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Abstract. Microarray data of osteoporosis (OP) were 
analyzed based on prediction of transcription factors (TFs) or 
their targets as well as influences of TFs or TF network to 
uncover key TFs in OP. The microarray data E-GEOD-35956 
was downloaded from the GPL570 platform. Differentially 
expressed genes (DEGs) with logarithm of fold change 
(|logFC|) >2 and P-value <0.05 were identified between OP 
samples and normal controls. TF genes were screened from the 
DEGs based on ITFP, Marbach 2016, TRRUST databases. TF 
targets were enriched from DEGs using Fisher's exact test. TF 
targets were selected based on their impact factors. TF targets 
were chosen from TF network analysis. Finally, key TFs were 
identified by based on TFs coverage. A total of 300 DEGs were 
obtained. There were no TF genes screened from the DEGs. 
In total 165, 87 and 178 TF targets were screened from DEGs 
respectively based on Fisher's exact test, influence of TFs or 
TF network analysis. According to the optimal TF set with 
TFs having maximum coverage of DEGs, 178 TF targets was 
the most. Thus, the optimal sets of TFs were FOXO1, KLF16, 
RXRA, RARA, HNF4A, CEBPB, ESR1, SOX8, ZNF219, and 
SP1. Altogether, these results suggested identified crucial 
TFs in OP might play a significant role in OP development, 
showing these key TFs probably would aid in unveiling the 
underlying molecular mechanisms and may be therapeutic 
targets, diagnostic or prognostic biomarkers for OP.

Introduction

Osteoporosis (OP) is a common metabolic skeletal disease in 
the elderly population featured by osteopenia and microstruc-
ture, mainly due to the imbalance between bone resorption and 

bone formation, resulting in increased morbidity and high cost 
of health care. Current existing therapeutic agents specific to 
OP are mainly antiresorptive drugs that repress bone resorptive 
action of osteoclasts. Largely owing to that the mechanisms of 
excessive bone resorption have been thoroughly explored (1). 
However, the medicinal efficacy on bone mass and strength of 
patients remains limited. Thus, it is imperative to address this 
public health concern, and identify its underlying molecular 
mechanisms.

The cellular and molecular processes involved in patho-
physiology of OP are relatively complicated regulatory 
networks, involving numerous genes, factors and several 
pathways. In molecular regulatory networks, it is considered 
that alterations of gene expression elicit abnormal protein 
function and pathways turbulence, thus occurrence and devel-
opment of disease. It is well-known that substantial genes were 
regulated by transcription factors (TFs), recognized as the 
master regulators binding to DNA sequences specifically and 
thereby modulating gene transcription. The transcriptional 
regulation elicited by TFs is of importance to normal func-
tion of the organism, with transcriptional regulation central 
to cell cycle growth and survive (2), cell differentiation (3), 
cell adhesion (4) and cell homeostasis (5). However, TF failure 
leads to nearly 1/3 of human developmental diseases ascribed 
to TF misregulations (6,7). Thus, TF prediction is a pivotal 
step to comprehending sophisticated regulatory molecular 
networks. To date, effective screening methods of TFs related 
to OP remained largely lacking. OP mediated by osteoblasts is 
not able to balance bone absorption mediated by osteoclasts, 
leading to decrease in bone mass and low bone mineral density. 
Osteoblasts, as bone-forming cells, derive from mesenchymal 
stem cells (MSCs) which is the source for bone remodeling, 
besides, the differentiated osteoblasts are decreased from 
MSCs with aging concerning series of molecular mecha-
nisms (8). However, research on osteoblast action involving 
underlying mechanisms are relatively ignored.

Therefore, the present study was designed to investigate 
the mechanistic TFs for OP progression using bioinformatics 
methods based on gene expression data from the MSC of OP 
patients. TF targets enrichment analysis was performed for the 
chosen differentially expressed genes (DEGs). Then, analysis 
of TF impact factors (IFs) was conducted for DEGs. Moreover, 
influence of TF network analysis was executed for DEGs. 
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Finally, the obtained TFs based on TF targets prediction and 
influence of TFs targets or TF network were analyzed compre-
hensively to achieve the key TFs, which might contribute to 
future therapy of OP.

