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Abstract

Background

The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhe-

sion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low pene-

trance embryonic developmental defects. Work from other systems has shown that

syndecans can function as ligands for LAR receptors in vivo. We used double mutant analy-

sis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C.
elegans embryogenesis.

Results

We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic

lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis

of the survivors demonstrated that these animals had a synergistic increase in the pene-

trance of embryonic developmental defects. Together, these data strongly suggested PTP-

3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to

knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules

to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44,
was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to char-

acterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44
caused defects in the polarization and migration of endodermal precursors during gastrula-

tion, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1.

Conclusions

PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and lar-

val development, as simultaneous loss of both genes has dire consequences for organismal

survival. TheWnt ligand lin-44 contributes to the early stages of gastrulation in parallel to

sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust

platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function

in development, yet might be missed in traditional forward genetic screens.
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Introduction
Cell adhesion molecules (CAMs) provide multiple functions during the development and ho-
meostasis of an organism. In C. elegans, multiple CAMs contribute to early embryonic develop-
ment and loss-of-function (LOF) mutations in these can result in cellular, tissue and/or
organismal abnormalities [1–4]. Interestingly, these molecules often appear to act in semi-re-
dundant ways, where input from multiple CAMs are required for the fidelity of a specific devel-
opmental event [3, 5–7]. This can be best observed when LOF in a single gene has a modest
effect on viability, but LOF in two genes in combination can have severe effects leading to high-
ly penetrant lethality or arrest. This synergistic effect, known as Synthetic Lethality (SynLet),
can be harnessed to uncover genetic interactions between functional pathways [8–14].

We and others have previously described developmental defects associated with ptp-3, the C.
elegans Leukocyte-common antigen related (LAR)-like receptor protein tyrosine phosphatase
(RPTP) [5, 7, 15–17]. LAR is a member of the type IIa family of tyrosine phosphatases [18].
Vertebrates have three type IIa family members; LAR (PTPRF), RPTPσ (PTPRD) and RPTPδ
(PTPRS) [19]. LAR-like RPTPs have been implicated in multiple aspects of nervous system de-
velopment [20–27]. LAR is also required for proper mammary gland development in mice [28]
and the LAR genomic locus is frequently deleted in breast, colon, and other cancers of epithelial
origin [29]. Together, the pleiotropic nature of these observations highlights the importance of
LAR-like receptor tyrosine phosphatases in organismal development and homeostasis.

LAR-like RPTPs are receptors for extracellular matrix molecules, including laminin, chon-
droitin sulfate proteoglycans and heparan sulfate proteoglycans (CSPGs and HSPGs, respec-
tively) [24, 30–32]. In Drosophila DLAR has been shown to bind syndecan and glypican, two
cell-surface associated HSPGs [33, 34], consistent with reports from vertebrates demonstrating
that LAR binds HSPG molecules [30, 32]. LAR family members have also been shown to physi-
cally and genetically interact with HSPGs in Zebrafish trigeminal and Rohon-Beard neuron de-
velopment [35]. Importantly, Drosophila genetic studies, in addition to mammalian sensory
neuron explant assays demonstrate that competition between distinct HSPG/CSPG ligands for
LAR-like RPTPs can exert opposing effects on neural development [32, 34].

Syndecans are cell-surface associated HSPGs that have been implicated in a broad range of
developmental events, and have been linked to the modulation of several secreted morphogens
including Wnts and Fibroblast Growth Factors (FGFs) [36–43]. The extracellular domain of
syndecans can be post-translationally modified with HS- or CS-side chains and the intracellu-
lar domain can interact with cytoplasmic signaling effectors via a PDZ binding motif. The C.
elegans genome encodes a single syndecan, SDN-1, which, by sequence, is most similar to
human syndecan-2 (SDC2) [44–46].

Here we provide genetic evidence that ptp-3B and sdn-1 function in parallel signaling path-
ways during C. elegans embryonic development. ptp-3; sdn-1 double mutants exhibit a highly
penetrant SynLet phenotype, with development arresting during embryogenesis or in the first
larval stage (L1). A small percentage of animals do progress to adulthood, but exhibit sterility
or low fecundity with all offspring arresting during development.

