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Abstract

With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used
fluorescent in situ hybridization (FISH) to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and
tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae), which harbors B chromosome. FISH
revealed two main patterns: (i) exclusively scattered signals, and (ii) scattered and specific signals, forming evident blocks.
The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C)30 was absent in
heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the
B chromosome more distinctive blocks for (GA)15 and (GAG)10. For A complement distinctive blocks were noticed for (A)30,
(CA)15, (CG)15, (GA)15, (CAC)10, (CAA)10, (CGG)10, (GAA)10, (GAC)10 and (GATA)8. These results revealed an intense spreading of
microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data
indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this
species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic
analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers
including the B chromosomes.
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Introduction

The accumulation of highly repetitive DNAs that are organized

in tandem and dispersed is a common pattern in eukaryotic

genomes [1–3]. Among tandem repeats, microsatellites or simple

sequence repeats (SSRs) are composed of short motifs (,6 bp) and

constitute one of the most dynamic types of sequences; SSRs are

abundant and can be located in specific chromosomal areas or

widely scattered throughout euchromatic or heterochromatic areas

[4–7]. In addition to other repetitive DNAs, such as transposable

elements (TEs), satellite DNAs and multigene families, these

sequences, have had a great impact on the organization and

evolution of genomes [3,5,8–13].

One genome element that is characterized by the accumulation

of repetitive DNAs are the B chromosomes (supernumerary or

accessory chromosomes), which are dispensable elements that

occur as polymorphism in addition to the standard karyotype in

more than 2,000 eukaryotic species [14–16]. The close relation-

ship between B chromosomes and repetitive DNAs has been

demonstrated in some studies, revealing distinct classes of this

genomic fraction, including transposons, retrotransposons, satellite

DNA and multigene families. The accumulation of these repetitive

DNAs may have resulted from a lack of recombination and may

have led to B chromosome species-specific evolution [14–20].

The occurrence of B chromosomes has been reported in 191

Orthoptera species and in approximately 14.6% of Acridoidea

representatives; B chromosomes also prevail in species with

acrocentric chromosomes [21]. Although prevalent in grasshop-

pers, the molecular content of B chromosomes and their

relationship with A elements have only been extensively investi-

gated by the chromosomal mapping of repetitive DNAs in a few

species, mainly in Eyprepocnemis plorans and to a lesser extent in

Locusta migratoria, Abracris flavolineata, Rhammatocerus brasiliensis, Xyleus

discoideus angulatus, Dichroplus pratensis, and species of Podisma. In

these species, the mapping of repetitive DNAs has revealed

variability and the presence of distinct sequences in B chromo-

somes, such as satellite DNA, rDNAs, histone genes, U2 snDNA

and a SCAR marker; these mapping efforts may inform

hypotheses about the possible origins and evolution of these

elements [22–37].

Although a significant fraction of the eukaryotic genome is

composed of microsatellites, their chromosomal distribution has

been addressed only in specific groups (see for example [6,7,38–

44]). Moreover, the studies that explore the composition of the B
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chromosome with distinct repetitive sequences do not systemati-

cally investigate microsatellite occurrence/accumulation [38,45].

Grasshoppers possess large genomes and it could be directly

related to the proliferation of repetitive DNAs, as recently

demonstrated by genome sequencing of Locusta migratoria [46],

that revealed ,60% of repetitive DNAs. On the other hand, the

organization of specific repetitive sequences, like microsatellites,

are poorly know in this insect group, with chromosomal mapping

of (AG)10 and (AC)10 restrict to E. plorans and Chorthippus sp,

respectively [38]. Here in order to obtain a deeper knowledge of

repetitive DNAs chromosomal organization for standard comple-

ment and B chromosome composition/evolution in grasshoppers

we mapped 16 distinct microsatellite motifs in the chromosomes of

Abracris flavolineata (Acrididae: Ommatolampidinae), a species

presenting 2n = 23,X0 (male) and 2n = 24,XX (female) and with

occurrence of B chromosomes [37]. Our results revealed intense

spreading of distinct motifs in A complement and B chromosome.

