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Re(I) complexes have exposed highly suitable properties for cellular imaging (especially

for fluorescent microscopy) such as low cytotoxicity, good cellular uptake, and differential

staining. These features can be modulated or tuned by modifying the ligands surrounding

the metal core. However, most of Re(I)-based complexes have been tested for

non-walled cells, such as epithelial cells. In this context, it has been proposed that Re(I)

complexes are inefficient to stain walled cells (i.e., cells protected by a rigid cell wall,

such as bacteria and fungi), presumably due to this physical barrier hampering cellular

uptake. More recently, a series of studies have been published showing that a suitable

combination of ligands is useful for obtaining Re(I)-based complexes able to stain walled

cells. This review summarizes the main characteristics of different fluorophores used

in bioimage, remarking the advantages of d6-based complexes, and focusing on Re(I)

complexes. In addition, we explored different structural features of these complexes that

allow for obtaining fluorophores especially designed for walled cells (bacteria and fungi),

with especial emphasis on the ligand choice. Since many pathogens correspond to

bacteria and fungi (yeasts and molds), and considering that these organisms have been

increasingly used in several biotechnological applications, development of new tools for

their study, such as the design of new fluorophores, is fundamental and attractive.

Keywords: rhenium (I) tricarbonyl complexes, Equatorial ligand, ancillary ligand, bacteria, fungi, yeasts, molds

CELL IMAGING METHODS

Cell imaging has become a powerful tool to reveal particular biological structures and explore
molecular mechanisms, unraveling dynamics, and functions of many different cellular processes
(Rabuka et al., 2008; Hensle and Blum, 2013; Hananya et al., 2016; Majumder et al., 2016;
Cui et al., 2017; Yoshimura, 2018). Accordingly, development of diverse transmitted light
microscopy approaches, including fluorescence microscopy, is increasingly contributing to
improve this technique (Roeffaers et al., 2008; Hauser et al., 2017). Fluorescence microscopy
has been considered to be one of the most important advances to observe biological
structures, but also to explore physiological processes or even characterize new compartments
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(Phimphivong and Saavedra, 1998; Bullok et al., 2002;
Heintzmann and Huser, 2017). In this sense, research about new,
improved fluorescent indicators (simply known as fluorophores)
clearly constitutes a new challenge (Frederiksen et al., 2016; Yang
et al., 2016; Xue et al., 2017; Bourassa et al., 2018).

Fluorescence microscopy relies upon the use of fluorescent
agents, or those parts of a sample that are naturally emissive,
to generate a detectable emitted light signal upon excitation
(Borman, 2010; Vendrell et al., 2012; Kim et al., 2015; Tian et al.,
2017). This allows for greater contrast between sections of the
specimen and greater signal-to-noise ratios than conventional
microscopy, which uses detection of reflected or transmitted light
(Cheng et al., 2017; Gao et al., 2017; More et al., 2018).

Nevertheless, overall limitations of fluorescence microscopy,
as an imaging technique, include low resolution to approximately
half the wavelength of the light involved in the experiment, and
the limited depth of tissue penetration of the light used. This
limits visible light fluorescence microscopy to sample depths of a
few millimeters and near IR microscopy to a few centimeters (Li
et al., 2017; Taylor et al., 2018). For these reasons, it is necessary
to develop new and improved luminescent fluorophores, suitable
to be used with fluorescence microscopy.

LUMINESCENT MARKERS FOR
FLUORESCENCE MICROSCOPY

In fluorescence microscopy, image quality depends largely on
the physicochemical properties of the luminescent marker.
For these reasons, markers should be carefully chosen to
fulfill the requirements of a particular technique (Shaner,
2014). It has been considered that a good luminescent
marker for imaging applications must exhibit some desirable
properties, such as good stability and solubility in aqueous
solvents (including buffer and culture media); low cytotoxicity,
including low phototoxicity (i.e., toxicity generated upon light
exposure) (Haas et al., 2014); differential affinity (i.e., specificity)
for certain cell structures; and an efficient cellular uptake,
hopefully in absence of other chemical or physical agents
that artificially increase membrane permeability (Fernandez-
Moreira et al., 2010). Other photophysical properties are
also important. Accordingly, luminescent fluorophores must
exhibit an efficient sample penetration to create high quality
images. For instance, fluorophores with red shifted emission
and excitation profiles, particularly in the near-infrared region,
have shown a suitable penetration for biological systems (Zhao
et al., 2014). In addition, luminescent markers should be easily
distinguishable from the background, showing high brightness.
In this context, background autofluorescence from biological
systems generally reduce resolution of a luminescent marker.
Since autofluorescence, produced by DNA, NADPH, and other
biomolecules, normally presents small Stokes shift (Santoro
et al., 2012; Balasubramaniam et al., 2015; Coda et al., 2015),
it is desirable that luminescent markers present large Stokes
shift, a property that contributes to preventing self-quenching
(i.e., dimmer images) (Moriarty et al., 2014). Finally, markers
must also show a relatively long luminescent lifetime (τ , from

∼102 to 106 ms), a useful feature that also contributes to
distinguish the desired signal from the biological system, which
shows mostly short-lived autofluorescence (∼10 ns). Thus, since
different cellular structures present different τ with respect to
autofluorescence, it is possible to remove this autofluorescence
background or even use it to provide further information
through fluorescence lifetime imaging microscopy/mapping
(FLIM) (Coda et al., 2015).

