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Objective: This study aims to analyze the changes of fecal short chain fatty acids

(SCFAs) content and gut microbiota composition in sepsis associated encephalopathy

(SAE) mice, further evaluating the effect of SCFAs on cognitive function and the underlying

mechanism in SAE mice.

Methods: A total of 55 male adult C57BL/6 mice (2–3 months of age, 20–25 g) were

divided into four groups randomly: sham group (n = 10), cecal ligation and puncture

group (CLP group, n = 15), CLP+SCFAs group (n = 15), and CLP+SCFAs+GLPG0974

group (n = 15). Seven days after surgery, fecal samples were collected for microbiota

composition and SCFA analysis from 6 mice in each group randomly. Behavioral test was

applied to assess cognitive impairment at the same time. After that, mice were sacrificed

and brain tissue was harvested for inflammatory cytokines analysis.

Results: The levels of acetic acid (.57 ± 0.09 vs 2.00 ± 0.24, p < 0.001) and propionic

acid (.32± 0.06 vs .66± 0.12, p= 0.002) were significantly decreased in the CLP group

compared with the sham group. The administration of SCFAs significantly increased

the levels of acetic acid (1.51 ± 0.12 vs. 0.57 ± 0.09, p < 0.001) and propionic acid

(0.54 ± 0.03 vs. 0.32 ± 0.06, p = 0.033) in CLP+SCFAs group compared with CLP

group. Relative abundance of SCFAs-producing bacteria, including Allobaculum (0.16

± 0.14 vs. 15.21 ± 8.12, p = 0.037), Bacteroides (1.82 ± 0.38 vs. 15.21 ± 5.95, p

= 0.002) and Bifidobacterium (0.16 ± 0.06 vs. 2.24 ± 0.48, p = 0.002), significantly

decreased in the CLP group compared with the sham group. The behavioral tests

suggested that cognitive function was impaired in SAEmice, which could be alleviated by

SCFAs pretreatment. ELISA tests indicated that the levels of IL-1β, IL-6, and TNF-α were

elevated in SAE mice and SCFAs could lower them. However, the GPR43 antagonist,

GLPG0974, could reverse the cognitive protective effect and anti-neuroinflammation

effect of SCFAs.
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Conclusion: Our study suggested that in SAE, the levels of acetate and

propionate decreased significantly, accompanied by gut microbiota dysbiosis,

particularly a decrease in SCFAs-producing bacteria. GPR43 was essential for the

anti-neuroinflammation and cognitive protective effect of SCFAs in SAE.

Keywords: sepsis-associated encephalopathy (SAE), cecal ligation and puncture (CLP), short chain fatty acids

(SCFAs), gut microbiota (GM), cognitive dysfunction

INTRODUCTION

Sepsis is a life-threatening syndrome with multiple organ
dysfunction induced by a dysregulated host response to infection.
It is still a severe global health problem with approximately 48.9
million sepsis diagnoses and 11.0 million sepsis-related deaths
reported worldwide in 2017 (1). Sepsis associated encephalopathy
(SAE) is a common complication of sepsis characterized by
delirium with changes of the patient’s consciousness in the acute
phase and more than half of patients surviving sepsis develop
long-term cognitive dysfunction (e.g., decreased learning ability,
decreased memory) which impairs their quality of life severely
(2, 3). Studies have shown that the levels of pro-inflammatory
cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis
factor α (TNF-α), increase significantly in the hippocampus
of a SAE mouse model, accompanied by microglia activation,
which suggests that neuroinflammation is a possible pathological
mechanism for SAE (3–5). Currently there are few effective
clinical strategies to prevent or treat SAE.

Over the past decade, the gut microbiota has been considered
to be closely related to the central nervous system and could
influence neuro-inflammation through microbiota–gut–brain
axis (6–8). This effect might play a role in SAE. Research have

shown that SAE mice have severe gut microbiota dysbiosis,

and regulation by means of probiotics could ameliorate the
cognitive impairment induced by sepsis (9). Short-chain fatty

acids (SCFAs), derived from intestinal microbial fermentation
of indigestible dietary fiber, are important mediators of

microbiota–gut–brain axis (10). SCFAs take part in many

physiological processes including adipocyte differentiation,

osteoblastic bone formation, and regulation of the inflammation
(11). The anti-inflammatory effect of SCFAs has been proved to
alleviate osteoarthritis, coronary heart disease, and perioperative

neurocognitive disorders (12–14). Though recent study has
shown that exogenous SCFAs administration ameliorated

neuronal degeneration and blood–brain barrier disruption in

SAE mice, the changes of SCFAs content in SAE is still unclear.
Also the influence of SCFAs on cognitive function and the

possible mechanism in SAE has not yet been elucidated (15).