Using an RNAi library comprised primarily of predicted secreted proteins, we screened for
genes that exhibited a SynLet phenotype with worms homozygous for either ptp-3 or sdn-1
LOF mutations. From a screen of 3,652 clones, we isolated 25 candidate SynLet genes, and sev-
eral additional candidate genes displayed an increase in lethality or slow growth phenotype in
either the ptp-3 or sdn-1 background, but did not meet our threshold criteria for synthetic le-
thality. Among these, we found that the Wnt ligand, lin-44, was strongly SynLet with sdn-1, but
not ptp-3. Using a time-lapse microscopy approach we found defects in the ingression of the
endodermal precursor cells Ea and Ep in lin-44mutants. This phenotype was significantly
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enhanced when sdn-1 was also removed. This is the first data indicating that LIN-44 contrib-
utes to gastrulation events in C. elegans and demonstrates the power of using double mutant
analyses to uncover novel roles for well-characterized genes.

Materials and Methods

Genetics
The following alleles were used in this report: N2 (var. Bristol), sdn-1(zh20), sdn-1(ok449), ptp-
3(mu254), ptp-3(mu256), ptp-3A(ok244), ptp-3(op147), lin-17(n671), lin-44(n1792), eri-1
(mg366), juIs76 [Punc-25::gfp], jcIs1 [Pajm-1::AJM-1::GFP] andmIn1mIs14. Strains were main-
tained at 18–22°C, using standard maintenance techniques as described [47]. All lethality
counts were conducted with animals maintained at 20°C.

To score the synthetic lethality of the ptp-3; sdn-1 double mutant animals we generated sdn-
1(zh20) homozygotes where ptp-3(mu245), was balanced with a chromosomal inversion,mIn1,
which is marked with a recessive mutation (dpy-10), and a dominant pharyngeal GFP inser-
tion,mIs14 (phGfp). We further marked themu245 lesion by linking it to a GABAergic neuro-
nal marker, juIs76 [Punc-25::gfp] (nGfp). Progeny from the sdn-1(zh20); ptp-3(mu245)juIs76/
mIn1mIs14mothers were expected to define the following three phenotypic classes and their
corresponding genotypes:

• Dpy+phGfp—(sdn-1(zh20); mIn1mIs14/mIn1mIs14)

• phGfp+nGfp+NonDpy—(sdn-1(zh20); ptp-3(mu245)juIs76/mIn1mIs14)

• NonDpy+NonphGfp+nGfp—sdn-1(zh20); ptp-3(mu245)juIs76.

RNAi feeding control strains used
RNAi clones were compiled from the Ahringer library [48]. Three RNAi controls were used
during each round of screening, an empty vector (L4440), and clones targeting ptp-3 (II-7J03;
Overlapping CDS: C09D8.1) or sdn-1 (pEVL202). The sdn-1 fragment designated for RNAi
was obtained by polymerase chain reaction (PCR) from N2 genomic DNA. The fragment was
then cloned into the pCR8 TOPO cloning vector (Life Technologies) and recombined via an
LR reaction into a dual T7-feeding vector derived from the L4440 vector (a kind gift of A. Fire).
The resulting plasmid was transformed into the HT115(DE3) RNase III-deficient E. coli strain
[49]. The following primer pairs were used for PCR amplification of sdn-1: forward 5’-
TTTTCTTTTAGAACCCTTTTGC-3’ reverse: 3’-CATCAATTTATCATCTCGCAAC-5’.

RNAi feeding assay (6-well format)
HT115 bacterial strains, containing the RNAi clones of interest, were grown overnight at 37°C
in 1.5 mL LB plus ampicillin, tetracycline and nystatin. 0.1 ml of the overnight cultures were
aliquoted on single 6-well plates of NGM containing carbenicillin, tetracycline, and 1mM
IPTG and grown overnight at 37°C. Approximately 3–4 L4 worms were dispensed in M9 into
the top wells (1, 2 and 3) on the 6-well plates. The plates were left at approximately 20°C for
five days before the worms were scored for phenotypes and 3–4 L4 worms were transferred to
the bottom wells (4, 5 and 6). The bottom wells were then scored after six more days. The ex-
perimenter was blind to the RNAi clone being tested in all assays. All clones that exhibited any
level of SynLet were rescreened as described above to verify the interaction. Clones were then
rescreened if they displayed SynLet or slow growth with any of the query strains. We catego-
rized SynLet as embryonic lethal (Emb), larval lethal (Lvl) or adult lethal (Adl). The following
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additional phenotypes were also scored: Lethal (Let), body morphology defects (Bmd), uncoor-
dinated (Unc), sickness (Sck), sterility (Ste), slow growing (Gro), protruding vulva (Pvl),
dumpy (Dpy) and/or egg laying defective (Egl). All phenotypes were compared between the
strains on that 6-well plate alone.

