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Opinion statement

Autophagy is a physiological process that occurs in normal tissues. Under external
environmental pressure or internal environmental changes, cells can digest part of their
contents through autophagy in order to reduce metabolic pressure or remove damaged
organelles. In cancer, autophagy plays a paradoxical role, acting as a tumor
suppressor—by removing damaged organelles and inhibiting inflammation or by promot-
ing genome stability and the tumor-adaptive responses—as a pro-survival mechanism to
protect cells from stress. In this article, we review the autophagy-dependent mechanisms
driving childhood central nervous system tumor cell death, malignancy invasion,
chemosensitivity, and radiosensitivity. Autophagy inhibitors and inducers have been
developed, and encouraging results have been achieved in autophagy modulation, sug-
gesting that these might be potential therapeutic agents for the treatment of pediatric
central nervous system (CNS) tumors.
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Introduction

Autophagy is a catabolic process that captures and de-
grades damaged proteins and organelles in lysosomes
[1, 2]. It effectively degrades normal cell metabolites and
helps to maintain the health of the body, and in some
cases autophagy can selectively remove cellular compo-
nents such as damaged or excess peroxisomes, endoplas-
mic reticulum, mitochondria, or DNA [3••] thereby
reducing the accumulation of abnormal proteins and
organelles and maintaining cell homeostasis. The role
of autophagy in promoting survival and maintaining
cell homeostasis has been widely confirmed at the cell
and organ level. For example, selectively knocking out
the Atg5 or Atg7 genes in the brain leads to the accumu-
lation of polyubiquitinated proteins and neuronal de-
generation in mice. The survival and proliferation of T
cells depends on Atg5 [4], and Atg5-deficient mice can-
not survive during the neonatal period and their tissues
show the presence of amino acid exhaustion and insuf-
ficient metabolism [5]. Finally, in the absence of growth
factors, the autophagy of hematopoietic cells is signifi-
cantly enhanced in order to maintain the ATP supply
and cell survival.

Autophagy is a physiological process that occurs in
normal tissues. When faced with external environmental
pressures (e.g., amino acid deficiency, insufficient glucose
supply, or reduced oxygen supply) or internal environ-
mental changes (e.g., protein, DNA, or mitochondrial
damage or microbial infection), cells can digest part of
their contents through autophagy in order to resist meta-
bolic pressure or to remove damaged organelles [6]. Basal
levels of autophagy play an important role in maintain-
ing homeostasis in normal tissues, while nutrient defi-
ciency, hypoxia, DNA damage, and cytotoxicity can all
induce increased levels of autophagy. The induction of
autophagy can promote cell survival by adjusting the
dynamic balance inside and outside the cell [7]; however,
excessive autophagy can seriously affect embryonic differ-
entiation and induce cell death. Therefore, changes in
autophagy are closely related to various clinical diseases
such as cancer, neurodegeneration, heart disease, liver
andmetabolic disorders, infectious diseases, and autoim-
mune diseases [8••, 9, 10]. In the past decade, autophagy
has received more and more attention as a new target in
the treatment of various diseases.

Autophagy and tumors

Malignant tumors are an important cause of childhood death worldwide, and
their incidence has increased in recent years. Although current anti-tumor
therapies have led to a positive prognosis for many patients, the efficacy of
these therapies is still limited for some tumors. Autophagy occurs frequently
during tumorigenesis, and at different stages of tumor development autophagy
may have opposite effects, such as being a tumor suppressor or a tumor-
initiating factor. In general, autophagy protects cancer cells during chemother-
apy, and this can easily lead to tumor resistance and the development of
refractory cancers [11]. Many external stimuli can affect tumor autophagy, such
as hypoxia, acidification of the tumor microenvironment, nutritional deficien-
cies, drug treatment, or infection [12]. In addition, tumor suppressors or onco-
genes can regulate the autophagy pathway in cancer cells. For example, p53
status can change the role of autophagy in tumor progression [13, 14].

Tumor-suppressing roles for autophagy
Autophagy was originally considered to be a tumor suppressor mechanism.
This concept originated from early reports that the crucial autophagy gene
BECN1 is lost in 40–75% of human prostate, breast, and ovarian cancers [15,
16]. In genetic knockoutmousemodels of hereditary breast cancer, the deletion
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of BECN1 promotes the activation of p53 and reduces the occurrence of tumors.
However, the deletion of BECN1 in human cancers and the deletion of the
breast cancer 1 (BRCA1) gene cannot be disassociated, which indicates that
BECN1 is not a tumor suppressor in most human cancers. Thus, BECN1 only
exerts a tumor suppressor effect in genetic animal models of cancer [15].