G-protein-coupled receptor 43 (GPR43), or free fatty acid

receptor 2 (FFAR2), exerts anti-inflammatory effect in the
central nervous system when interacting with SCFAs. Acetate,
one of the SCFAs, could suppress neuroinflammation and
attenuate perioperative neurocognitive disorders by binding to
GPR43 according to a recent research (14). The activation of
GPR43 also ameliorates the accumulation of amyloid-β and
neuroinflammation in Alzheimer disease (16). However, whether

GPR43 exerts an anti-neuroinflammation effect by interacting
with SCFAs in SAE or not is still unclear.

In this study, SCFAs (including acetate, propionate, and
butyrate) and GPR43 antagonist GLPG0974 were administered
on SAE mice models, which were established by cecal ligation
and puncture (CLP) surgery. This study investigated the
gut microbiota compositions and SCFAs detected. The levels
of inflammatory cytokines of hippocampus were analyzed.
Behavioral test was applied to assess cognitive impairment. Our
present study and findings may provide new insights on the role
of SCFAs in SAE with a postulated underlying mechanism.

MATERIALS AND METHODS

Animals
A total of 55 male adult C57BL/6 mice (2–3 months of age, 20–
25 g) were purchased from the animal core facility of Nanjing
Medical University and kept in the barrier system. The mice were
maintained under standard conditions: 12 h light/dark cycle, 22
± 1 ◦C temperature, 52 ± 2% humidity, free access to food and
water. The animal use protocol had been reviewed and approved
by the Institutional Animal Care and Use Committee of Nanjing
Medical University (IACUC-2109048).

Cecal Ligation and Puncture (CLP)
Procedure
Cecal ligation and puncture in rodents is considered as the gold
standard in sepsis research (17). The model was established as
previously described (18). Mice were anesthetized with sodium
pentobarbital (40 mg/kg body weight, i.p.). After shaving and
disinfection, a midline incision (1.5–2 cm) was made 1.5 cm
below the xiphoid to gain access to the peritoneal cavity. The
cecum was ligated at midpoint using 3–0 silk thread, then
punctured two times at the midway between the ligation and
cecal tip, and squeezed gently to empty the fecal contents into the
peritoneal cavity. The ligated and punctured cecum was replaced
back into the abdominal cavity before closing the peritoneum,
abdominal muscle layer, and skin wound. In sham surgery,
exteriorized cecum was replaced back into the abdominal cavity
without ligation and puncture. Post-operatively, all mice were
injected prewarmed (37 ◦C) sterile .9% saline (1 ml/mouse)
subcutaneously to prevent hypovolemia.

Drug Pretreatment and Experimental
Design
The mice were divided into four groups randomly: sham group
(n = 10), CLP group (n = 15), CLP+SCFAs group (n = 15),
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FIGURE 1 | Schematic illustration of the experimental design. Short chain fatty acids (SCFAs) at 500 mg/kg body weight were administrated intra-gastrically two

times a day for 7 consecutive days before the sham or cecal ligation and puncture (CLP) surgery, and GLPG0974 at 1 mg/kg body weight were given every 3 days for

24 days by oral gavage right before the administration of SCFAs. Cognitive function was assessed 7 days after surgery using a 6-day Morris water maze (MWM), after

which the fecal samples and brain tissue were collected.