At present, a wide variety of fluorophores for bioimaging
applications have been reported. Among these, genetically
encoded fluorescent proteins (FPs) (Enterina et al., 2015); organic
dyes; quantum dots (Baker, 2010; Doane and Burda, 2012); and
metal-based systems (Shang et al., 2011; Echeverría et al., 2012)
are the most important.

Fluorescent Proteins (FPs)
A wide variety of fluorescent proteins have been engineered,
with several adaptations and characteristics to suit diverse
applications, including presentation in different colors, from
blue to far-red. FPs can be genetically encoded, a major
advantage over other systems, thereby allowing direct labeling
of many proteins in a living cell; albeit this advantage must be
contrasted against poor quantum yield, low photon yield (i.e.,
FPs exhibit poor brightness), and a large size that impairs cellular
uptake when they are heterologously produced, particularly in
prokaryotic cells (bacteria) and eukaryotic walled cells such
as yeasts or molds (Baird et al., 2000; Kubitscheck et al., 2000;
Shaner et al., 2004). Moreover, not all FPs are stable; some of
them exhibiting high degradation rates (Haas et al., 2014). Even
more so, several chimeric proteins containing an FP moiety
lack their original functions and/or do not exhibit luminescence
due to inappropriate protein folding (Stepanenko et al., 2013).
Another consideration when using FPs is the maturation time,
i.e., time necessary to properly fold and emission. Typical
maturation times are around 40min, but depending on pH,
temperature, and the specific FP, some may take several hours to
mature (Baird et al., 2000; Shaner et al., 2004; Chudakov et al.,
2010). Moreover, it is important to remark that the chromophore
formation step requires the presence of oxygen in many FPs
(including green fluorescence protein GFP), making these
markers incompatible with obligate anaerobes (Haas et al., 2014).
Furthermore, it is important to consider that the use of FPs
is restricted to cellular systems that have well-established
transformation protocols or availability of appropriate
expression vectors.

Organic Molecules
Most fluorophores used in confocal microscopy are organic
molecules, normally a series of fused, heterocyclic rings (Wood,
1994). While extinction coefficients and quantum yield of
many of these fluorophores are high, they exhibit small Stokes
shift, and short luminescence lifetime compared to metal-
based systems (see below). Unlike FPs, organic dyes are not
genetically encodable, consequently they must be incorporated
into the cell through the plasma membrane by diffusion,
endocytosis or microinjection. Nevertheless, not all organic dyes
can permeate cell membranes. For instance, rhodamine dyes
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can poorly diffuse across bacterial membranes, while sulfonated
cyanine dyes are completely unable to enter into bacterial cells
(Fernandez-Suarez and Ting, 2008). This is an especially critical
point since endocytosis and microinjection are not available
for prokaryotic cells. Instead, membrane permeabilization is
normally used; albeit this procedure can produce misleading or
confusing alterations in data (artifacts) due to the presence of
organic solvents affecting membranes and other cell structures
(Sochacki et al., 2011). In addition, considering that organic
dyes usually bind non-specifically in the cell, most staining is
limited regarding their specificity, needing several washing steps
to remove excess, unbound dye from the cell (Fernandez-Suarez
and Ting, 2008).

Quantum Dots
Quantum dots have also been used for fluorescence microscopy,
although they are much less common in applications due to
their usual large size, requirement for surface passivation, and
unpredictable blinking properties (Antelman et al., 2009; Wang
et al., 2009; Mutavdzic et al., 2011; Ritchie et al., 2013). As well
as with exogenous proteins and organic dyes, many quantum
dots are difficult to be incorporated into cells, restricting their
use to the outer membrane and cell surface in prokaryotic
cells (Chalmers et al., 2007; Zhang et al., 2011; Ritchie et al.,
2013). Although quantum dots commonly exhibit much longer
photobleaching lifetimes compared to FPs, the presence of
blinking constitutes a clear disadvantage to obtain high quality
images (Michalet et al., 2005; Mahler et al., 2008; Omogo
et al., 2016; Osborne and Fisher, 2016). Furthermore, another
important disadvantage is the high toxicity of the semiconducting
materials used in the fabrication of quantum dots like CdQ
(Q = Se or Te) (Khalili Fard et al., 2015; Li et al., 2016;
Silva et al., 2016). To address this issue, numerous studies
have explored the development of non-toxic quantum dots.
Nevertheless, only less-toxic quantum dots have been produced
(Das and Snee, 2016). For that reason, they must be coated
with organic molecules, a complex, and expensive procedure,
to render them soluble and biocompatible by preventing the
leaching of toxic ions (Fernandez-Moreira et al., 2010). Even
though extinction coefficients and quantum yield of many
quantum dots are high, these fluorophores exhibit normally
smaller Stokes shift, shorter luminescence lifetime and higher
susceptibility to photobleaching compared with metal-based
systems (see below).