Materials and methods

Microarray data collection and preprocessing. The gene 
expression profile data GSE35956 were extracted from the 
study of Benisch et al (9), which was based on Gene Expression 
Omnibus database. Human mesenchymal stem cells (hMSC) 
of elderly patients (79-94 years) suffering from OP were 
isolated from femoral heads after low-energy fracture of the 
femoral neck. A total of 5 OP patients (elderly) and 5 control 
group (middle-aged) were included. Then, the raw data were 
normalized and converted into expression values by the robust 
multi-array average (RMA) algorithm (www.bioconductor.
org) and R statistical software (version 3.0.0; R Project for 
Statistical Computing, https://www.r-project.org/).

DEG analysis. Multiple linear regression package, limma 
package (10,11) was used to determine the DEGs between the OP 
patients and normal controls. Multiple testing corrections were 
performed using the Bayesian method. Only genes with loga-
rithm of fold change (|logFC|) ≥2 and P-value <0.05 were chosen 
as the DEGs. To ensure the stability of the object in the screening 
process, all the DEGs were chosen if their number was over 300 
with their |logFC| beyond 2 while the top 300 DEGs were chosen 
if their the number was below 300 with their |logFC| beyond 2.

TF genes or TF target prediction. It is known that each TF, as 
a protein, has a corresponding regulatory gene, which mainly 
binds to specific DNA sequences and thus exerts its regula-
tory role in incomputable biological process. Hence, TF gene 
was identified first based on mapping DEGs to TF databases 
including ITFP (12), Tissue-specific regulatory circuits (13), 
TRRUST (14) databases involved in TFs genes, their down-
stream regulated genes (target genes) and binding sites. Then, 
once no TF genes existed, we speculated potential effect of 
TF by analyzing whether TF targets contained DEGs using 
Fisher's exact test, which could reflect that the more TF targets 
were enriched, the more crucial the TFs were. Noticeably, the 
abundant TF targets appeared due to likelihood that TF targets 
were widely regulated by TFs such as TFs involved in regu-
lating cell cycle. Thus, such TFs were needed for the following 
study combined with disease state.

The influence of TF analysis. IFs of TFs were assessed by 
calculating G-score according to its metric. By compre-
hensively considering the G-score (the forum was shown as 
follow), average G-score and numbers of regulated genes, 
the IF (expressed in P-value) of TF was gained. The lower of 
this value is, the bigger of TF influence is. According to the 
P-value, the crucial TFs targets were predicted.

The influence of TF network analysis. Considering the possi-
bility that TFs could form a co-expression relationship with 
its target genes, to assess the importance of TFs, Search Tool 

for the Retrieval of Interacting Genes/Proteins (STRING) 
and the afore-mentioned 3 databases were used to calculate 
the influence of TFs on local network neighborhood using the 
weighted sum method (15). Subsequently, G-score of network 
was calculated and the crucial TF targets were determined by 
its ranking.

Identification of optimal set of TFs. To select the optimal set of 
TFs with the greatest combined influ ence, TFs with maximum 
coverage of DEGs were determined. Top TFs obtained based 
on above third methods (TF targets enrichment analysis, TF 
targets influences analysis, TF network influences analysis) 
were integrated to obtain the optimal crucial TFs.

Results

Data preprocessing and DEG identification. After data 
preprocessing, a total of 20,514 genes were obtained from 5 OP 
patients (elderly) and 5 control groups (middle-aged). A total 
of 300 DEGs were obtained, namely, LYG2, PPEF1, TTC16, 
LOC100134368, LOC100505716, CKM, LOC100506272, 
ADAMTS7, MAB21L2, NR0B1, which were all upregulated in 
OP group (Table I).

TF genes or TF targets prediction. The result of TF genes 
enrichment analysis suggested that no DEGs were identified 
as TF genes. In the following, we analyzed whether TF targets 
were contained in DEGs using Fisher's exact test. As shown 
in Table II, 165 TFs targets including CKM, CD74, ADAMTS, 
ADAMTS7, NPAS1 were enriched, correspondingly, the top 
10 TFs were WT1, ZBTB7A, CACBP, ZNF281, ZBTB47, 
ZNF219, PATZ1, TFAP2C, HGS, and KLF16.

The influence of TF analysis. According to the G-score, 
average G-score, numbers of regulated genes and the P-value of 
TF comprehensively, 87 TF targets from DEGs were obtained, 
correspondingly, the top 10 crucial TFs were FKBP8, SP1, 
LMO4, KLF3, KHDRBS1, ZFPM1, EML3, ZNF580, ZBTB45, 
and WDTC1 (Table III).