and CLP+SCFAs+GLPG0974 group (n = 15). More mice were
assigned to the last three groups to account for the expected
mortality of CLP surgery (19). Several mice died during the
experiment and the final sample size of each group was as follows:
sham group (n = 10), CLP group (n = 10), CLP+SCFAs group
(n = 12), and CLP+SCFAs+GLPG0974 group (n = 10). In
the CLP+SCFAs+GLPG0974 group, SCFAs (acetate: propionate:
butyrate at a ratio of 3: 1: 1) at 500 mg/kg body weight were
administrated intra-gastrically two times a day for 7 consecutive
days before CLP surgery, and GLPG0974 at 1 mg/kg body weight
were given every 3 days for 24 days by oral gavage right before
administration of SCFAs (15, 20). Saline was administrated as
vehicle. In the CLP+SCFAs group, CLP surgery and SCFAs
were given as described above, and an equal volume of saline
was administered instead of GLPG0974. In the sham group and
CLP group, only saline pretreatment was given before sham
or CLP surgery. Seven days after surgery, fecal samples were
collected for microbiota composition and SCFA analysis from
6 mice in each group randomly. Behavioral test was applied to
assess cognitive impairment at the same time. After that, the
mice were sacrificed and their brains were harvested for further
experiment (Figure 1). SCFAs (acetate, propionate, and butyrate)
were purchased fromAladdin, China. GLPG0974 were purchased
from Tocris, United Kingdom.

Morris Water Maze
Spatial learning and memory were assessed by the Morris water
maze (MWM) test. A pool of opaque water (100 cm in diameter
and 25 cm in depth, 23◦C) with a hidden platform (10 cm
in diameter) 1 cm below water surface at the center of one
quadrant, and a video tracking and analyzing software (ANY-
maze, Stoelting, USA) was used.

Between day 7 to day 11 post-operatively, mice were put
through MWM 4 times on each training day, starting from a
different quadrant each time, with an interval of 20min between
trials. Mice were consistently introduced facing the pool wall. A
maximal latency of 60 s was given to reach the hidden platform.
Those that failed to reach the platform within 60 s were manually
guided to it. After staying on the platform for 10 s, the mice were
dried and transferred to the cage. The latency to the platform and

path taken were recorded for each mouse. If the mouse failed to
reach the platform within 60 s, the latency was recorded as 60 s.

A probe trial was performed on day 12 post-operatively
without the submerged platform. The time spent in the target
quadrant and platform crossovers were recorded.

Gut Microbiota Composition Analysis
A total of 1,000mg fecal pellets were collected in sterile tubes for
each mouse. Microbiota DNA was extracted using the QIAamp
DNA Stool Mini Kit (Qiagen, USA) and applied to amplification
of V3–V4 regions of 16S rDNA. PCR amplification of the
bacterial 16S rRNA genes V3-V4 region was performed using the
forward primer 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and
the reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-
3’). PCR amplicons were purified with Vazyme VAHTSTM DNA
Clean Beads (Vazyme, Nanjing, China) and quantified using the
Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad,
CA, USA). After individual quantification, amplicons were
pooled in equal amounts, and pair-end 2×250 bp sequencing
was performed using the Illlumina MiSeq platform with MiSeq
Reagent Kit v3 at Shanghai Personal Biotechnology Co., Ltd.,
(Shanghai, China).

Sequence Analysis
Microbiome bioinformatics were performed with QIIME2
2019.4. Briefly, raw sequence data were demultiplexed using the
demux plugin followed by primers cutting with cutadapt plugin
(21). Sequences were then quality filtered, denoised, merged, and
chimera removed using the DADA2 plugin (22). Non-singleton
amplicon sequence variants (ASVs) were aligned with mafft and
used to construct a phylogeny with fasttree2 (23, 24). A total
number of 867,552 clean reads were obtained. Taxonomy was
assigned to ASVs using the classify-sklearn naïve Bayes taxonomy
classifier in feature-classifier plugin against the SILVARelease 132
Database (25).

SCFAs Analysis
Gas Chromatography-Mass Spectrometer (GC-MS) analysis was
used to quantify SCFAs in fecal samples. The sample preparation
and GC-MS analysis were performed as described previously (26,
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FIGURE 2 | Fecal SCFAs content of four groups (n = 6 per group). The levels of (A) acetic acid, (B) propionic acid (C) butyric acid (D) isobutyric acid (E) valeric acid,

and (F) isovaleric acid were analyzed. **p < 0.01, ***p < 0.001 vs. sham group, #p < 0.05, ##p < 0.01, ###p <0.001 vs. CLP group.