The basal level of autophagy inhibits the occurrence of tumors by control-
ling the degradation of damaged components and proteins in cells [17]. Au-
tophagy in genetic knockout mouse models can inhibit the accumulation of
reactive oxygen species (ROS), DNA damage, tissue damage, inflammation,
genome instability, and other tumor-initiating factors and thus can suppress
tumors in their early stages [18]. Damage to mitochondria can lead to excessive
ROS production, thereby promoting carcinogenesis, and autophagy prevents
the occurrence of tumors by removing thesemalfunctioningmitochondria [19].
In mice lacking autophagy due to knockout of both Atg5 and Atg7, oxidative
stress and mitochondrial damage can induce hepatocytes to form liver tumors
[20]. In genetic knockout mouse models of lung cancer, breast cancer, pancre-
atic cancer, and melanoma, deletion of the autophagy gene Ras or Braf inhibits
the growth of benign tumors but accelerates the growth of malignant tumors.
When exposed to chemical carcinogens, Atg4-deficient mice are more suscepti-
ble to fibrosarcoma [8••, 21]. Other studies have shown that the loss of
autophagy-related genes such as Atg3, Atg5, and Atg9 is also related to tumor-
igenesis [20]. Taken together, these results suggest that autophagy is an impor-
tant mechanism for inhibiting tumor growth and that impaired autophagy can
lead to tumor formation (Fig. 1, left panel).

Tumor-promoting roles for autophagy
While basal levels of autophagy are low in normal cells and tissues,many cancer
cell lines show high levels of autophagy [22•]. Autophagy promotes tumor
growth and survival and the development of malignant tumors by maintaining

Fig. 1. Tumor-suppressing and tumor-promoting roles for autophagy in cancer. The left panel shows the proposed mechanisms
through which autophagy may suppress tumors by regulating oncogenic proteins, genomic stability, cell proliferation, cell death
mechanisms, stress-related responses, and immune-response mechanisms. The right panel shows the proposed mechanisms for the
tumor-promoting effect of autophagy by providing nutrients and energy to cancer cells, adaptation to oxidative stress and DNA
damage, angiogenesis, metastasis and invasion during tumorigenesis, the unfolded protein response in cancer cells, tumor growth,
and resistance to chemotherapy drugs in cancer cells.
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the basic metabolic functions of tumor cells [23]. In addition, autophagy meets
the metabolic needs of tumor cells by increasing stress tolerance and providing
nutrients, and it maintains cell survival even under adverse conditions such as
starvation or hypoxia, which are extremely common during tumor growth [18,
23]. Studies have confirmed that autophagy is upregulated in hypoxic tumor
areas in the tumor microenvironment, thus inhibiting tumor-induced inflam-
mation and promoting tumor cell survival [24]. Therefore, if tumor-promoting
pathways are activated due to stress in tumor cells or to stress in the tumor
microenvironment, this will increase the demand for autophagy, thereby pro-
moting the growth and survival of tumors [25].

Studies have found that RAS mutations in tumor cells increase the level of
autophagy, which can enhance tumor growth, survival, and deterioration, and
suchmutations are associated with the development of some cancers, including
lung, colon, and pancreatic cancer [26–28]. Among the genetic knockoutmouse
models of lung cancer, pancreatic ductal adenocarcinoma, prostate cancer, and
melanoma, tumors that were missing Atg5 or Atg7 grew slowly [29–31]. The
deletion of BECN1 in breast cancer cells and the deletion of ATG13 or ULK1 in
glioblastoma cells led to similar results [32, 33]. Thus, inhibition of autophagy
can induce tumor cell death.

