

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Drainage morphometric analysis of the Nagavathi watershed, Cauvery river basin in Dharmapuri district, Tamil Nadu, India using SRTM data and GIS

R. Kannan^a,*, S. Venkateswaran^a, M. Vijay Prabhu^a, K. Sankar^b

^a Periyar University, Salem, Tamil Nadu, India ^b Tamil University, India

ARTICLE INFO

Article history: Received 6 April 2018 Received in revised form 16 June 2018 Accepted 5 July 2018 Available online 19 July 2018

Keywords: Arc GIS Drainage density Rainwater harvesting SRTM data and Stream Order

ABSTRACT

A drainage morphometric analysis of Nagavathi watershed in Dharmapuri district has been chosen for the present study. Geospatial tools, such as remote sensing and GIS, are utilized for the extraction of watershed and its drainage networks. The Shuttle Radar Topographic Mission (SRTM) data have been used for drainage morphometric analysis and evaluating various morphometric parameters Linear aspect, Aerial aspect Relief aspect. The morphometric parameters of Nagavathi watershed have been analyzed and evaluated by pioneer methods, such as Horton and Strahler. The bifurcation ratio varies from 0.8 to 43.1. The elongation ratio of Microwatersheds varies from 0.13 to 0.43, indicates Microwatersheds fall under elongated pattern. This study would help the local people to utilize the resources for planning rainwater harvesting and watershed management.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding authors.

E-mail address: georkannan@gmail.com (R. Kannan).

https://doi.org/10.1016/j.dib.2018.07.016

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Subject area	Hydrogeology
More specific subject area	Watershed Management
Type of data	Table and Figure
How data was Acquired	Data format Raw, Digitized
Experimental factors	The mentioned parameters above, in the abstract section, were
	derived the formula in publishing papers
Experimental features	Determination of morphological analysis that constitute the Naga- vathi watershed
Data source location	It lies between latitudes 11°45'N to 12°15' N and 77°30' E to 78°30 E
	longitudes covering an area of about 482 Km ²
Data accessibility	All the data are in this data article

Specification Table

Value of the data

- The data utilize the resources for planning rainwater harvesting and watershed management.
- The data set can be used for educational purposes, and for future research in watershed Morphometric studies.
- The data show the relationship occurring between the surface and subsurface of the groundwater.
- The data could be used in management groundwater potential.

1. Data

The data contains morphometric analysis of the Nagavathi watershed in Dharmapuri district of Tamil Nadu. The data are composed of Shuttle Radar Topographic Mission Digital Elevation Model (SRTM - DEM) data. Derived from mathematical equations Table 1. Results of the watershed morphometric analysis are presented in Table 2.

The quantitative morphometric analysis was carried out in eight Micro watersheds of Nagavathi watershed using GIS technique for determining (a) Linear aspects like Stream number, Stream order, Stream length, Mean stream length, Stream length ratio, Bifurcation ratio, (b) Aerial aspects like Drainage density, Stream frequency, Texture Ratio, Elongation ratio, Form factor, Circularity index, Length of overflow, Constant of Channel maintenance, Drainage texture, Compactness coefficient and (c) Relief aspects like Basin relief, Relief ratio, Ruggedness number, Gradient ratio, Melton ruggedness ratio, Slope, relative relief, Shape Factor and Leminscate.

2. Study areas

Nagavathi watershed is located in part of Dharmapuri district of Tamil Nadu. It lies between latitudes 11°45′N to 12°15′ N and 77°30′ E to 78°30 E longitudes covering an area of about 482 Km² (Fig. 1). The climate of the Dharmapuri district is generally warm. The hottest period of the year is generally from the months of March to May, the highest temperature going up to 38 °C in April. The Climate becomes cool in December and continuous so up to February, touching a minimum of 17 °C in January. The Soil type ranges from black to mixed loam, Red sandy soils and black and loam soil are found in the watershed. Generally the soil is low in nitrogen and phosphate content. Geology of area is underlined by a wide range of igneous and metamorphic rocks. The geological formations of the study area are under Archean group representing Champion gneiss, charnockite, syenite, pink

 Table 1

 Morphometric parameters and their mathematical expressions.