27). Twenty milligrams of fecal samples were accurately weighed

and placed in a 2ml EP tube. One milliliter of phosphoric

acid (.5% v/v) solution and a small steel ball were added to

the EP tube. The mixture was grinded for 10 s three times,

then vortexed for 10min and ultrasonicated for 5min. The
mixture was centrifuged at 12,000 r/min at 4◦C, with 0.1ml of
supernatant added at 10min. Then, 0.5mL MTBE (containing
internal standard) solution was added. The mixture was vortexed
for 3min and ultrasonicated for 5min. The mixture was further
centrifuged at 12,000 r/min for 10min at 4◦C. The supernatant
was collected and used for GC-MS analysis. Agilent 7890 B
gas chromatograph coupled to a 7000 D mass spectrometer
with a DB-FFAP column (30m length × .25mm i.d. × .25µm
film thickness, J&W Scientific, USA) was employed for GC-MS

analysis of SCFAs. Helium (flow rate 1.2 ml/min) was used as
carrier gas. A 2µL injection wasmade in the split mode. The oven
temperature was held at 90◦C for 1min, raised to 100◦C at a rate
of 25◦C/min, then raised to 150◦C at a rate of 20◦C/min, held for
.6min, raised to 200◦C at a rate of 25◦C/min, then held for .5min
after running for 3min. All samples were analyzed in multiple
reaction monitoring mode. The injector inlet and transfer line
temperature were 200◦C and 230◦C, respectively.

Enzyme-Linked Immunosorbent Assay
(ELISA)
The hippocampus samples from 6 mice in each group were
collected after the behavioral tests, and the level of IL-1β, IL-6,
and TNF-α in hippocampus was detected by mouse IL-1β, IL-6,
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FIGURE 3 | Changes of gut microbiota composition among four groups (n = 6 per group). (A–C) α diversity index of the four groups (A) Chao1 index (B) Simpson

index (C) Shannon index (D) Gut microbiota composition heatmap of the four groups on genus level (E–G) Relative abundance of SCFAs-producing bacteria in four

groups (E) Allobaculum (F) Bacteroides (G) Bifidobacterium. *p < 0.05, **p < 0.01 vs. sham group, ##p <0.01 vs. CLP group.

or TNF-α ELISA kits according to the instructions. Amonoclonal
antibody specific for mouse IL-1β, IL-6, or TNF-α was briefly
coated onto the microplates. Wells were incubated for 2 h at
room temperature with test samples (hippocampus tissue) and
washed five times. Then, 100 µL of mouse IL-1β, IL-6, or TNF-α
conjugate was added to each well and incubated further for 2 h.

The washing was repeated two times. Wells were then incubated
in 100 µL of substrate solution for 30min and stopped with stop
solution (100 µL). Determination of the optical density of each
well was set at 450 nm and corrected at 570 nm. A standard curve
was constructed using various dilutions of TNF-α, IL-6, and IL-
1β standard preparation. The levels of cytokines were calculated
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FIGURE 4 | Dominant bacteria taxa in four groups were analyzed using linear discriminant-analysis effect size (LEfSe) (n = 6 per group). A total of 39 gut microbiota

taxa with the greatest differences in the abundance among four groups were identified.

according to standard curves. Three replicates were used for
ELISA plates to reduce errors. Mouse IL-1β, IL-6, and TNF-α
ELISA kits were purchased from Abcam, United States.

Statistical Analysis
All data were expressed as the mean ± standard error of the
mean (SEM). Between-group comparisons were analyzed using
one-way ANOVA followed by LSD post hoc test for multiple
comparisons on normally distributed data. Otherwise, non-
parametric Kruskal-Wallis was used. Data from Morris water
maze training were analyzed using two-way ANOVA, followed by
LSD post hoc test for multiple comparisons (SPSS 20.0 software).
The Kaplan-Meier method was used to estimate the survival rate,
which was compared by the log-rank test. A value of p< 0.05 was
considered significant.

Sequence data analyses were mainly performed using QIIME2
and R packages (v3.2.0). After rarefaction at 6,000 reads per
sample, alpha-diversity metrics were calculated in QIIME2. The
linear discriminant-analysis effect size (LEfSe) was further used
to identify the dominant bacteria taxa in four groups with the
default parameters using R packages (v3.2.0) (28).