Metal-Based Systems
Metal-based systems are comparatively smaller (1–2 nm), and
often possess excellent optical properties such as high brightness,
narrow emission bands, multiple emission wavelengths, emission
tunability, long fluorescence lifetime, large Stokes shift, resistance
to photobleaching, and high stability, compared with other
fluorophores (Baird et al., 2000; Shaner et al., 2004; Ranjan
et al., 2015). Due to all these properties, especially small size,
the position of these dyes in a sample can be determined with
high precision, a useful feature to perform super-resolution
microscopy (Thompson et al., 2002; Agrawal et al., 2013; Haas
et al., 2014). Some complexes of certain 4f elements (i.e.,

lanthanides) show extremely long luminescence lifetime (106

ns) and, in some cases, they emit in the NIR region of the
spectrum, which are features that make them attractive targets
for applications in fluorescence microscopy (Song et al., 2008;
Montgomery et al., 2009; Amoroso and Pope, 2015). Despite
all these promising advantages, the presence of an additional
chromophore must be incorporated into the complex (i.e.,
an antenna) to allow sufficient absorption and subsequent
transfer of energy to the lanthanide; in other words, lanthanide
ions are difficult to excite (Liu et al., 2013). In addition,
lanthanide complexes must exhibit high stability to avoid the
release of highly toxic lanthanide ions, a process demanding
the synthesis of intricate macrocyclic ligands (Montgomery
et al., 2009). Besides 4f elements (lanthanides), d6 metal-based
systems, in combination with a relatively high amount of ligand-
field dinitrogenated and/or organometallic ligands, present
attractive features to be used as fluorophore for applications in
fluorescence microscopy.

D6 METAL-BASED COMPLEXES

Over the last few years, luminescent d6 complexes have attracted
considerable interest for applications in microscopy as synthetic
fluorescent dyes, mainly due to their attractive photophysical
properties (Haas and Franz, 2009; Patra and Gasser, 2012).
Typical d6 complexes of Re(I), Ru(II), Os(II), and Ir(III) (Lee
et al., 2017), in combination of a relatively high diversity of
ligands (e.g., ruthenium trisbipyridyls, rhenium fac tricarbonyl
polypyridyls, osmium bipyridyl, and iridium cyclometallates
complexes), have been used as fluorophores for fluorescent
microscopy and related applications (Table 1) (Virel et al., 2009;
Langdon-Jones et al., 2014; You et al., 2014; Gupta et al., 2016).
In general, d6 complexes share common features making them
suitable for microscopy applications. For instance, as well as
luminescent lanthanide complexes, d6 complexes have large
Stokes shift (hundreds of nm), which allow clear differentiation
between autofluorescence and signal luminescence; long excited-
state lifetimes, which can permit elimination of short-lived
autofluorescence (ns) (Fernandez-Moreira et al., 2010; Li et al.,
2011); enhanced photostability (leading to lower photobleaching)
(Stufkens and Vlcek, 1998; Lowry et al., 2004); high chemical
stability; and cellular uptake, at least for eukaryotic non-walled
cells (Haas and Franz, 2009; Langdon-Jones et al., 2014).

Photophysical properties of d6 complexes depend directly
on the nature of the whole molecule itself, with an emission
explained by the triplet metal-to-ligand-charge-transfer
(3MLCT) as the most important in most molecules (Bonello
et al., 2014). 3MLCT involves excitation by a photo-induced
electron transfer from metal-based orbital (i.e., from Re, Ru,
Ir) to a conjugated π-system normally located on an aromatic
heterocyclic ligand (often a dinitrogenated ligand) (Long and
Wong, 2015). Since excited d6 metal-based orbitals must
transfer electrons to emit light, d6 complexes usually include
high-field ancillary ligands (i.e., π acceptors) in order to improve
charge transfer (Mitoraj and Michalak, 2010; Lambic et al.,
2018; Munoz-Osses et al., 2018). For these reasons, due to low
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TABLE 1 | Examples of d6 complexes used as fluorophores in biological applications.

Complex Structure Comment References

Re(I) Soft staining of walled cells (yeasts,

Candida albicans, and Cryptococcus spp.)

Carreño et al., 2017a

Differential staining of the nucleus in walled

cells (yeasts, Candida albicans, and

Cryptococcus spp.)