RNAi clone sequencing
Clones isolated from the screen were grown as single clones in liquid LB cultures containing
ampicillin, tetracycline and nystatin. Cultures were purified using a Qiagen spin mini-prep kit
then sequenced using a modified forward T7 primer (5’-ACTCACTATAGGGAGACCGG-3’).

Time-lapse microscopy of embryonic development
4-dimensional video microscopy was carried out using an Olympus BX61 microscope equipped
with a 63x magnification oil immersion objective and motorized z-axis stage. Z-stacks (27–35
slices) were collected every 2 minutes at 1 micron spacing using a Retiga camera (Q-Imaging).
Data sets were analyzed via the Bioformats-Importer and 4D Browser plugins in ImageJ [50,
51]. The following time points were collected; Ea/Ep ingression, gastrulation cleft opening, cleft
closure, and comma stage. Analysis of developmental time points was normalized relative to
Ea/Ep ingression and comma stage. Embryonic lethal phenotypes were categorized according
to [52]. Ea/Ep ingression behavior was scored as follows; I, normal (Ea/Ep ingress together); II,
no ingression (Ea/Ep remain on the outer surface of the embryo); III, skewed (either Ea or Ep
ingresses before its partner); IV, unclassified (Ea/Ep migration obscured or unclear).

Lethality analysis
A single L4 hermaphrodite was placed on a single NGM plate to initiate the assay. Every 24
hours the hermaphrodite was transferred to a new plate. 24 hours after the removal of the her-
maphrodite the plate was analyzed for embryos (Emb) or dead L1 larvae (Lva). The plate was
rescreened 24 hours later for later larval lethality (Lva). Adults were transferred until they died,
or until they stopped giving rise to offspring. All animals were maintained at 20°C, except dur-
ing scoring. Experimenter was blind to the genotype during scoring.

Epithelial morphology assays
Epithelial tight junctions were visualized with jcIs1 [P-ajm-1-AJM-1::GFP], which localizes to
epithelial junctions, essentially outlining all epithelial cells from about the lima bean stage on-
wards. Multiple embryos were harvested by bleaching and> 100 assayed for epithelial mor-
phology. Embryos with cells that were obviously mispositioned, (e.g. dorsal cells on the ventral
side), or misshapen in a way that was strikingly different from wild-type, (e.g. rounded cells
along the lateral aspect where cuboidal cells are normally present), were scored as a mutant.

Results and Discussion

Dual loss of ptp-3 and sdn-1 results in synthetic lethality
Both ptp-3 and sdn-1 have previously described roles in C. elegans embryonic development [5,
7, 44, 53]. The ptp-3 locus encodes three distinct transcripts, each with independent promoters
[15] (Fig 1). Mutations in ptp-3B exhibit a low level of embryonic (Emb) and larval lethality
(Lva) as well as Variable-abnormal body morphology defects (Vab) (Fig 2 and Table 1). How-
ever, most ptp-3 LOF mutants are superficially normal in appearance. Similarly, sdn-1mutants
exhibit low levels of Emb and Lva offspring (Table 1), but most grow to adulthood, where they
exhibit uncoordinated movement (Unc) and egg-laying defects (Egl).
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Based on the low penetrance viability defects in ptp-3mutants, and previous observations
that the Drosophila LAR receptor, DLAR, can bind syndecan [33, 34], we asked whether ptp-3
and sdn-1 could be interacting genetically during C. elegans development. If PTP-3 and SDN-1
were acting as a ligand-receptor pair, we would have expected that ptp-3; sdn-1 double mutants
would exhibit embryonic lethality at a rate similar to the single mutant genetic backgrounds. In
contrast we found that animals lacking both sdn-1 and ptp-3 were essentially inviable (Table 1).
To score the development of these animals we generated sdn-1(zh20) homozygotes where a
strong ptp-3 LOF mutation,mu245, was balanced with a chromosomal inversion,mIn1, which
is marked with a recessive mutation (dpy-10), and a dominant pharyngeal GFP insertion,
mIs14 (phGfp) (see Materials and methods).