Materials and Methods

Cells bearing one B chromosome were obtained from embryos

males (2n = 23,X0) or females (2n = 24,XX) following the protocol

proposed by Webb et al. [47], with slight modifications. These

cells were used in C-banding experiments according to Sumner

[48] and in FISH experiments using microsatellites. At least 15

metaphase spreads were analyzed to describe the patterns of

microsatellite distribution.

Specific microsatellites were labeled directly with Biotin during

synthesis at the 59 end and were used as probes (Sigma, St. Louis,

MO, USA). The microsatellites included mono-, di- tri- and tetra-

nucleotides: (C)30, (A)30, (TA)15, (CG)15, (CA)15, (GA)15, (TAA)10,

(TAC)10, (GAG)10, (GAA)10, (GAC)10, (CAA)10, (CAC)10,

(CGG)10, (GACA)4, and (GATA)8. The FISH experiments were

performed with at least 300 ng of DNA according to the protocol

proposed by Pinkel et al. [49] and with modifications reported by

Cabral-de-Mello et al. [50]. The probes were detected using

Streptavidin, Alexa Fluor 488 conjugate (Invitrogen, San Diego,

CA, USA), and all preparations were counterstained with DAPI

(49, 6-diamidino-2-phenylindone) and mounted in Vectashield

(Vector, Burlingame, CA, USA). The results were observed using

an Olympus microscope BX61 that was equipped with a

fluorescence lamp and the appropriate filters. Images were

photographed using a DP70 cooled digital camera in grayscale,

and the images were pseudocolored and posteriorly combined and

optimized for brightness and contrast with Adobe Photoshop CS6.

Results

C-positive blocks that correspond to constitutive heterochro-

matin were observed in pericentromeric regions that extended to

the short arms in the A complement. The B chromosome was

euchromatic, as previously described by Bueno et al. [37]

(Figure 1).

Two distinct general distribution patterns that depended on the

microsatellite were observed by FISH: (i) exclusively scattered

signals (Figure 2), and (ii) scattered and specific signals, forming

evident blocks (Figure 3). Among the microsatellites with scattered

distribution slight differences were observed for distribution with

signals along the entire chromosomes for (TA)15, (TAA)10,

(TAC)10, (GAG)10 and (GACA)4 and restrict to euchromatin for

(C)30. Moreover the intensity of signals were distinct, being

observed less intensity for (TAC)10 in comparison to the other

repeats (Figure 2). Regarding the microsatellites with scattered and

specific signals some differences were also remarkable for the

evident blocks, as follows: (i) only interstitial signals were observed

for (A)30 and (GAA)10; (ii) interstitial and terminal blocks were

noticed for (CG)15, (CAA)10 and (CAC)10; (iii) interstitial, terminal

and proximal blocks were noticed for (CA)15, (GA)15, (GATA)8; (iv)

mainly blocks in the short arms were evidenced for (CGG)10; and

finally (v) centromeric blocks, in some chromosomes extending to

the short arms were observed for (GAC)10 (Figure 3).

Concerning the B chromosome, in general the microsatellites

were scattered along its entire extension. More evident blocks were

observed only for (GA)15, located in the centromeric and in the

interstitial region of the long arm and for (GAC)10, with

centromeric block (Figure 3). The X chromosome showed more

intense interstitial hybridization for (CA)15, (CG)15, (GA)15,

(CAC)10 and (CAA)10. For (CGG)10 and (GAC)10 more intense

signal were noted in the short arm and centromeric positions,

respectively (Figure 3).

Discussion

This study provides the first systematic analysis for microsatel-

lites repeats chromosomal mapping in a grasshopper species. On a

broad scope, the results indicated that an intense spreading of

mono-, di-, tri- and some tetra-nucleotides has occurred in the A.

flavolineata genome, including similarly heterochromatic and

euchromatic areas of the A complement and the B chromosome.

The accumulation of microsatellites in eukaryotic genomes, in

general, tends to vary and decrease from vertebrates and plants to

fungi and invertebrates. It has also been suggested that the

presence of highly repetitive simple sequences can correlate to

genome size and in species distantly related the microsatellite

quantity and genome size present correlation, as for example

human, Drosophila melanogaster and Saccharomyces cerevisae and

Arabidospsis thaliana [3,51–54]. For grasshoppers, a survey per-

formed in Chorthippus biguttulus (Acrididae) with expected large

genome revealed that the microsatellites are not more frequent, at

least the di-nucleotides studied, than in other insect with smaller

genomes. On the other hand, the repeat arrays are longer than in

other insects and could reflect the genome size increasing [54].