RESULTS

The Levels of Acetate and Propionate
Decreased in SAE Mice
Short chain fatty acids, as a class of key bacterial metabolites,
show anti-inflammatory effect in many diseases. In this study, six

major SCFAs (acetic acid, propionic acid, butyric acid, isobutyric
acid, valeric acid, and isovaleric acid) were measured in fecal
samples of the four groups (n = 6). The levels of acetic acid
(Figure 2A, p< 0.001) and propionic acid (Figure 2B, p= 0.003)
were significantly decreased in the CLP group compared with
the sham group, while the levels of butyric acid, isobutyric
acid, valeric acid, and isovaleric acid were not influenced
(Figures 2C-F). SCFAs pre-treatment significantly increased
the levels of acetic acid (Figure 2A, p < 0.001), propionic
acid (Figure 2B, p = 0.020), and valeric acid (Figure 2E, p
= 0.002) in CLP+SCFAs group compared with CLP group,
while no statistical differences were found in other kinds of
SCFAs (Figures 2C,D,F). No significant difference was shown
between CLP+SCFAs group and CLP+SCFAs+GLPG0974
group (Figure 2).

SCFAs-Producing Bacteria Decreased in
SAE Mice
Gut microbiota was analyzed among the four groups (n= 6). The
results of alpha diversity demonstrated that chao1 (Figure 3A,
p = 0.026), Simpson (Figure 3B, p = 0.02) and Shannon
(Figure 3C, p = 0.017) index were significantly different in the
CLP group compared with the sham group.

In order to further study differences in gut microbiota
composition, the top 20 bacteria taxa on genus level with
the highest relative abundance were analyzed (Figure 3D).
Among them, SCFAs-producing bacteria such as Allobaculum
(Figure 3E, p = 0.037), Bacteroides (Figure 3F, p = 0.002)
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FIGURE 5 | Survival rate and behavioral tests results. (A) Survival curves of four groups (B–E) MWM test results (n = 10 per group) (B) The latency of finding the

hidden platform in training days (C) the average swimming speed in training days (D) the time spent in the target quadrant in probe trail, and (E) The number of

crossings of the platform location. ***p < 0.001 vs. sham group, ###p < 0.001 vs. CLP group, &&p < 0.01, &&&p < 0.001 vs. CLP+SCFAs group.

and Bifidobacterium (Figure 3G, p = 0.002) was significantly
reduced in the CLP group compared with the sham group.
Allobaculum (Figure 3E, p = 0.002) was significantly
increased in the CLP+SCFAs group compared to the
CLP group, while no significant differences were found in
Bacteroides (Figure 3F) and Bifidobacterium (Figure 3G). The
levels of SCFAs-producing bacteria were not influenced
by GLPG0974 as no significant differences were found
between CLP+SCFAs group and CLP+SCFAs+GLPG0974
group (Figures 3E-G).

Furthermore, LEfSe analysis was used to identify the
dominant bacteria taxa in different groups. A total of 39
bacteria taxa with statistically significant and biologically
consistent differences were found (Figure 4). The phylum
Firmicutes, class Bacilli, genus Allobaculum, etc. were
significantly enriched in the sham group. While the family
Burkholderiaceae, genus Burkholderia, genus Dehalobacterium,

etc. were most likely to explain the differences between
the CLP group and the other mice. In the CLP+SCFAs
group, phylum Actinobacteria, class Actinobacteria, order
Bifidobacteriales, etc. were significantly increased. In the
CLP+SCFAs+GLPG0974 group, the family Bacteroidaceae,
genus Bacteroides, phylum Proteobacteria, etc. were uniquely
enriched. Among them, Allobaculum, Bifidobacterium, and
Bacteroides were more abundant in the sham, CLP+SCFAs or
CLP+SCFAs+GLPG0974 groups.

SCFAs Inhibited Sepsis-Induced Cognitive
Dysfunction via GPR43
Morris water maze was performed to analyze the cognitive
functionof each group at 7 days post-operatively.

Two mice died due to gavage in the CLP+SCFAs+GLPG0974
group. The post-operative 7-day survival rates of mice in
the sham, CLP, CLP+SCFAs, and CLP+SCFAs+GLPG0974
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FIGURE 6 | The levels of IL-6, IL-1β, and TNF- α in the hippocampus of the mice (n = 6 per group). (A) IL-1β, (B) IL-6, (C) TNF-upalpha. ***p < 0.001 vs. sham

group, ##p < 0.01, ###p < 0.001 vs. CLP group, &p < 0.05, &&p < 0.01 vs. CLP+SCFAs group.

groups were 100.0% (10/10), 66.7% (10/15), 80.0% (12/15),
and 76.9% (10/13), respectively (Figure 5A). Two mice in
the CLP+SCFAs group were excluded from MWM due
to poor wound healing. No mortality was reported during
behavioral testing.