Carreño et al., 2015b,

2017a

Ru(II) Differential staining of a structure

presumably corresponding to the nucleus

in walled cells (yeasts, Candida albicans)

Carreño et al., 2019b

Differential staining of a structure

corresponding to the cell envelop

(presumably the cell wall) in walled cells

(yeasts, Candida albicans)

Carreño et al., 2019b

Os(II) Universal luminescent probe for enzymatic

reactions

Virel et al., 2009

Ir(III) Complexes for phosphorescence sensing

of biological metal Ions. This complex is

useful to detect Zn (II) ion.

You et al., 2014
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oxidation state of metals [i.e., Re(I), Ru(II), Ir(III)], highly
conjugated ligands that can easily accept electronic density
are desirable for the development of good fluorescent probes
(Cameron et al., 2018; Isik Buyukeksi et al., 2018; Zanoni et al.,
2018). In this sense, it is possible to modulate both excitation and
emission wavelengths of d6 complexes according to the nature
of the ligand involved in charge transfer. Thus, the choice of the
ligand can directly affect the band gap, impacting, in turn, in the
emitting light and remarking the possibility to design complexes
with particular luminescent properties (Fernandez-Moreira et al.,
2010; Atoini et al., 2017; Ward et al., 2018). All these features
contribute to easy excitation and increased quantum yield of d6

complexes, in comparison with lanthanide complexes, producing
brighter images at lower concentrations and few cytotoxicity,
without the need of antennae (Fernandez-Moreira et al., 2010;
Thorp-Greenwood, 2012; Thorp-Greenwood et al., 2012).

Besides good luminescent properties, d6 complexes must
exhibit other additional properties to be suitable for imaging
applications in biology. Among these properties, cellular uptake
(e.g., by modulating lipophilicity), low cytotoxicity, and specific
intracellular localization are crucial, thereby engineering of d6

complexes by the presence of different ligands must be explored
in order to obtain improved luminescent fluorophores. Since
emission comes mainly from the charge transfer between the
metal and ligand, exhibiting sensitivity to their electronic levels
(Lowry et al., 2004), modifications of the ligands will allow for
the designing of new fluorophores with different photophysical
properties, but also fluorophores that could be conjugated to
other biomolecules (e.g., antibodies) to allow localization-control
of the sample.

RE(I) TRICARBONYL COMPLEXES

As stated, properties exhibited by d6 complexes make them
attractive for bioimaging applications using fluorescence
microscopy (Thorp-Greenwood and Coogan, 2011; Morais
et al., 2012). d6-based complexes have shown remarkable
properties in cellular imaging, especially with epithelial
cells, showing specific intracellular localization patterns
(Amoroso et al., 2007; Botchway et al., 2008; Li et al., 2011).
In particular, Re(I) tricarbonyl complexes have luminescent
properties that have long been postulated, but have only been
demonstrated relatively recently as being useful as in vivo probes
(Amoroso et al., 2007, 2008).

In the first fluorescence studies, Re(I) tricarbonyl complexes
with bisquinoline (bqi) as substituted trinitrogenated ligand
were conjugated to fMLF, a small peptide-based targeting agent
used to specifically recognize the formyl peptide receptor (FPR)
found in neutrophils (Stephenson et al., 2004), producing
a fac-[Re(CO)3(bqi)fMLF]+ complex. At low temperatures,
fluorescent complexes were located at the same position than
the fluorescein-labeled probe, showing that the presence of Re(I)
tricarbonyl complexes did not affect neither the recognizing
nor localization of fMLF receptor (Stephenson et al., 2004).
Although Re(I) bqi complexes were the first rhenium species
reported as fluorophores for cell imaging, more recent studies

demonstrated that dinitrogenated complexes such as 2,2′-
bipyridine (bpy), 1,10-phenanthroline (phen), or derivatives,
require longer wavelength excitation compared with bqi (i.e.,
trinitrogenated) ligands, producing low cellular damage but
good penetration (Maggioni et al., 2012). In this sense, facial
isomers of type fac-[Re(CO)3(N,N)L]n (where n is 0, +,or -),
preferably monocationic complexes where N,N corresponds
to a substituted dinitrogenated ligand and L is the ancillary
ligand (Figure 1), have been extensively studied due to their
photophysical attributes, especially with non-walled eukaryotic
cells (Langdon-Jones et al., 2014; North et al., 2015). The
relatively lipophilic nature of fac-[Re(CO)3(N,N)L]n complexes
(e.g., they can be dissolved in DMSO) seems also suitable for cell
imaging, showing that the choice of the dinitrogenated ligand
modulates some photophysical properties (e.g., excitation and
emission ranges) (Amoroso et al., 2007), but also some properties
as biomarkers (Carreño et al., 2017a).

