) was dissolved in DMEM to
a stock concentration of 2 mg/mL, and after being dispersed by ultrasonic and ultraviolet disinfection
was stored at 4 ◦C. The cells were treated with different doses of MIL-100(Fe) after dilution in the
basal medium.

5.4. Cell Viability Assay

The effect of MIL-100(Fe) on HL-7702 and HepG2 cells was assessed by the MTT assay. Cells
were seeded into 96-well plates at a density of 3.0 × 103 cells/well overnight. The cells were treated
with 0, 10, 20, 40, 80, and 160 µg/mL MIL-100(Fe) for 48 h. Fresh basal medium was used as the
untreated control. Then, 20 µL MTT working solution (5 mg/mL) was added. After incubation for
4 h at 37 ◦C, culture supernatant was removed from all the wells, and the formazan crystals were
dissolved in 150 µL DMSO. The supernatant (100 µL) was transferred into new 96-well plates after
centrifugation (1000 g, 5 min). A microplate reader (Multiskan GO, Thermo, Waltham, MA, USA) was
used to measure the absorbance at 570 nm. All the experimental results were carried out three times.

5.5. Cell Membrane Damage Determination

LDH is an enzyme that predominantly exists in the cytoplasm, and is released into the extracellular
medium when the cell membrane is damaged. Therefore, the cell membrane damage was determined
by LDH leakage (LDH%). For the measurement of LDH leakage, the LH-7702 and HepG2 cells were
seeded into 96-well plates at a density of 5.0 × 103 cells/well overnight and then treated with various
concentrations of MIL-100(Fe) for 48 h. The supernatant was collected and LDH activity was measured
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with a commercial kit following the manufacturer’s instructions. The experiments were conducted
in triplicate.

5.6. DAPI Fluorescence Staining

Morphological changes of chromatin condensation and nuclear fragmentation could be observed
by DAPI staining. HL-7702 and HepG2 cells at a density of 3.5 × 105 cells/well were plated in six-well
plates and treated with 0, 10, 20, 40, 80, and 160 µg/mL MIL-100(Fe) for 48 h. The culture supernatant
was discarded and the cells were fixed with 4% paraformaldehyde (500 mL) for 10 min at room
temperature. Then the fixed cells were washed two times with PBS and stained with DAPI solution
(2.5 µg/mL, 0.8 mL) for 10 min. After being washed twice with PBS, the morphological changes were
photographed using an inverted Olympus IX71 fluorescence microscope (Tokyo, Japan) at 200×.

5.7. Apoptosis Analysis

Apoptosis usually refers to a type of programmed cell death in the process of development or
under the action of various factors, through the regulation of genes and their products in cells, and
can be detected by an annexin V-FITC detection kit [52]. HL-7702 and HepG2 cells were plated in a
six-well plate (3.5 × 105 cells/well) and incubated with gradient concentrations (0, 10, 20, 40, 80, and
160 µg/mL) of MIL-100(Fe) for 48 h at 37 ◦C. The cells were gathered and washed with PBS. Then,
the cells were resuspended in 295 µL binding buffer and incubated with 5 µL annexin V-FITC and 10
µL PI at room temperature, hatching 20 min and blocking the light ray. All the samples were analyzed
by flow cytometry (BD FACS Canto II, Franklin Lakes, NJ, USA) immediately.

5.8. Statistical Analysis

Each experiment was repeated three times, and the results were expressed as mean± SD. By using
SAS 9.4 software (Beijing, China), the statistical analysis was carried out with the further statistical
methods of single factor analysis of variance, multivariate comparison, and a non-parametric test.
A value of p < 0.05 was regarded as significant.
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Abbreviations

MOFs Metal-organic frameworks
PCP Porous coordination polymer
LD50 Lethal dose 50%
MIL Material Institut Lavoisier
H3BTC 1,3,5-Benzenetricarboxylic acid
PBS Phosphate-buffered saline
SGF Simulated gastric fluid
PC3 Human prostate cancer cell line
HUVEC Human umbilical vein endothelial cells
HMEC Human microvascular endothelial cells
MLE12 Murine alveolar epithelial cells
MH-S Mouse alveolar macrophage cell line
MCF-7 Human breast adenocarcinoma cell line
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CCRF-CEM Human leukemia
RPMI-8226 Human multiple myeloma
J774 Human macrophages
SEM Scanning electron microscopy
XRD X-ray diffraction
TGA Thermogravimetric analysis
FITC Annexin V-fluoresce isothiocyanate
LDH Lactate dehydrogenase
HL-770 Normal liver cells
HepG2 Liver hepatocellular carcinoma
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny-ltetrazolium bromide
DAPI 4’,6-diamidino-2-phenylindole
PI Propidium iodide
IC50 Half-maximal inhibitory concentrations
DRG Rat neonatal organotypic dorsal root ganglion
DMEM Dulbecco’s modified Eagle’s medium
DMSO Dimethyl sulfoxide
FBS Fetal bovine serum
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