S.No	Parameter	Formula						
Linear a	ispect							
1.	Area (A)	Area of the watershed						
2.	Perimeter (P)	The perimeter is the total length of the watershed boundary.						
3.	Length (Lb)	Maximum length of the watershed						
4.	Stream Order (Nu)	Hierarchical rank						
5.	Stream Length(Lu)	Length of the stream						
6.	Stream length ratio (Rl)	Rl = Lu/Lu - 1						
7.	Mean Stream Length Ratio (Lsm)	Lsm=Lu/Nu						
8.	Bifurcation ratio (Rb)	Rb = Nu/N(u+1)						
Areal as	spect							
9.	Drainage density (Dd)	$Dd = \sum Lu/A$						
10.	Stream frequency (Fs)	$Fs = \sum Nu/A$						
11.	Texture Ratio	T = Nu/P						
12.	Elongation ratio (Re)	$Re = 1.128 \sqrt{A/L}$						
13.	Form factor (Ff)	$Ff = A/Lb^2$						
14.	Circularity index (Rc)	$Rc = 4\pi A/P^2$						
15.	Length of overflow (Lg)	Lg = 1/2/2d						
16.	Constant of Channel maintenance (Ccm)	C = 1/Dd						
17.	Drainage texture (T)	$T = Dd \times Fs$						
18.	Compactness coefficient (Cc)	$Cc + 0.282P/\sqrt{A^{0.5}}$						
Relief a	spect							
19.	Basin relief (R)	R = H - h						
20.	Relief ratio (Rr)	Rr = R/L						
21.	Ruggedness number (Rn)	$Rn = R \times Dd$						
22.	Gradient ratio (Gr)	Gr = (H-h)/L						
23.	Melton ruggedness ratio (MRn)	$MRn = (H-h)/A^{0.5}$						
24.	Slope (Sb)	Sb = H - h/L						
25.	Relative relief (Rhp)	$Rhp = H/P \times 100$						
26.	Shape Factor (Rf)	$Rf = Lb^2/A$						
27.	Leminscate(K)	$K = Lb^2/4 \times A$						

pegmatite and pyroxene granulite. The charnockites and associated pink migmatities mostly occupy the study area. Champion gneiss is dominant rock in the study area. It is highly pink migmatized at many places and show deep weathering.

3. Methods and materials

Geological Survey of India (GIS) topographical maps of 1:50,000 scales were used to prepare Base maps and watershed Drainage maps (Fig. 2) of Nagavathi watershed of Cauvery river basin, Tamil Nadu. Stream network for the above watershed are traced and scanned. The scanned stream network map was geo referenced and converted into digital format using Arc GIS 9.3 version GIS software. The data used in this study include 30 m resolution Digital Elevation Model (DEM) of the basin extracted from the Shuttle Radar Topographic Mission (SRTM) downloaded from the US Geological Survey Website. Quantitative morphometric analysis was carried out for eight in the watershed as mentioned above for linear aspects, areal aspects and relief aspects. The analysis was carried out using Arc GIS software. The drainage network generated was then analysed using [1–7], etc. for various parameters.

Linear, area	and	relief	aspects	of	Nagavathi	watershed.