Loss of Atg5 or Atg7 in mice can cause chronic liver damage, inflammation,
and benign liver tumors, but these fail to develop into cancer [18]. As these
tumors remain benign, this indicates that even though depletion of autophagy
can increase tumor initiation in the livers of mice, autophagy is necessary for
tumors to develop to the malignant stage [8••]. Specifically knocking out
autophagy genes in mice can promote the formation of tissue damage and
inflammation-related benign lesions, but many aggressive cancer cells require
autophagy to grow and survive [34, 35]. The epithelial mesenchymal transition
(EMT) plays an important role in tumor metastasis, and autophagy and EMT
are interrelated [36, 37]. During tumormetastasis, cancer cells activated by EMT
show high levels of autophagy and can survive in a variety of stressful condi-
tions [38, 39]. Thus, autophagy can promote tumor development by promoting
cancer cell proliferation and tumor growth (Fig. 1, right panel).

The role of autophagy in childhood CNS tumors

CNS tumors are common solid tumors in children, with an average annual
incidence of 1.7–4.1 per 100,000, which has increased slightly in recent decades
and is second only to leukemia in terms of childhood tumors [40]. In recent
years, despite great progress in early diagnosis, surgical procedures, and treat-
ment strategies, the overall prognosis of CNS tumors is still very poor, with a 5-
year survival rate of only 33% [41]. The histological analysis of childhood
primary brain tumors and other CNS tumors in children between the ages of
0 and 14 years in the Central Brain Tumor Registry of the United States
(CBTRUS) showed that the most common childhood CNS tumors are gliomas,
medulloblastomas, atypical teratoid/rhabdoid tumors (ATRTs),
craniopharyngiomas, and ependymomas. These are all malignant tumors, ac-
counting for 80% of children’s CNS tumors [40, 42], and among all CNS
tumors in children more than 90% are malignant [43].

1538 Neuro-oncology (GJ Lesser, Section Editor)



Although childhood hematological tumors such as leukemia are still the
main research focus for clinicians, CNS tumors have received more and more
attention in recent years. The typical treatments of childhood CNS tumors, such
as surgery, chemotherapy, and radiotherapy, have greatly improved the survival
rate of children with CNS tumors. However, there are still some patients who
respond poorly to treatment, and clinicians still need to find new therapeutic
targets. Autophagy as a potential therapeutic target has been studied in a variety
of cancers, which may provide a new therapeutic strategy for childhood CNS
tumor patients. In this article, we focus on the most recent advances in the
context of autophagy-dependent mechanisms driving childhood CNS tumor
cell death, invasiveness, chemosensitivity, and radiosensitivity together with
autophagy modulator treatment strategies that can be used to overcome
autophagy-mediated drug resistance.

Autophagy and cell death in childhood CNS tumors
Autophagy and cell death are two crucial cellular processes with complex protein
networks, and there is a certain overlap in the regulatory mechanisms between
them [44–47]. Studies have suggested that autophagy may serve as an alternative
pathway to inducing cell death in many tumor cells with defects in apoptosis. For
example, in BAX and BAK-deficient cancer cells endoplasmic reticulum stress-
responsive apoptosis is prevented, but sustained autophagy can cause oxidative
damage-induced cell death [44]. The autophagy and apoptosis signaling pathways
are both separate and interconnected. Initially, autophagy and apoptosis were
thought to differ as modes of cellular degradation in terms of morphology,
biochemical indicators, molecules, and mechanisms. Later evidence showed that
the two pathways can antagonize or promote each other under certain situations.

Autophagy was shown to be required for glioblastoma development in
mice, and in light of the high resistance of malignant gliomas to apoptosis
the induction of autophagic cell death by autophagy stimulators is an alterna-
tive method for triggering cell death in glioblastomas [48]. Temozolomide can
induce apoptosis through the selective inhibition of autophagy, in which
autophagic vehicles accumulate because their fusion with lysosomes is blocked.
Modulation of the autophagic action of temozolomide with autophagy inhib-
itors can result in opposite outcomes depending on the step in the autophagic
pathway that is targeted [49]. Su et al. identified a novel potential RAB13
inhibitor, which was confirmed to negatively regulate autophagy and induce
cell death in low-grade glioma cells [50].

In other common type of childhood CNS tumors, the significant induction
of autophagy produced by pimozide, a neuroleptic drug used for the treatment
of schizophrenia and chronic psychosis, can promote medulloblastoma cell
apoptosis by inhibiting the expression of the anti-apoptotic markers c-Myc,
Mcl-1, and Bcl-2 [51]. In another in vitro study, plant-derived Δ9-tetrahydro-
cannabinol and cannabidiol induced cell cycle arrest in medulloblastoma and
ependymoma cells in part through the production of ROS and the induction of
autophagy and apoptosis [52].