Most common Re(I) luminescent markers are based on
the fac-[Re(CO)3(bpy)L]+ core, which have been modified in
order to develop imaging and sensing agents with diverse
properties. These complexes are usually synthesized from
parent pentacarbonyl halides, [Re(CO)5X] (X = Cl/Br), to
obtain neutral tricarbonyl dinitrogenated halides (e.g., fac-
[Re(CO)3(bpy)X]) (Kurz et al., 2006; Ranasinghe et al., 2016).
In this case, it is important to include a reflux step under
an inert atmosphere for 2–3 h (Kurz et al., 2006; Ranasinghe
et al., 2016). Nevertheless, more recently a synthesis procedure
has been reported that requires only stirring without the need
of reflux and inert atmosphere, with a high yield and purity,
in only 15–30min (Carreño et al., 2015b, 2017a). After the
synthesis of neutral fac-[Re(CO)3(bpy)X, the halide (i.e., X) can
be substituted by the required ancillary ligand (L) to produce the
final complexes (i.e., fac-[Re(CO)3(bpy)L](0,+,or−)), where total
charge depends on the nature of the ancillary ligand L (Amoroso
et al., 2008; Thorp-Greenwood et al., 2012; Carreño et al., 2016;
Carreño et al., 2017a).

Thus, as discussed before, it has been demonstrated
that the Re(I) tricarbonyl complexes can be engineered
by choosing the ancillary ligand, in order to modulate
some properties related to bioimage, including wavelength
emission, subcellular localization, and/or cellular uptake.
The ancillary ligand can determine lipophilicity, but
also other properties such as global charge of the Re(I)
tricarbonyl complexes. For example, there are differences
in neutral, cationic and anionic forms of Re(I) tricarbonyl
complexes. Neutral complexes (e.g., fac-[Re(CO)3(N,N)L],
where L is a halogen as substituent) normally exhibit
relatively low quantum yield and short lifetime, along
with relatively low cellular uptake (Fernandez-Moreira
et al., 2010; Carreño et al., 2019). By contrast, cationic fac-
[Re(CO)3(bpy)L)]+ complexes normally present more desirable
photophysical properties, including increased lifetime and
better quantum yield. In addition, several Re(I) tricarbonyl
complexes can be up taken by non-walled eukaryotic cells
by passive diffusion, facilitating the staining procedure.
Specifically, some cationic lipophilic complexes, e.g., fac-
[Re(CO)3(bpy)(Py-CH2OCO(CH2)nCH3)]+ (Py = pyridine; n
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FIGURE 1 | Structural scheme of Re(I) tricarbonyl complexes and their different functional groups [i.e., substituted dinitrogenated ligand (N, N); ancillary ligand (L)].

Some examples of (N, N) ligands include (1) 4,4′-dimethyl-2,2′-bpy (dmb); (2) 2,2′-bipyridine (bpy); (3) 1,10-phenanthroline (phen); (4) 5,6-dione-1,10-phenanthroline

(dione). Some examples of ancillary ligands (L) include (1) halogens; (2) 3-chloromethylpyridyl; (3) (E)-2-{[(3-aminopyridin-4-yl)imino]-methyl}-4,6-di-tert-butyl-phenol (a

pyridine Schiff base harboring an intramolecular hydrogen bond) (Carreño et al., 2014, 2015a,b, 2017a).

= 6, 12, 16), co-localize in internal membranes of organelles,
or other lipophilic cytoplasmic structures (Stufkens and Vlcek,
1998; Coogan and Fernandez-Moreira, 2014). On the other
hand, anionic complexes (e.g., fac-[Re(CO)3((SO3-phenyl)2-
phen)(Py-R)]−(Py: pyridine; R: H, CH2OH, CH2OCOC13H27)
accumulate only on the outer face of the plasma membrane,
or show no cellular uptake at all despite the presence of very
lipophilic substituents (Amoroso et al., 2007), showing that
a suitable combination of both the dinitrogenated and the
ancillary ligand must be performed in order to develop an
adequate biomarker.

Besides contributing to the global charge of the complex,
ancillary ligands can alsomodulate other properties, showing this
moiety was not as irrelevant, as previously suggested (Sacksteder
et al., 1990). For instance, a group of fac-[Re(CO)3(N,N)L]+

(where N,N is bpy or phen derivatives) complexes, where L

corresponds to a highly lipophilic series including esters of 3-
hydroxymethylpyridine, i.e., Py-3-CH2O2CR′ (Py = pyridine;
R′