We found an increase in the embryonic and larval lethality in offspring from sdn-1(zh20);
ptp-3(mu245)juIs76/mIn1mIs14mothers compared to sdn-1(zh20); juIs76 or ptp-3(mu245)
juIs76 alone. Compared to the expected 25% of the brood, only 12.6% of live hatchlings were
ptp-3; sdn-1 (126/1000 offspring from a total of 5 mothers). Further, when these broods were
analyzed on the first day of adulthood, only 2% (2/114 offspring) of the adults were sdn-1
(zh20); ptp-3(mu245)juIs76). Surviving sdn-1(zh20); ptp-3(mu245)juIs76 adults appeared sick-
ly, were largely paralyzed and had no viable offspring (78 Emb and 5 Lva L1s from 4 mothers).
SynLet phenotypes were also observed when we tested other strong ptp-3 LOF mutations

Fig 1. Genomic and protein structure of ptp-3 and sdn-1. A schematic of the gene and protein structures of ptp-3 and sdn-1 are presented with lesions
used in this report indicated. A) The ptp-3 genomic locus gives rise to at least three independently generated transcripts, ptp-3A, ptp-3B and ptp-3C. The
ptp-3(ok244) deletion specifically affects ptp-3A, ptp-3(mu245) is a premature stop that affects ptp-3A and ptp-3B, ptp-3(op147) is a Tc1 transposon
insertion and ptp-3(mu256) is a frameshift and premature stop that affects all three transcripts. B) The three PTP-3 protein isoforms differ by the composition
of the extracellular domains. See key at bottom of figure for domain architecture. C) The sdn-1 genomic locus produces a single transcript. The two deletion
alleles, sdn-1(zh20) and sdn-1(ok449), both remove a large portion of the sdn-1 coding segment and are strong loss of function alleles. D) The SDN-1 protein
has three SGmotifs (vertical lines) that are predicted to be targets for the addition of heparan sulfate side chains.

doi:10.1371/journal.pone.0121397.g001
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Fig 2. Loss of function in ptp-3 and sdn-1 results in low penetrance embryonic and larval defects. A:
ptp-3(mu245)mutant animals can hatch as normal looking L1 larvae (arrow), but can also die during
embryogenesis (asterisk shows an embryo that ruptured at elongation). B: ptp-3mutants can exhibit defects
in ventral neuroblast migration (B1 outlined area), which result in a persistent gastrulation cleft on the ventral
surface. When these fail to close, internal cells extrude through the opening (arrowheads) during elongation,
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including ptp-3(mu256) and ptp-3(op147), and a second deletion allele in sdn-1, ok449. None of
the ptp-3; sdn-1 double mutant combinations were viable as homozygous strains, and each had
to be maintained as balanced ptp-3/mIn1mIs14 heterozygotes for propagation. In addition,
RNAi targeting sdn-1 was lethal in ptp-3(mu245) animals, and RNAi targeting ptp-3 was lethal
in sdn-1(zh20) animals. These data confirm that the SynLet phenotypes observed are due to the
alleles in question and not caused by closely linked background mutations.

We more closely analyzed the sdn-1(zh20); ptp-3(mu245) homozygous animals to determine
the point at which they were arresting. We found instances of early embryonic arrest (pre-mor-
phogenesis), embryonic rupture during epidermal enclosure, and arrest at the L1 stage as mis-
shapen larvae. These are similar arrest points to those observed in embryos from sdn-1(zh20);
ptp-3(mu245)/mIn1mIs14mothers. However, the higher rate of embryonic arrest in the off-
spring of sdn-1(zh20); ptp-3(mu245) animals than from sdn-1(zh20); ptp-3(mu245)/mIn1mIs14
mothers strongly suggests a maternal contribution of ptp-3 to embryonic development. Since
the offspring of sdn-1(zh20); ptp-3(mu245) animals, which should lack any maternal contribu-
tion, demonstrated a variable arrest point, we concluded there are likely several stages of devel-
opment to which both SDN-1 and PTP-3 contribute, in partially compensatory ways.
However, we cannot completely discount that defects that occur early in development may
present as variable arrest phenotypes. Overall these results indicate that ptp-3 and sdn-1 have
overlapping function during embryogenesis and that loss of both genes results in dire conse-
quences for organismal survival.