Overall, these studies suggest a role for autophagy in regulating apoptosis in
childhood CNS tumors. However, due to the complex network between au-
tophagy and apoptosis, the effects of tumor–stroma interactions, and differ-
ences in the tumor microenvironment, more appropriate mouse models are
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required in order to clarify the function of autophagy in the apoptosis of CNS
tumors in children.

Autophagy and malignancy invasion in childhood CNS tumors
Childhood CNS tumors can acquire invasive properties by undergoing EMT, and
this allows them to infiltrate into the surrounding normal brain tissue thus
preventing complete surgical resection of the tumor. The autophagic process is
closely related to tumorigenesis and the development of malignancies, and au-
tophagymayhave impacts on the invasiveness of brain tumors in children [53, 54].

Decreasing N-cadherin expression in glioblastoma cells has been shown to
impair their focal adhesion and enhance their migratory capacity [55], and an
in vitro study of glioblastoma autophagy has been shown to facilitate the degra-
dation of SNAIL family proteins leading to upregulation of the N-cadherin level,
which suggests that autophagy may suppress the invasive properties of glioblasto-
mas [56, 57]. In addition, autophagy has also been reported to be involved in the
regulation of the Wnt signaling pathway and the RKT Met signaling pathway,
which are involved in the regulation of glioblastoma cell invasion through their
effects on N-cadherin and vascular endothelial growth factor [58–60]. These find-
ings demonstrated that autophagy can modulate different signaling pathways in
glioblastoma cell lines, and it would be interesting to determine how this regula-
tory network can influence the invasion of glioblastoma cells. To investigate the
effect of autophagy on the invasion of medulloblastoma, a recent study used
shRNA-mediated knockdown of ATG5 in medulloblastoma cell lines belonging
to the SHH group 3 and group 4 subtypes. Their findings showed that autophagy
inhibition did not result in a significant difference in the proliferation or
anchorage-independent growth of themedulloblastoma cells; however, autophagy
inhibition led to a substantial reduction in the invasive potential of all three
medulloblastoma cell lines [61]. In another study, the role of the pro-autophagy
factor AMBRA1 in regulating medulloblastoma was identified showing that
AMBRA1 expression depends on c-MYC levels and is correlated with poor prog-
nosis in group 3 patients. Knockdown of AMBRA1 reduced the stemness, growth,
and invasiveness of group 3medulloblastoma stem cells [62]. Thus, it appears that
regulation of autophagy profoundly affects the invasive potential and growth of
childhood CNS tumor cells, which suggests a therapeutic potential for autophagy
modulators in the treatment of pediatric brain tumors.

Autophagy and chemosensitivity in childhood CNS tumors
Chemotherapy is still the main treatment for pediatric brain tumors; however,
the prognosis of chemotherapy treatment in some groups of high-risk patients
remains dismal. Intrinsic or acquired chemoresistance to chemotherapy drugs is
a major clinical obstacle to the treatment of childhood CNS tumor patients.
Therefore, a better understanding of the molecular mechanisms underlying
chemoresistance to chemotherapy drugs may lead to improved clinical out-
comes in pediatric brain tumor patients.