The influence of TF network analysis. Based on the G-score of 
network ranking, 178 TF targets were identified from DEGs, 
correspondingly, the top 10 influential TFs included FOXO1, 
KLF16, RXRA, RARA, HNF4A, CEBPB, ESR1, SOX8, 
ZNF219, and SP1 (Table IV).

Optimal set of TF identification. Ultimately, the above third 
methods were integrated with the greatest combined influ-
ence to attain the optimal set of TFs with maximum coverage 
of DEGs. The PPI network analysis based on the G-score 
of network efficacy is better than others methods due to the 
number of the 178 TF targets was more than the number 
of 165 or 87 TF targets, as shown in Fig. 1. Thus, the optimal 
set of TFs were FOXO1, KLF16, RXRA, RARA, HNF4A, 
CEBPB, ESR1, SOX8, ZNF219, and SP1.

Discussion

Bioinformatics methods were utilized to identify crucial TFs 
for clinical OP treatment. The results suggested that 300 DEGs 
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such as upregulated LYG2, PPEF1, TTC16 were gained in OP 
group compared with control group. A total of 165 TF targets 

from DEGs were enriched based on TF genes enrichment 
analysis, 87 TF targets from DEGs were attained by their IF 
analysis and 178 TF targets from DEGs were achieved by TF 
network influence analysis. According to the optimal TF set with 
TFs having maximum coverage of DEGs, 178 TF targets were 
the most. Thus, the optimal sets of TFs were FOXO1, KLF16, 
RXRA, RARA, HNF4A, CEBPB, ESR1, SOX8, ZNF219, and 
SP1. These TFs identified from third bioinformatics methods 
are possibly capable of aiding in a better understanding of the 
underlying molecular mechanisms, implying these crucial TFs 
are likely to be the potential therapy target for OP.

It is well-established that TF, specific to binding to its target 
gene, thus exerts inhibitory or facilitative role in gene expres-
sion, showing a significant part in the multitude of biological 
processes involved in diseases (15-17). Particularly, it is well 
known that runt-related TF-2 (Runx-2), served as a master 
member of osteogenic differentiation specific TFs during the 
early stage of osteogenesis, upregulates the transcription of 
various mineralized related protein genes in osteoblasts and 
chondrocytes, and thus promotes these cells to differentiate 
into osteoblasts (18,19). Hence, Runx-2 is also proved to play a 

Table III. Top 10 TFs identified from DEGs based on their 
influence.
 
TF_gene G-score ave_score num_genes rank_p
 
FKBP8 1.629660153 1.629660153 1 0
SP1 2063.253105 0.206263432 10003 0
LMO4 5.595214111 1.398803528 4 0.02001
KLF3 5.506357538 1.376589384 4 0.02405
KHDRBS1 2.696028355 1.348014178 2 0.02983
ZFPM1 1.310340162 1.310340162 1 0.03837
EML3 1.28108726 1.28108726 1 0.04572
ZNF580 2.548392738 1.274196369 2 0.04752
ZBTB45 2.477553068 1.238776534 2 0.05746
WDTC1 1.178355662 1.178355662 1 0.07665
 
TFs, transcription factors; DEGs, differentially expressed genes.
 

Table I. The top 10 DEGs.

Gene name logFC AveExpr t P-value adj.P.Val

LYG2 3.822863546 4.898607116 11.79654581 3.09E-07 0.006343212
PPEF1 2.967917113 5.306881431 8.769700405 4.84E-06 0.049630867
TTC16 3.371397328 5.527493053 8.198929385 8.85E-06 0.054473657
LOC100134368 2.877190274 5.538742477 7.729046328 1.49E-05 0.054473657
LOC100505716 3.098691591 5.203848263 7.677271035 1.58E-05 0.054473657
CKM 3.47319398 6.247940415 7.670112434 1.59E-05 0.054473657
LOC100506272 2.368835964 4.8244862 7.19255559 2.78E-05 0.081533396
ADAMTS7 1.372895995 7.074901655 6.9525671 3.72E-05 0.092051022
MAB21L2 3.654174352 9.046481165 6.727015578 4.91E-05 0.092051022
NR0B1 1.911083095 5.997674202 6.593036972 5.82E-05 0.092051022

DEGs, differentially expressed genes; logFC, logarithm of fold change.

Table II. Top 10 TF enrichment analysis of DEGs.