= octyl, merystyl, or steryl), were tested as biomarkers
in both liposomes and Spironucleus vortens, a unicellular
eukaryotic fish parasite related to Giardia spp. (Amoroso
et al., 2007). Results showed that lipophilic fac-[Re(CO)3(subs-
bpy)L]+ complexes (where subs-bpy is a substituted bpy, and
L is a highly hydrophobic ligand) were associated to cell
membranes, internal membranes of organelles and cell debris.
Interestingly, the neutral compound fac-[Re(CO)3(phen)Cl] was
mainly found in aqueous fractions and not in membranes,
suggesting that high lipophilicity and/or a cationic nature are
required for an efficient uptake and staining, as stated above
(Amoroso et al., 2007). Thus, apparently, the use of lipophilic

complexes could lead to an improved luminescent staining
in cells. Nevertheless, highly lipophilic fac-[Re(CO)3(N, N)L]+

exhibit cytotoxicity, mainly due to membrane disruption that
ultimately led to cell lysis. In this sense, it has been stated
that fac-[Re(CO)3(N, N)L]+ complexes are not toxic per se,
but toxicity can be a problem depending on the chosen
ancillary ligand (L) (Amoroso et al., 2007; Hallett et al.,
2018), indicating that experimental research is necessary to
establish biocompatibility in each case. Besides cytotoxicity,
ancillary ligands can also modify other properties in Re(I)
tricarbonyl complexes involved in bioimaging. In this regard,
it was stated that chloride used as an ancillary ligand
promotes high cell-depending photobleaching when used in
these complexes (Amoroso et al., 2007). Nevertheless, other
similar neutral Re(I) tricarbonyl complexes harboring bromide
as ancillary ligand, instead of chloride, seem to be resistant
to photobleaching, exhibiting an efficient stain of different
cell models and reinforcing the need of an experimental
approach in each case to assess the complexes as biomarkers
(Carreño et al., 2017a).

Ligands can also modify other properties with potential
use in biological applications. For instance, alkoxy bridged
binuclear Re(I) tricarbonyl complexes containing long
alkyl chains with photoisomerizable 4-(1-naphthylvinyl)
pyridine ligand (1,4-NVP) enhance its fluorescent emission
in the presence of β-amyloid fibrils, exhibiting a potential
in Alzheimer’s disease diagnosis (Sathish et al., 2014),
remarking an eventual use of Re(I) tricarbonyl complexes
as novel differential probes and opening new windows in
medical approaches.
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RE(I)-BASED FLUOROPHORES FOR
WALLED CELLS

As stated above, several fluorophores have been extensively
studied regarding their use for non-walled cells (e.g., cell
lines, usually epithelial cells). However, in the last years, the
use of Re(I)-based fluorophores in walled cells, in particular
bacteria and fungi, have been explored. Many pathogens
correspond to bacteria and fungi (yeasts and molds). In addition,
these organisms have been increasingly used in innumerable
biotechnological applications, underlining the importance of
developing new tools for their study, such as the design of
new fluorophores. Nevertheless, development of Re(I)-based
fluorophores for walled cells has encountered some troubles.
Both bacteria and fungi possess a rigid structure found in
their respective envelop, called cell wall (Sanz et al., 2017;
Caveney et al., 2018). The presence of the cell wall could
impair incorporation of foreign molecules, including Re(I)-based
complexes, as previously proposed (Amoroso et al., 2007, 2008).
According to our experience, the development of Re(I)-based
fluorophores for walled cells is possible, but requires systematic
experimentation to find suitable ligands surrounding the metallic
core. Although much of the evidence showing adequate Re(I)-
based fluorophores for walled cells is empirical, we can list
some common features that favor their use for these kind
of cells.

With respect to substitutions in the denitrogenated
ligand in fac-Re(I)(CO)3(N,N)X complexes (where N,N is
a denitrogenated ligand and X is a halide), apparently larger
substituents seem to impair the properties as fluorophores in
yeasts, showing, for instance, that fac-Re(I)(CO)3(2,2′-bpy)Br
exhibit better staining than fac-Re(I)(CO)3(4,4′-diethanoate-

2,2′-bpy)Br (Carreño et al., 2017a). Interestingly, it has been
stated that some dinitrogenated ligands alone (e.g., 1,10-
phenanthroline or derivatives) are highly cytotoxic toward
different cell types, including walled cells such yeasts and
bacteria (Coyle et al., 2003; Roy et al., 2008; Kaplanis et al.,
2014; Carreño et al., 2019). Nevertheless, it has been shown
that, when these dinitrogenated ligands are coordinated through
their two nitrogens with the metal, cytotoxicity is strongly
diminished (Carreño et al., 2017a, 2019). Low cytotoxicity
is fundamental for fluorophores, indicating that the most
common dinitrogenated ligands, such as 1,10-phenanthroline
derivatives, can be used to develop luminescent fluorophores for
walled cells.

Regarding the total charge, a cationic nature of fac-
[Re(CO)3(2,2′-bpy)L)]+ complexes is desirable for the
generation of luminescent fluorophores, even for walled cells,
due to advantageous photophysical properties and improved
uptake (Coogan and Fernandez-Moreira, 2014; Carreño et al.,
2016, 2017a, 2019,a). This is apparently true for other d6-based
complexes used to stain walled cells. For instance, prototypical
cis-Ru(II)(N,N)2+3 complexes (where N,N is a dinitrogenated
ligand) were reported to be useful to stain yeasts (Carreño
et al., 2019b). However, it is necessary to be cautious since
highly charged cationic d6-based complexes are apparently
unable to penetrate walled cells. This is the case for ruthenium

red ([(NH3)5Ru(II)–O–Ru(II)(NH3)4–O–Ru(II)(NH3)5]6+),
used as a dense material to stain extracellular components
in yeasts, a compound that is unable to penetrate cells
(Farrington and Sannes, 2015).