Recent studies have shown that modulation of autophagy in response to
chemotherapy drug treatment, such as temozolomide, may hold great promise
for circumventing chemotherapeutic resistance and improving anticancer effi-
cacy in brain tumor patients [63, 64]. Li and colleagues demonstrated that the
sensitivity of glioblastoma cells to temozolomide was increased by miR-519a,
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which might be mediated through autophagy, and that miR-519a overexpres-
sion could induce autophagy by inhibiting the STAT3/Bcl-2 pathway [65]. In
another study, the authors used siRNA to knock down the autophagy-related
genes ATG12 and ATG7 and then pharmacologically induced or inhibited these
genes using rapamycin or chloroquine, respectively, to test the effect of autoph-
agy on chemosensitivity in pediatric ATRT cell lines (BT-16 and BT-12). They
found that silencing ATG12 and ATG7 or exposing the cells to the autophagy
inhibitor chloroquine could inhibit this increase in autophagy; however, the
effect of autophagy on killing tumor cells was minimal [66]. A recent study
reported an oncogenic role for the nucleoporin TPR (translocated promoter
region, a nuclear basket protein) in regulating heat shock transcription factor 1
(HSF1) mRNA trafficking, maintaining MTORC1 activity to phosphorylate
ULK1, and preventing macroautophagy/autophagy induction in
ependymomas. The authors found that high expression of TPR was associated
with increased HSF1 and HSPA/HSP70 expression in ependymoma patients
and showed that MTOR inhibition by rapamycin therapeutically suppressed
TPR expression and reduced tumor size in an ependymoma mouse xenograft
model [67]. These studies included both in vivo and in vitro experiments, and
the findings showed that chemosensitivity in childhood brain tumors could be
regulated by modulating autophagy levels, and this may have clinical relevance
in the future planning of therapeutic regimens for pediatric brain tumors.
However, autophagy is a dynamic process with multiple steps involved in
producing autophagosomes, fusing with lysosomes, and completing the degra-
dation of intra-vesicular contents, and it is feasible that blocking autophago-
some formation has different effects on tumor cell survival than blocking
autophagic flux. More research is needed to elucidate themechanisms by which
autophagy modulates the different chemotherapeutic agents, but at least for
now autophagy as a potential therapeutic target provides new strategies for the
treatment of childhood CNS tumors.

Autophagy and radiosensitivity in childhood CNS tumors
Due to the local growth patterns of childhood CNS tumors, complete surgical
removal is difficult in many patients and postoperative radiotherapy is necessary.
Recently, autophagy has been reported to be involved in the regulation of radio-
sensitivity in childhood CNS tumors in both in vivo and in vitro studies [68–70],
which suggests a new treatment strategy for pediatric brain tumor patients who are
sensitive to radiation therapy. In a recent study, the authors assessed FOXG1
expression in glioma tissues and glioma-adjacent tissues, and they found that the
FOXG1 expression level was up-regulated in glioma cells following exposure to
irradiation and that FOXG1 reduced the radiosensitivity of glioma cells by pro-
moting autophagy [68]. Lee et al. assessed the therapeutic effects of combining
disulfiram with radiation treatment in ATRT cells (SNU.ATRT-5 and SNU.ATRT-6)
and showed that disulfiram enhanced the radiosensitivity of ATRT cells with a
reduction in the survival fraction and increased DNA double-strand breaks, apo-
ptosis, autophagy, and cell cycle arrest in irradiated ATRT cells [69]. These studies
suggest that autophagy might be a novel modulator for those childhood CNS
tumor patients who receive radiotherapy; however, the outcome of autophagy
observed in brain tumors after radiotherapy is not straightforward. Although an
association between autophagy and radiosensitization was demonstrated, the
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precise role of autophagy in relation to brain tumor cell death is hard to define and
more comprehensive analyses are needed.

Autophagy modulators in childhood CNS tumors
Evidence for the effects of pharmaceutical modulators of autophagy in pediatric
brain tumors is limited; however, the antitumor effect of autophagy remains an
exciting potential treatment strategy. The BRAF (V600E) mutation is important in
childhood CNS tumors [71], and a study showed that the autophagy inhibitor
chloroquine reduced tumor viability in glioma cells with the BRAF (V600E)
mutation [72]. The authors also demonstrated that chloroquine could improve
vemurafenib sensitivity in children with ganglioglioma, indicating that pediatric
CNS tumorswithBRAF (V600E) are autophagy-dependent and should be targeted
with autophagy inhibition in combination with other therapeutic strategies.
Another autophagy modulator, salinomycin, can induce ROS in abortive autoph-
agy, and this leads to regulated necrosis in glioblastoma cells [73]. For medullo-
blastoma, MirR-30a inhibited autophagy by reducing beclin 1/ATG5 expression
and was linked to increased cell death in a medulloblastoma cell line [74]. Until
now, there have only been a few clinical trials for autophagy modulators in
treatment of childhood CNS tumors [75] (Table 1). Hydroxychloroquine com-
bined with Dabrafenib (NCT04201457), everolimus (NCT00187174), everoli-
mus combined with lenvatinib (NCT03245151), and Temsirolimus combined
with valproic acid (NCT01204450) were used in clinical trials as modulators of
induced autophagy in the treatment of childhood CNS tumors [76–79]. These
clinical trials provide further evidence for autophagy modulators as potential
therapeutic agents for the treatment of childhood CNS tumors.