Non-correlation of genome size and abundance of microsatellite

was also documented in other insects, as in parasitic wasps that

Figure 1. C-banding in embryo female mitotic metaphase of
Abracris flavolineata. The X and B chromosomes are indicated. Note
that the C-positive blocks in the centromeric regions extend to the
short arms of the A chromosomes and the euchromatic nature of the B
element. The inset highlights the euchromatic B chromosome. Bar
= 5 mm.
doi:10.1371/journal.pone.0097956.g001
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have more microsatellite density than D. melanogaster, although

their genomes are comparable in size [55–57].

A remarkable distribution/spreading of microsatellites, such as

that observed for most of the repeats described herein, has also

been reported in other species for distinct motifs, such as in reptiles

(Eremias velox), plants (Solanum licopersicum, Silene latifolia and Rumex

acetosa) and insects (Drosophila melanogaster), including the grasshop-

per species Eyprepocnemis plorans [38,39,41,42,58,59]. This wide

spreading could be attributed to the activity of transposable

elements that contain microsatellite sequences and, in some cases,

are involved with microsatellites origin during genome integration

of TEs [8,60–64]. In the case of A. flavolineata, the occurrence/

spreading of some microsatellites in euchromatin resembles the

distribution of two isolated Mariner-like transposable elements [65].

In contrast to intense and random distribution patterns,

localized intense signals were observed for some microsatellites

in A. flavolineata. Specific signals were observed in the chromosomes

of the grasshopper Chorthippus sp for AC motif, and cases of non-

random distribution for distinct repeats are well documented

within and between Drosophila melanogaster chromosomes and in

Triticeae plants [7,38]; these patterns depended on euchromatin,

heterochromatin and centromeric areas. Moreover, in some other

cases, the density of SSRs varied between chromosomes in the

same genome, as observed for A. flavolineata. These results indicate

that the organization of SSRs could form a particular pattern for

each repeat, which could follow distinct trajectories of expansion,

elimination and accumulation at intra- and inter-genomic levels

through distinct molecular mechanisms, such as ectopic recombi-

nation, slippage replication and transposition [40,44,66–69].

Concerning the B chromosome, which has been poorly

investigated in the context of microsatellite mapping, the

(CAA)10 repeat was reported to harbor these elements in rye

(Secale cereale) [45], while the B chromosome of E. plorans did not

revealed signals for (AG)10, that is abundant in the A chromosomes

of the species [38]. As, in general, a non-recombining element with

A elements the B chromosomes could be a preferable site for SSR

accumulation during its evolution; SSR accumulation may be

involved in the differentiation process of these chromosomes,

which would favor, for example, the rate of mutability. The

mutability rate for microsatellites is very high (1022 to 1026 events

per locus per generation) in relation to those at coding gene loci

[8]; this high mutability could have been occurred in the A

complement and B chromosome of A. flavolineata, which exhibit

similar enrichment of most microsatellites that have been mapped

here. In contrast, there is apparently a paucity of general pool of

repetitive DNAs in the B chromosome of A. flavolineata, which was

determined by using the C0t-1 DNA fraction (composed of highly

and moderately repetitive DNAs) as a probe [37], indicating that

not all types of repetitive DNAs have been isolated in this fraction,

such as distinct microsatellites. The distinctive block for (GA)15

observed in the long arm of the B chromosome in A. flavolineata

indicate that after its origin through isochromosome formation

[37] the arms probably have been experienced distinct accumu-

lation of repetitive sequences, as also recently reported for a

Mariner-like transposable element (Afmar2) [65].