We previously demonstrated that two of the isoforms produced by the ptp-3 locus have dif-
ferential localization [5, 15]. PTP-3A localization is restricted to synapses, while PTP-3B is

leading to embryonic lethality. C: ptp-3mutants can also exhibit variably abnormal herniations in body
morphology (empty arrowhead). D: sdn-1(zh20)mutants also exhibit low penetrance embryonic lethality
(asterisks show ruptured embryos). E: Gastrulation cleft closure defects are observed in some sdn-1(zh20)
mutant embryos (outlined area). Again, this can lead to embryonic rupture at ventral enclosure (arrowhead
shows cells oozing from within).

doi:10.1371/journal.pone.0121397.g002

Table 1. Lethality by genotype analyses.

Genotype a Brood Size Avg (St Dev) b Phenotype c Avg (St Dev) N d

Emb Lva Vab WT

wild type 247.6 (35.6) 0.5 (0.6) 1.0 (0.7) 0.0 (0.0) 98.5 (0.9) 1238

ptp-3(mu245) 82.0 (51.6) 2.1 (1.7) 8.4 (4.7) 2.2 (2.8) 87.3 (7.2) 984

sdn-1(zh20) 173.6 (101.0) 7.7 (5.3) 5.5 (3.7) 0.6 (0.7) 86.6 (6.1) 868

ptp-3(mu245)/mIn1mIs14; sdn-1(zh20) 114.2 (35.7) 8.2 (2.6) 9.6 (1.8) 1.8 (2.4) 80.4 (4.2) 1142

ptp-3(mu245); sdn-1(zh20) 10.2 (6.7) 84.3 (8.4) † 15.7 (4.1) † 0.0 (0.0) 0.0 (0.0) † 51

lin-44(n1792) 137.4 (33.9) 12.2 (2.9) 10.6 (2.1) 0.4 (0.6) 76.8 (3.4) 687

sdn-1(zh20); lin-44(n1792) 94.8 (38.4) 71.6 (11.0) †‡ 4.6 (1.9) 0.4 (0.9) 23.5 (12.0) †‡ 474

sdn-1(zh20); lin-17(n671) 76.6 (12.6) 4.4 (8.0) 1.3 (1.1) 0.0 (0.0) 93.6 (7.8) 383

ptp-3(mu245); lin-44(n1792) 101.2 (49.0) 4.6 (3.2) ‡ 21.5 (5.7) ‡ 1.3 (1.3) 68.7 (8.7) ‡ 506

a Listed genotype is the maternal genotype.
b average total brood size of five mothers.
c percent of animals displaying phenotype from mothers of indicated genotype.
d total number of offspring analyzed.
† Significantly different from sdn-1(zh20) p<0.01 (Students t-test).
‡ Significantly different from lin-44(n1792) p<0.01 (Students t-test).

doi:10.1371/journal.pone.0121397.t001
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associated with cell-cell junctions during embryogenesis but also localizes to axons during
axon outgrowth. Consistent with their different localizations, PTP-3A and PTP-3B appear to
function as distinct genetic units as loss of ptp-3A has no embryonic patterning or axon guid-
ance defects, yet exhibits a fully penetrant synaptic morphology defect that is equivalent to a
complete loss of function for the ptp-3 locus [15]. Similarly, PTP-3B is capable of rescuing the
embryonic development, cell migration, and axon outgrowth defects associated with ptp-3 LOF
mutations [1, 5, 17, 54]. The ptp-3(mu245) lesion specifically affects the PTP-3A and PTP-3B
isoforms, and we did not observe a SynLet phenotype when we used a LOF mutation in ptp-3
that specifically affects the PTP-3A isoform, ptp-3A(ok244) (Fig 1). This is consistent with our
previous results suggesting that PTP-3A does not obviously contribute to epidermal develop-
ment, while PTP-3B does.