In the MWM, there was no significant between-group
difference in latency and average speed in the training phase
(Figures 5B,C), which indicates that all mice had learnt to
achieve the exercise goal after 5 days of training, and mobility
was not affected by sepsis. However, in the probe trial, the CLP
group spent less time in the target quadrant (Figure 5D, p <

0.001) and had fewer crossings in the target quadrant (Figure 5E,
p < 0.001) than the sham group. In contrast, the CLP+SCFAs
group spent more time in the target quadrant (Figure 5D, p <

0.001) and had more crossings (Figure 5E, p < 0.001) in the
target quadrant compared with the CLP group, and GLPG0974
reversed these changes (Figure 5D, p < 0.001, Figure 5E, p
= 0.001).

SCFAs Attenuated Neuroinflammation in
SAE Mice via GPR43
The levels of several inflammatory cytokines in the hippocampus
were measured to evaluate neuro-inflammation. Compared
with the sham group, the levels of IL-1β (Figure 6A, p <

0.001), IL-6 (Figure 6B, p < 0.001) and TNF-α (Figure 6C,
p < 0.001) were significantly increased in CLP group.
Conversely, the levels of IL-1β (Figure 6A, p < 0.001),
IL-6 (Figure 6B, p = 0.006) and TNF-α (Figure 6C, p <

0.001) were significantly lower in the CLP+SCFAs group
than those in the CLP group. GLPG0974 reversed the
anti-neuroinflammatory effect of SCFAs, by increasing
IL-1β (Figure 6A, p = 0.038), IL-6 (Figure 6B, p =

0.002), and TNF-α (Figure 6C, p = 0.002) significantly in

the CLP+SCFAs+ GLPG0974 group compared with the
CLP+SCFAs group.

DISCUSSION

In this study, we measured the SCFAs content and analyzed
the gut microbiota composition in SAE mice and explored
the mechanism of anti-neuro-inflammatory and cognitive
protective effect of SCFAs by administrating SCFAs and
GPR43 antagonist in SAE mice. We found that SAE mice
had lower levels of SCFAs, especially acetate and propionate.
Gut microbiota dysbiosis existed in SAE mice, and SCFAs-
producing bacteria, including Allobaculum, Bacteroides, and
Bifidobacterium, were significantly decreased in SAE mice.
Conversely, the administration of SCFAs could alleviate neuro-
inflammation and cognitive dysfunction in SAE, in which effects
could be reversed by GPR43 antagonist.

Sepsis associated encephalopathy is a critical disease with
high incidence and high mortality (3). Cognitive dysfunction
in SAE is both an important acute symptom and a well-
recognized long-term complication. Cognitive impairment gives
rise to altered memory, attention, and concentration, which
severely affects employment and everyday life (29). In this study,
medium cecal ligation and puncture surgery, an established
and comparable method, was used to establish sepsis in mice
model (19). MWM test was used to evaluate hippocampus-
dependent learning and memory, which are important aspects
of cognitive function associated with sepsis (30). Swimming
speed was recorded to exclude the influence of reduced
spontaneous locomotor movement in the MWM (31). SAE
mice spent less time in the target quadrant and had fewer
crossings in the target quadrant, which was consistent with
our previous study (5). These results suggest that CLP
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may cause cognitive dysfunction and mimic key features
of SAE.

Cognitive impairment in SAE is associated with neuro-
inflammation (2). As described by previous research, SAE
mice underwent significant neuro-inflammation due to
increased levels of pro-inflammatory cytokines such as IL-
1β, IL-6, whereas down-regulation of CXCR5 could alleviate
cognitive dysfunction by inhibiting neuro-inflammation
in SAE (32). SCFAs administration has been described
to inhibit neuro-inflammation in many central nervous
system diseases (14, 33, 34). Recent research demonstrates
that the administration of SCFAs ameliorated neuronal
degeneration and blood–brain-barrier disruption in SAE mice
(15). With a focus on changes in cognitive function after
SCFAs administration, we observed that the neuro-protective
effect of SCFAs also contributed to cognitive recovery in
SAE mice.