 Pe Mii No Str Str G. Str Ra 7. Ma 8. Bif 6. Str 9. Dr 10. Str 11. Te:	aspect rea (A) erimeter (P) licro Watershed Le o. of Stream Order ream Length (Lu) I ream Length atio (RI) lean Stream Length furcation Ratio (Rb)	(Nu) km II/I III/II IV/III	72.18 42.21 7.26 67 78.86 0.63 0.11	58.76 36.27 7.56 53 61.49 0.45	33.35 27.83 6.23 38 40.85	42.14 35.49 3.16 43		82.79 46.39 7.04	32.26 24.39 6.16	116.45 66.03 21.55
 Pe Mii No Str Str G. Str Ra 7. Ma 8. Bif 6. Str 9. Dr 10. Str 11. Te:	erimeter (P) licro Watershed Le o. of Stream Order ream Length (Lu) I ream Length atio (RI) lean Stream Length	(Nu) km II/I III/II IV/III	42.21 7.26 67 78.86 0.63	36.27 7.56 53 61.49	27.83 6.23 38	35.4 3.16	5 43.43 10.71	46.39 7.04	24.39	66.03
 Mii Not Str Str G. Str Ra Ra T. Mot Bif Areal a 9. Dr 10. Str 11. Te:	licro Watershed Le o. of Stream Order ream Length (Lu) I ream Length atio (RI) lean Stream Length	(Nu) km II/I III/II IV/III	7.26 67 78.86 0.63	7.56 53 61.49	6.23 38	3.16	10.71	7.04		
 4. No 5. Str 6. Str 7. Mo 8. Bif Areal a 9. Dr 10. Str 11. Te:	o. of Stream Order ream Length (Lu) l ream Length atio (Rl) lean Stream Length	(Nu) km II/I III/II IV/III	67 78.86 0.63	53 61.49	38				6.16	21.55
 String String Ra T. Mo Bif Areal a 9. Dr 10. String 11. Tex 	ream Length (Lu) l ream Length atio (Rl) lean Stream Length	cm II/I III/II IV/III	78.86 0.63	61.49		43	477			
 Strike Ra 7. Ma 8. Bif Areal a 9. Dr 10. Stri 11. Te: 	ream Length atio (RI) lean Stream Length	II/I III/II IV/III	0.63		10.85			78	36	151
Ra 7. Ma 8. Bif Areal a 9. Dr 10. Stu 11. Te:	atio (Rl) lean Stream Length	III/II IV/III		0.45	40.05	44.6	4 54.27	75.71	40.51	128.28
 7. Me 8. Bif Areal a 9. Dr 10. Str 11. Te: 	lean Stream Length	IV/III	0.11	0.45	0.43	0.67	0.66	0.47	0.36	0.96
 Bif Areal a Dr Str Tr 				0.13	0.20	0.22	0.27	0.11	0.17	0.24
 Bif Areal a Dr Str Tr 		1/11/	0.08	0.14	0.11	0.26	0.13	0.25	0.19	0.13
 Bif Areal a Dr Str Tr 		V/IV	0.00	0.00	1.67	0.00	0.49	0.00	0.25	20.00
Areal a 9. Dr 10. Str 11. Te:	furcation Ratio (Rb)	Ratio (Lsm)	4.5	4.1	43.1	4.8	1.8	4.2	3.2	0.8
9. Dr 10. Str 11. Te:		I/II	2.9	3.6	3.9	3.3	3.0	3.7	4.6	2.3
9. Dr 10. Str 11. Te:		II/III	8.3	8.0	5.5	5.0	5.7	7.7	4.5	9.7
9. Dr 10. Str 11. Te:		III/IV	4.0	3.0	3.0	4.0	4.0	4.0	3.0	4.5
9. Dr 10. Str 11. Te:		IV/V	0.0	0.0	0.0	0.0	2.0	0.0	2.0	3.0
10. Str 11. Te:	aspect									
11. Te:	rainage density (Do	1)	1.1	1.0	0.5	0.5	0.2	0.9	1.7	0.1
	ream frequency (F	s)	0.93	0.90	1.14	1.02	1.08	0.94	4 1.12	1.30
	exture Ratio		0.97	0.99	0.93	0.76	0.64	1.16	5 1.03	1.21
12. Elo	ongation ratio (Re))	0.13	0.14	0.27	0.25	0.38	0.13	3 0.15	0.43
13. Fo	orm factor (Ff)		0.01	0.02	0.10	0.10	0.55	0.0	1 0.01	2.52
14. Cii			0.51	0.56	0.54	0.42	0.29	0.4	8 0.68	0.34
15. Le	Length of overflow (Lg)		0.46	0.48	0.93	1.02	2.44	0.5	5 0.29	8.56
	 Constant of Channel Main- tenance (Ccm) 		0.92	0.96	1.86	2.05	4.88	1.11	0.58	17.13
	rainage texture (T)		1.6	1.5	1.4	1.2	1.1	1.7	1.5	2.3
	e . ,		1.40	1.33	1.36	1.54	1.86	1.44		1.73
Relief a	aspect									
19. Ba	asin relief (R)		500	517	500	892	515	537	7 540	510
20. Re	elief ratio (Rr)		6.4	8.4	27.9	43.3	57.9	7.2	9.8	75.0
21. Ru	uggedness number	(Rn)	545.16	539.35	268.52	436.	05 105.54	485	5.17 924.33	29.78
22. Gr	radient ratio (Gr)		6.4	8.4	27.9	43.3	57.9	7.2	9.8	75.0
23. Me	elton Ruggedness	ratio (MRn)	58.9	67.4	86.6	137.4	78.1	59.	0 95.1	47.3
24. Ba	asin Slope (Sb)		18.7	20.8	21.3	16.8	3.9	0.5	0.6	3.6
25. Re	elative relief (Rhp)		11.85	14.25	17.97	25.16	5 11.86	11.5	58 22.14	7.72
26. Sh			85.81	63.95	9.62	10.02	7 1.82	67.5	58 94.52	0.40
27. Le	nape Factor (Rf)		21.45	15.99	2.40					