To better understand what might be contributing to ptp-3; sdn-1 lethality during embryo-
genesis, we used 4D time-lapse microscopy to observe cell division and migration during the
first 10 hours of embryonic development. The first cell migration event that occurs during C.
elegans development is the onset of gastrulation, where the gut precursor cells, Ea and Ep, in-
gress into the center of the embryo [55]. In wild-type embryos, Ea and Ep ingress in concert,
side-by-side, with the space vacated by their ingression filled by movements from six surround-
ing cells [56]. The next major developmental event occurs when cells of the endodermal and
mesodermal lineages begin to ingress at the posterior end, leaving a transient gastrulation cleft
on the ventral surface (Fig 3) [57]. Onset of cleft opening was phenotypically normal in the em-
bryos observed (n = 10) although one embryo showed gastrulation cleft opening at the anterior
end. However, the relative timing of gastrulation cleft opening was significantly delayed in ptp-
3 embryos when compared to Ea/Ep ingression and comma stage. The gastrulation cleft is
flanked by neuroblasts; in wild-type embryos, these normally migrate towards the midline of
the ventral surface, closing the cleft in about 55 minutes [53]. These subsequently form a sub-
strate for epithelial cell migration, which intercalate and extend from the dorsal and lateral sur-
faces to enclose the embryo during epiboly.

In ptp-3; sdn-1mutants, 8/14 embryos showed gastrulation clefts that persisted until epitheli-
al extension and ventral enclosure (Fig 3). All of these embryos ruptured prior to comma stage,
at the onset of embryonic elongation (class I phenotype, [52]). Two large cells were frequently
seen in the center of these enlarged clefts that showed no adhesion to the cells surrounding
them. Based on previous cell lineaging experiments, we tentatively identified these as the germ
line precursor cells Z2 and Z3 (M. L. Hudson, unpublished observations). Additional embryos
showed gross disorganization during development, with lateral loss of cell—cell contacts on the
embryo surface prior to cleft opening. In the embryos that survived ventral enclosure, defects
were also observed in tail morphology. While gastrulation cleft opening appears to be signifi-
cantly delayed in ptp-3; sdn-1mutants compared to ptp-3 alone, only 3/10 ptp-3; sdn-1mutants
could be scored for this phenotype as most embryos rupture prior to reaching comma stage,
and hence cannot be scored for the final developmental timeline marker. As such, this apparent
suppression of ptp-3 developmental timing defects may be misleading. Overall, the most com-
mon cause of embryonic lethality was failure to close the gastrulation cleft prior to ventral en-
closure. These data confirm previously identified roles for SDN-1 and PTP-3 in embryonic
morphogenesis [5, 53], and suggest that SDN-1 and PTP-3 function in parallel, part-redundant
pathways to control either cell adhesion, neuroblast migration or both.

An RNAi screen for SynLet interactions with ptp-3 and sdn-1
The observation that simultaneous LOF in ptp-3 and sdn-1 resulted in a highly penetrant Syn-
Let phenotype suggested that we could use these backgrounds to identify additional genes that
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Fig 3. The dual loss of ptp-3 and sdn-1 results in synergistic defects during embryogenesis. A: Using 4D time-lapse microscopy we monitored
embryogenesis in N2 wild-type, ptp-3, sdn-1, lin-44 single mutants, and lin-44; sdn-1 and ptp-3; sdn-1 double mutants. The gastrulation clefts (outlined
regions) present in the single mutants are more likely to close during development than the clefts in the double mutants. The arrowhead indicates cells that
have extruded from the internal region of the embryo through the open gastrulation cleft (panel 418 minutes). B: Terminal fates of the embryos plotted
by genotype.

doi:10.1371/journal.pone.0121397.g003
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contribute to embryonic development [8]. We employed RNAi knockdown to systematically
screen for genes that lead to a synergistic SynLet phenotype in either ptp-3(mu256) and/or sdn-
1(zh20)mutant backgrounds. RNAi clones that were identified from the first round of screen-
ing were retested at least four times to confirm the results. The threshold for declaring an inter-
action as synthetic lethal was>75% Emb. We also identified genes that were SynLet with both
ptp-3 and sdn-1, suggesting these may function in yet another independent parallel pathway, or
may contribute in overlapping fashion to both the ptp-3 and sdn-1 pathways.