As stated above, the choice of both the dinitrogenated ligand
and the total charge of the complex are important to generate
a suitable fluorophores for walled cells. In this context, the
ancillary ligand also plays a relevant role, albeit the choice of
the right ligand is not trivial. Amoroso et al. tested different
ancillary ligands in fac-Re(I)(CO)3(2,2′-bpy)L+, where L is a
meta-substituted pyridine with ester aliphatic chains (from 6
to 16 carbons), and found that these complexes were toxic for
different cell kinds, inducing cell disruption and affecting the
image obtained by fluorescence microscopy (Amoroso et al.,
2007). Later, Amoroso et al. explored a different ancillary ligand
using the same fac-Re(I)(CO)3(2,2′-bpy)L+ core, but using 3-
chloromethylpyridyl instead of meta-substituted pyridine with
ester aliphatic chains (from 6 to 16 carbons) as L. Although
these new complexes were significantly less toxic than complexes
harboring long aliphatic chains, producing better images, the
use of 3-chloromethylpyridyl as ancillary ligand seems to be
useful only for non-walled cells (i.e., breast cancer cell line).
By contrast, when this same complex was used to stain yeasts,
poor results were obtained, showing only a small proportion of
cells that retained the fluorophore (Amoroso et al., 2008). These
findings remark the fact that, although the cationic nature has
been proposed as being important for the uptake by non-walled
cells (Langdon-Jones et al., 2014), it is also necessary to find
suitable ancillary ligands to allow uptake by walled cells. In this
way, it has been reported that one particular kind of pyridine
Schiff base harboring an intramolecular hydrogen bond is useful
to act as ancillary ligands to generate Re(I) complexes useful to
stain walled cells (Carreño et al., 2015b, 2016, 2017a, 2019a).
Schiff bases are aldehyde- or ketone-like compounds, where the
carbonyl group is replaced by an azomethine (–C=N–) group
(Da Silva et al., 2011). In general, Schiff bases have been used
for diverse applications, including antimicrobial compounds, due
to their high cytotoxicity against bacteria or fungi (Jarrahpour
et al., 2007; Justin Dhanaraj and Sivasankaran Nair, 2009). At
a first sight, an ancillary ligand exhibiting cytotoxic activity
is not desirable. Nevertheless, it has been established that
pyridine Schiff bases harboring an intramolecular hydrogen
bond depend on the non-coordinated nitrogen found in the
pyridine ring to exert their antimicrobial activity (Carreño et al.,
2015a,b, 2018a,b). Considering that coordination of Re(I) core
occurs through the pyridine nitrogen in this kind of Schiff
bases, the resulting fac-Re(I)(CO)3(N,N)(pyridine Schiff Base)+

complexes exhibit lower cytotoxicity for walled cells, when
compared with the respective free ancillary ligand (Carreño
et al., 2015a,b, 2016, 2017a,b, 2018a,b). More importantly, fac-
Re(I)(CO)3(N,N)(pyridine Schiff Base)+ complexes are useful
to observe walled cells, including bacteria and fungi, through
fluorescence microscopy. Thus, an efficient staining can be
achieved with a simple protocol, with short incubation times (15–
30min), at 37◦C, and in absence of an additional permeabilizer
agent (Carreño et al., 2016, 2017a). Interestingly, these same
complexes were also useful to stain non-walled cells (i.e.,
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FIGURE 2 | Effect of ligands in the use of fac-Re(I)(CO)3(N,N)L
(0,+) complexes in walled cells (yeasts). Fluorescence confocal microscopy images of Candida albicans

(yeasts) stained with fac-Re(I)(CO)3(4,4
′-dimethyl-2,2′-bpy)Br (A), fac-Re(I)(CO)3(4,4

′-diethanoate-2,2′-bpy)Br (B), or fac-Re(I)(CO)3 (4,4′-diethanoate-2,2′-bpy)

[(E)-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol]+ (C) were compared. “Red channel” corresponds to excitation of 405 nm and emission

collected in a range of 555 to 625 nm. In all cases, microorganisms were observed fresh, immobilized with 1% agarose, using a 100× objective. DMSO alone was

used to set the detection threshold (not shown). White bars represent 5µm. The complete protocol for staining and other examples of how ligand choice impacts on

staining properties of d6 complexes were previously reported (Carreño et al., 2016, 2017a, 2019b).

epithelial cell line), but only after long incubations periods (48–
72 h) (Carreño et al., 2016), suggesting that these Re(I) complexes
could be considered as being especially designed for walled cells.