4. Stream direction

The stream direction has been computed to understand the surface flowing pattern for the surface water development. The length and its direction of each drainage line have been calculated in GIS environment and the values are plotted in Rockworks software for each all micro watershed, presented in Figs. 3 and 4. The stream tributary directions and the local tectonic regime, the stream channels of the Nagavathi micro watershed were grouped according to their order (1–5) and eight rose diagrams were created for each watershed. The major and minor lineament, that is upstream and downstream sections of the watershed, respectively. The watershed in northeast-southwest direction with micro watersheds like MWS01, MWS06 and MWS08. The lineament crosses the watershed in a southwest-northeast direction and MWS02, MWS03, MWS04, MWS05, and MWS07 in the Microwatershed. In the all micro watershed the dominant direction for maximum streams order is NE-SW and all direction in the micro watershed.

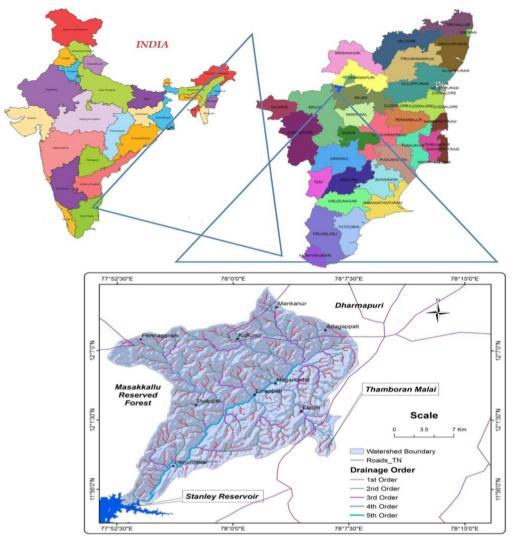


Fig. 1. Location map of the Nagavathi.

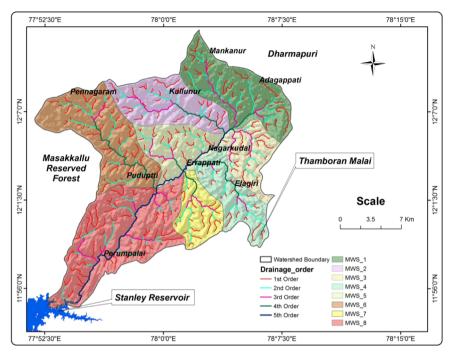


Fig. 2. Drainage and microwatershed - map.

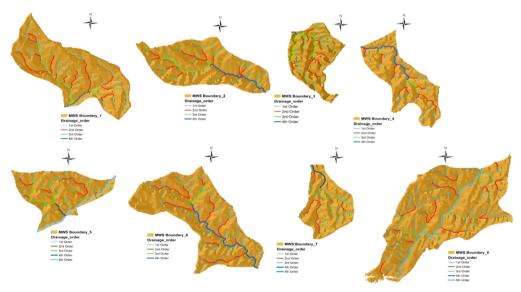


Fig. 3. Micro watershed-map.

Fig. 4. Rose diagrams show the geometry of the streams direction and length.

Acknowledgement

One of the author Mr. R. Kannan, Junior Research Fellow (DST) in the Department of Geology Periyar University, Salem-11, Tamil Nadu is thankful to the Department of Science and Technology (DST-NRDMS), New Delhi, Govt. of India, for providing financial support and the authors are thankful for the anonymous reviewers for their constructive review of this manuscript.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2018.07.016.

References

- S. Biswas, S. Sudhakar, V.R. Desai, Prioritisation of subwatersheds based on morphometric analysis of drainage basina remote sensing and GIS approach, J. Indian Soc. Remote Sens. 27 (1999) 155–166.
- [2] R.E. Horton, Drainage basin characteristics, Trans. Am. Geophys. Assoc. 13 (1932) 350-361.
- [3] R.E. Horton, Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull. 5 (1945) 275–370.
- [4] A.N. Strahler, Quantitative analysis of watershed geomorphology, Trans. Am. Geophys. Union 38 (1957) 913–920.
- [5] A.N. Strahler, Quantitative Geomorphology of Drainage Basins and Channel Networks, in: Handbook of Applied Hydrology, Section 4-II, McGraw Hill Book Company, New York, 1964.
- [6] S.A. Schumn, Evaluation of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geol. Soc. Am. Bull. 67 (1956) 597–646.
- [7] V.C. Miller, A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain area, Varginia and Tennessee, Project NR 389042, Tech Report 3, Columbia University, Department of Geology, ONR, Geography Branch, New York, 1953.