Although SCFAs demonstrated protective effects in SAE,
to our knowledge, fecal SCFAs content has not been reported
yet in SAE. Herein we confirmed that SCFAs, especially
acetic acid and propionic acid, was significantly decreased
in SAE mice, and the administration of SCFAs may increase
SCFAs content effectively. As SCFAs are metabolites of
gut microbiota, we further analyzed the gut microbiota
composition. The gut microbiota dysbiosis found in SAE
mice was partly consistent with previous research, for
example, more abundant Pseudomonas in SAE mice (35).
Besides, Burkholderia also increased in the CLP group, which
was reported to be associated with neonatal sepsis in a
recent research (36). In contrast, Clostridium enriched in the
CLP+SCFAs+GLPG0974 group exerts neuroprotective effect
in traumatic brain injury via the gut-brain axis, according to
another research (37). As expected, SCFAs-producing bacteria
including Allobaculum, Bifidobacterium, and Bacteroides was
significantly decreased in SAE mice compared with the sham
group. The administration of SCFAs improved both SCFAs
content and gut microbiota dysbiosis, thereby increasing the
levels of SCFAs-producing bacteria. This suggests that there
may be a complex interaction between gut microbiota and
SCFAs content.

The possible mechanism of cognitive function protection
of SCFAs was then explored. Free fatty acid receptors (FFARs)
are a series of G protein-coupled receptors (GPCRs) that
exert key physiological functions by binding with free
fatty acids (11). GPR43 is one of the FFARs activated by
SCFAs, e.g., acetate, propionate, and butyrate (38). GPR43
is important for macrophages to transform into anti-
inflammatory M2-type (39). Research has found that acetate
could attenuate neuro-inflammation in the hippocampus
of aged mice and therefore alleviate peri-operative neuro-
cognitive disorders, whereas silencing GPR43 in BV2
microglia partially reversed the anti-neuro-inflammatory
effect of acetate (14). In this study, GPR43 antagonist was
administered to verify the effect of GPR43 in SAE in vivo.
Results suggest that the blockade of GPR43 canceled the
protective effect of SCFAs on both cognitive function and neuro-
inflammation. Furthermore, GLPG0974 did not negatively

affect SCFAs content or SCFAs-producing bacteria, as no
difference was observed between CLP+SCFAs group and
CLP+SCFAs+GLPG0974 group.

Recent research indicates that GPR43/β-arrestin-2/NF-κB
downstream signaling exerts anti-inflammatory effects in
diabetic nephropathy and lipopolysaccharide-induced liver
injury (40, 41). β-arrestin-2 is a widely expressed protein
which plays an important role in the desensitization and
internalization of G-protein-coupled receptors (GPCRs)
(42). SCFAs could activate GPR43, which in turns promotes
interaction between β-arrestin-2 and I-κBα and therefore
inhibits NF-κB signaling (40, 43). GPR43/β-arrestin-2/NF-
κB is the potential mechanism for the protective effect of
SCFAs in SAE, since we have previously demonstrated NF-
κB activation in SAE mice (32). Results from this study
provides potential research direction for more detailed
experiments to fully illustrate the mechanism, such as co-
immuno-precipitation to identify the exact interaction between
β-arrestin-2 and I-κBα.

This study has some limitations. First, GPR43 antagonist
was administered, whereas GPR43 deficient mice may provide
stronger evidence for the mechanism. Secondly, SCFAs
concentration in the brain was not measured. Thirdly, the
mixture of SCFAs (including acetate, propionate, and butyrate)
was used as pre-treatment in accordance with the existing
study (15). With our data on decreased levels of acetate
and propionate in SAE mice, acetate or propionate pre-
treatment could be administered in a future study to verify
the effect of individual SCFAs. Finally, the effect of SCFAs
administration after CLP surgery needs to be evaluated in the
next study.

CONCLUSION

Our study describes decreased levels of acetate and propionate,
and a reduction in SCFAs-producing bacteria in SAE.
We demonstrate that GPR43 is essential to the anti-
neuroinflammatory and cognitive-protective effects of SCFAs
in SAE.
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