TF_name TF_P-value FDR_p num_genes

WT1 6.52E-08 7.48E-05 97
ZBTB7A 1.83E-05 0.007169601 48
CACBP 2.16E-05 0.007169601 118
ZNF281 2.50E-05 0.007169601 111
ZBTB47 3.30E-05 0.00756938 6
ZNF219 3.96E-05 0.00756938 100
PATZ1 0.000106106 0.015445541 79
TFAP2C 0.000128968 0.015445541 112
HGS 0.000132363 0.015445541 5
KLF16 0.000153328 0.015445541 107
EGR 0.000157328 0.015445541 127

TFs, transcription factors; DEGs, differentially expressed genes.

Table IV. Top 10 TFs identified from DEGs based on their 
G-scores of TF network.

TF_gene G_net_score

FOXO1 328.9369128
KLF16 323.1693838
RXRA 312.8356811
RARA 310.4836752
HNF4A 300.1282162
CEBPB 297.0888622
ESR1 291.421492
SOX8 291.0030097
ZNF219 290.6270745
SP1 285.5734732
NFIC 283.8264335

TFs, transcription factors; DEGs, differentially expressed genes.
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key role in bone metabolism regulation and bone development, 
indicating it is of great significance to prevent and treat OP. 
Osterix, a zinc-finger-containing TF, is an essential osteogenic 
marker for the differentiation of preosteoblasts into mature 
osteoblasts during the late stage of osteoblast differentiation, 
which is required for bone formation (20,21). It is reported that 
nuclear receptors, emerged as a family of TFs, are fundamental 
regulators of maintaining bone development and remodeling, 
besides, several drugs targeting it are widely applied in treating 
bone diseases such OP via regulating rates of bone formation 
and resorption (22). Although some TFs are proved to play an 
essential role in bone metabolism, global prediction of TFs in 
OP are  still relatively scarce.

Thus, in the present study, comprehensive bioinformatics 
methods were introduced to obtain key TFs from a global point 
of view. First, 300 DEGs were obtained including top 10 DEGs 
such as LYG2, PPEF1, TTC16 all upregulated in OP according 
to 5 OP samples compared with 5 normal samples. Following, 
based on third bioinformatics methods, 165 TF targets, 87 TF 
targets and 178 TF targets were identified, respectively. The 
178 TF targets had the most coverage of TFs, thus, the optimal 

TF set of these TF targets were FOXO1, KLF16, RXRA, RARA, 
HNF4A, CEBPB, ESR1, SOX8, ZNF219, and SP1. It is suggested 
that deletion of forkhead box O1 (FoxO1), one of members of 
the Forkhead box O (FOXO) family of TFs, could lead to a bone 
formation increase, which was maintained up to 24 months in 
mice while a lower number of adipocytes in the bone marrow 
of Foxo-deleted mice at this late age was presented (23), 
indicating FoxO1 possibly plays a crucial regulatory role in 
bone metabolism. It has also been demonstrated that Retinoid-X 
receptor-α (RXRA), one of nuclear hormone superfamily, is 
an essential cofactor in the action of 1,25-dihydroxyvitamin D 
(1,25[OH]2-vitamin D) and epigenetically regulates activation 
of vitamin D, indicating it may influence bone mineral 
accrual (24-26). It is shown that CCAAT/enhancer-binding 
protein β (CEBPB), a TF, reduced bone mass in knockout 
mice  (27). It has been found that estrogen receptor α (ESR1) 
is associated with low mineral osseous densitometry in women 
after menopause (28). Schmidt et al have shown that Sox8-
deficient mouse exhibit a severely impaired bone formation, 
which is modulated by a strongly reduced expression of runt-
related TF 2 (29). Taken together, the above evidence indicates 

Figure 1. Distribution scale schematic illustrates the overlap of TF target DEGs from third methods: enrichment analysis, IF analysis, TF network analysis. TF, 
transcription factor; DEGs, differentially expressed genes; IF, impact factor.
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that the comprehensive bioinformatics analysis of TFs from 
a point of view provided by our study may aid in a better 
understanding of the molecular mechanism of OP. Albeit a novel 
insight of comprehending OP molecular pathogenesis emerged, 
many further studies are required due to the presence of some 
limitations in this study. Relatively small sample number and 
datasets, verification of in vitro and in vivo experiments are 
needed in further investigations.

In conclusion, our study provided novel insight into the 
mechanism by which crucial TFs were identified by compre-
hensive bioinformatics analysis of OP microarray data. These 
selected TFs are possible potential targets in the management 
of OP.
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