Although we noted the spreading of SSRs in the non-

recombining B chromosome it was, in general, not different from

A chromosomes that present distinct degrees of recombination,

e.g., recombining (autosomes) and less-recombining (X chromo-

Figure 2. FISH mapping for six microsatellite motifs in embryo mitotic cells of A. flavolineata with scattered distribution. Each
microsatellite is indicated in each image. The B and X chromosomes are pointed in each image and the sex of the embryo can be noticed by the
occurrence of one (male X0) or two (female XX) X chromosomes. Note the absence of signals in the heterochromatic areas for (C)30. Bar = 5 mm.
doi:10.1371/journal.pone.0097956.g002
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some that recombine only in females). Furthermore, these

differences, in general, were not observed for distinct chromo-

somal regions with distinct degree of recombination, such

euchromatin and heterochromatin. Such differences of microsat-

ellite accumulation between different chromosomes with distinct

degrees of recombination have been previously reported. For

example, an accumulation of distinct microsatellites was observed

in the young Y chromosome of Rumex acetosa [42]. Additionally,

Silene latifolia, which has non-recombining genome regions, e.g.,

the Y chromosome, has also accumulated microsatellites in this

chromosome [39]. The accumulation of microsatellites in sex

chromosomes has also been reported in animals, such as for

example in Eremias velox (lacertid lizard) [41], Aprasia parapulchella

(Pygopodid lizard) [43] and Semaprochilodus (Prochilodontid fish)

[44], suggesting a role for this type of sequence in sex chromosome

differentiation favored by the suppression of recombination among

these elements.

Although the results of this study did not provide new insights

regarding the specific origin of the B chromosome in A. flavolineata,

proposed to be derived from pair one [37], our approach provided

novel valuable primary data about the organization of distinct

microsatellite sequences in grasshopper genomes, including the A

complement and B chromosomes. Moreover, these data increase

the knowledge of B chromosome composition in this insect group

and in eukaryotes, indicating that microsatellites could play

important role in B chromosome evolution. The next step should

employ the use of this simple assay, i.e., FISH mapping of

microsatellites, in other grasshopper species that bear B chromo-

somes to determine whether the spreading of these elements

commonly occurs in this group and whether there is a correlation

with the distribution of euchromatin/heterochromatin.

Figure 3. FISH performed using ten microsatellites as probes in embryo mitotic cells of A. flavolineata revealing distribution of
repeats in distinct chromosomal regions. Each microsatellite is indicated in each image. The B and X chromosomes are pointed in each image
and the sex of the embryo can be noticed by the occurrence of one (male X0) or two (female XX) X chromosomes. The insets highlight the B
chromosome with probes for repeats with distinctive blocks. Bar = 5 mm.
doi:10.1371/journal.pone.0097956.g003
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23. López-León MD, Cabrero J, Dzyubenko VV, Bugrov AG, Karamysheva TV, et

al. (2008) Differences in ribosomal DNA distribution on A and B chromosomes

between eastern and western populations of the grasshopper Eyprepocnemis plorans.

Cytogenet Gen Res 121: 260–265.

24. Cabrero J, Bakkali M, Bugrov A, Warchalowska-Sliwa E, López-León MD, et
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Population variation in the A chromosome distribution of satellite DNA and

ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosome Res 11:

375–381.

26. Bidau CJ, Rosato M, Martı́ DA (2004) FISH detection of ribosomal cistrons and

assortment-distortion for X and B chromosomes in Dichroplus pratensis (Acrididae).

Cytogenet Genome Res 106: 295–301.

27. Bugrov AG, Karamysheva TV, Rubtsov DN, Andreenkova OV, Rubtsov NB

(2004) Comparative FISH analysis of distribution of B chromosome repetitive
DNA in A and B chromosomes in two subspecies of Podisma sapporensis

(Orthoptera, Acrididae). Cytogenet Genome Res 106: 284–288.

28. Bugrov AG, Karamysheva TV, Perepelov EA, Elisaphenko EA, Rubtsov DN, et

al. (2007) DNA content of the B chromosomes in grasshopper Podisma kanoi

Storozh. (Orthoptera, Acrididae). Chromosome Res 15: 315–325.

29. Abdelaziz M, Teruel M, Chobanov D, Camacho JPM, Cabrero J (2007)

Physical mapping of rDNA and satDNA in A and B chromosomes of the

grasshopper Eyprepocnemis plorans from a Greek population. Cytogenet Genome

Res 119: 143–146.

30. Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone
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