Autophagy and CNS tumor treatment-related brain injury

At present, the treatment of pediatric CNS tumors is still mainly based on
surgery, radiotherapy, and chemotherapy. In particular, the related complica-
tions after multiple radiotherapy and/or chemotherapy sessions are still crucial
issues that cannot be ignored in the clinic.

Neurotoxic brain injury caused by some anti-tumor chemotherapy drugs
occurs widely in the clinic, and this reduces the treatment effect and quality of
life of patients, especially for growing and developing children with CNS

Table 1. Clinical trials using Autophagy modulators in childhood CNS tumors

Tumor type Study Phase
(ID of Clinical trials)

Autophagy modulator Autophagy
Modulation

Ref.

Low-Grade Glioma I/II
(NCT04201457)

Hydroxychloroquine+ Dabrafenib Inhibition [76]

CNS tumor I
(NCT00187174)

Everolimus Induction [77]

CNS tumor I/II
(NCT03245151)

Everolimus
Lenvatinib

Induction [78]

CNS tumor + Neuroblastoma I
(NCT01204450)

Temsirolimus + Valproic Acid Induction [79]
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tumors [80]. Severe neurotoxic responses often result in patients facing the
dilemma of reducing the dose of chemotherapeutic drugs, while at the same
time such responses negatively impact on the patient's mental and physical
state and their quality of life. Autophagy can regulate the extent of neurotoxic
brain injury caused by anti-tumor drugs. For example, the peripheral nervous
system damage caused by bortezomib can also enhance the level of autophagy
[81]. Bortezomib is a proteasome inhibitor that prevents the degradation of
misfolded proteins in the nervous system, resulting in severe neurotoxicity.
Bortezomib can also activate the transcription factor ATF4 and up-regulate the
expression of LC3-II, thereby activating autophagy [82]. By enhancing autoph-
agy, proteasome inhibition can degrade protein aggregates and interfere with
the neurotoxicity caused by bortezomib [83].

Radiotherapy is one of themost effective tools in the treatment of pediatric CNS
tumors. However, damage to normal brain tissue surrounding the tumor consti-
tutes a major problem and is associated with adverse side effects, particularly in
pediatric patients. Autophagy is essential for survival, differentiation, development,
and homeostasis [46, 84, 85], but inappropriate activation of autophagy is directly
involved in triggering the initiation of apoptotic or necrotic cell death [86]. In an
in vitro study, neural stem cells were shown to be extremely sensitive to irradiation
[87].Atg7 knockdown significantly decreased autophagy, thus increasing apoptosis
levels in irradiated neural stem cells, suggesting that autophagy protects NSCs from
radiation-induced apoptosis. This indicated that downregulating autophagy by
selective Atg7 knockdown in NSCs enhances radiation-induced neural stem cell
damage, thus suggesting an important protective role for autophagy inmaintaining
neurogenesis. However, in a recent in vivo study using 10-day-old selective Atg7
knockoutmice subjected to a single 6Gydose ofwhole-brain irradiation, cell death
and proliferation, microglia activation, and inflammation were reduced compared
to wild type mice in the acute phase after irradiation. Selective neural deletion of
the Atg7 gene reduced irradiation-induced cerebellar white matter injury in the
juvenile mouse brain by ameliorating oligodendrocyte progenitor cell loss in the
subacute phase after irradiation [88, 89]. Together, the conflicting roles played by
autophagy in different experimental conditions led to different protective effects of
autophagy onneural stem cells in the abovementioned in vivo and in vitro studies.
But at least, these results suggest that autophagy might be a potential target for
brain injury after radiotherapy in pediatric CNS tumor patients.

Conclusion

Numerous autophagy inhibitors and inducers have been developed, and en-
couraging results have been achieved in autophagy modulation. Preclinical
trials of autophagy inhibitors and inducers combined with chemotherapeutics
or radiotherapy may improve their efficacy and their therapeutic effects in
cancer patients; however, clinical trials focusing on autophagy control are
limited to only a few autophagy promoters and inhibitors. Therefore, further
research is needed to determine their anti-tumor efficacy, including autophagy
modulators and chemotherapeutic drugs that are used for pediatric CNS tumor
patients. In addition, more research must be conducted in order to develop
specific therapeutic agents for the treatment of pediatric CNS tumors.
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