A combination of different features in the Re(I)-based
fluorophores, such as a cationic nature, a dinitrogenated ligand
and a suitable ancillary ligand (e.g., as a pyridine Schiff base
such as (E)-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-
tert-butylphenol)) (Carreño et al., 2016, 2017a) are useful to
develop new fluorophores for walled cells. Remarkably, small
modifications in the nature of these components, such as
the substituent groups in the dinitrogenated ligand, can even
allow for obtaining differential fluorophores. For instance,
fac-Re(I)(CO)3(2,2′-bpy)((E)-2-((3-amino-pyridin-4-ylimino)-

methyl)-4,6-di-tert-butylphenol))+ can differentially stain
bud-like structures when used to stain Candida albicans or
Cryptococcus spp. (yeasts). By contrast, a small change in
the dinitrogenated ligand, with the addition of a polar group
(fac-Re(I)(CO)3(4,4′-diethanoate-2,2′-bpy)((E)-2-((3-amino-

pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol)+)
produces a fluorophore that specifically stains the cell nucleus in
these same fungi (Carreño et al., 2016, 2017a). This phenomenon
was also observed with other d6-based fluorophores, where
cis-Ru(II)(4,4′-diethanoate-2,2′-bipyridine)2+3 was useful to
stain yeasts, remaining retained in a structure consistent with

the nucleus, whereas cis-Ru(II)(1,10-phenanthroline)2+3 was
retained in a peripheric structure of the yeast, probably cell
membrane or cell wall (Carreño et al., 2019b). This evidence
supports that relatively small substitutions, not necessarily
involving long aliphatic chains, are enough to change the
properties of other d6-based fluorophores, including Re(I)
and Ru(II) complexes. In this regard, potential intermolecular
interactions that these substituents could form with biological
systems, is a fundamental property to be considered in the
development of d6-based differential luminescent dyes (Carreño
et al., 2017a). Some examples of how ligands affect staining
properties of Re(I) complexes in walled cells are shown in
Figure 2. High versatility of the d6-based fluorophores will
plausibly allow the generation of diverse biological probes, even
in the absence of other moieties aimed to provide specificity,
such as antibodies.

Regarding filamentous fungi (mold, walled cells), Re(I)
complexes harboring a pyridine Schiff base have been shown
to be useful to stain both spores and hyphae of Botrytis
cinerea, a ubiquitous necrotrophic filamentous fungal pathogen
causing the “gray mold” disease in a wide range of plants.
Since hyphae and conidia from Botrytis cinerea present a
dynamic multilayer cell wall that varies the composition
during normal growth (Cantu et al., 2009), it is difficult to
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develop suitable fluorophores to stain these structures. Recently,
it has been reported that cationic Re(I) complexes with a
dinitrogenated ligand and a pyridine Schiff base as ancillary
ligand (e.g., fac-Re(I)(CO)3(2,2′-bpy)((E)-2-((3-amino-pyridin-

4-ylimino)-methyl)-4,6-di-tert-butylphenol)+) were useful to
stain Botrytis cinerea structures, including conidia and juvenile
hyphae. In that work, a new protocol was proposed as incubation
at higher temperatures (65◦C) can be useful to stain this kind
of fungal structures. Furthermore, evidence of selective staining
of living conidia was provided, opening a new focus for the
generation of Re(I)-based fluorophores with potential use for
vital staining (Carreño et al., 2019a).

CONCLUSION

Use of Re(I)-based complexes as fluorophores is increasingly
gaining attention. Development of new applications in walled
cells, such as bacteria and fungi, has underlined that systematic
research of the best molecular features is fundamental to
engineer new, improved fluorophores. Accordingly, fac-
Re(I)(CO)3(N,N)L+ complexes should fulfill some desirable
structural features:

1) Charge: Monocationic nature.
2) N,N: the presence of a bpy or phen with relatively small

substituents (e.g., methyl, ethyl ester). Changes in these
substituents can produce complexes for differential staining.

3) Ancillary ligand: An ancillary ligand lacking long aliphatic
chains but preferentially presenting groups favoring the
formation of hydrogen bonds. Hydrogen bonds potentially
could improve interactions with biomolecules found in
biological systems, improving retention.

A combination of these three features provides high plasticity to
develop new Re(I) complexes with specific properties, adapted
for a particular purpose regarding the generation of fluorophores
for walled cells. It also important to remark that it is necessary
to establish a suitable staining protocol since, depending on
the organisms, increasing temperature or incubation time could
greatly improve results.

Finally, it is possible to conclude that d6-based complexes
exhibit a high versatility, allowing the development of new
molecules for diverse applications, including fluorophores
especially designed for walled cells, showing low cytotoxicity,
cellular uptake and differential staining properties.
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