We found 11 genes that showed a SynLet phenotype in ptp-3(mu256) animals, but only lim-
ited or no lethality in a wild type background (Table 2, S1 Table). Two of these genes, vab-1
and unc-40, have previously been found to be SynLet with ptp-3, indicating that our screen was
capable of identifying relevant genetic interactions [5, 7, 17, 46]. We also found genes that are
known to be individually lethal via complete loss-of-function mutations, including bli-3 and
mek-2. However, in our assays, RNAi knockdown in the wild type background was insufficient

Table 2. SynLet Genes by Genotype Affected.

WormBase Identification Overlapping CDS(s) Gene Name Description

SynLet with ptp-3

WBGene00006776 T19B4.7 unc-40 Netrin receptor

WBGene00007301 C04F12.7 Multiple transmembrane domains

WBGene00007768 C27C7.5 Carbohydrate binding domain protein

WBGene00023237 C17C3.14 Psuedogene

WBGene00006868 M03A1.1 vab-1 Ephrin receptor tyrosine kinase

WBGene00016638 a C44B12.5 perm-4 Secreted protein

WBGene00022539 a ZC190.5 Multiple transmembrane domains

SynLet with sdn-1

WBGene00007900 C33D9.6 Coiled coil domains

WBGene00015009 B0041.5 Solute carrier family 35-like

WBGene00016753 C48E7.8 oac-9 O-acyltransferase

WBGene00008411 D2030.1 mans-1 Mannosidase

WBGene00000254 K04F10.4 bli-4 KEX2/subtilisin-like serine endoprotease

WBGene00020397 T10B11.1 pcbd-1 pterin-4-α-carbinolamine dehydratase

WBGene00009666 F43G9.3 Secreted protein

WBGene00006061 F30A10.5 stl-1 Stomatin-like

WBGene00011783 T15D6.9 Secreted protein

WBGene00016253 C30E1.4 Secreted protein

WBGene00003029 b E01A2.3 lin-44 Wnt ligand

SynLet with ptp-3 and sdn-1

WBGene00000253 F56C11.1 bli-3 Dual oxidase

WBGene00003569 F35C12.2 ncx-4 Na+/Ca2+ exchanger

WBGene00008294 C54C8.7 clec-11 C-type lectin

WBGene00003186 Y54E10BL.6 mek-2 MAP kinase kinase

wt Let, but not in ptp-3 or sdn-1

WBGene00044058 F17B5.6 Carbohydrate transferase

WBGene00007139 B0285.7 mnp-1 Matrix non-peptidase

WBGene00007666 C18B12.4 Plasma membrane-associated ring-finger domain containing protein

a Let phenotype observed in wild-type also, but not in sdn-1.
b Let phenotype observed in wild-type also, but not in ptp-3.

doi:10.1371/journal.pone.0121397.t002
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to cause highly penetrant lethality. We conclude that this approach enabled us to identify ge-
netic interactions that might be missed using traditional loss-of-function alleles.

Seven of the genes found to be SynLet in the ptp-3 background had an attenuated effect
when knocked down in the sdn-1 background (Table 2). These genes are candidates to function
in sdn-1mediated development. Of these several have been associated with the formation or
function of the nervous system (including unc-40, vab-1,mek-2 and C27C7.5). Because synde-
cans are associated with neural development it suggests either failures in neural development
can interfere with normal embryogenesis, or that these molecules perform non-neural develop-
mental functions [2, 58]. A second theme that emerged when analyzing the list is that several
of the genes have an association with gametogenesis or the germline. For example, perm-4 is
expressed in oocytes, and regulates an interaction with sperm, while the C04F12.7 gene is co-
expressed with several sperm-specific genes. VAB-1 has also been linked to the function of
germline maintenance [59]. Finally, the ZC190.5 has been previously identified as a suppressor
of the egl-9 locus [60]. EGL-9 encodes a proline hydroxylase that negatively regulates HIF-1
signaling [61], but also participates in neural development [62]. Thus, it will be interesting to
determine whether the identification of these genes implicates syndecan in oxygen sensing or
germline development/function.

We isolated 15 clones that generated a SynLet phenotype in sdn-1mutants, but had no ef-
fect, or an attenuated one, when knocked down in wild type animals. Of these, 11 of these were
also less penetrant in ptp-3 animals, suggesting they are candidates to function in ptp-3-depen-
dent development. One of the most interesting candidates to emerge was the Wnt ligand, lin-
44 (see below). Wnt ligands contribute to multiple facets of organismal development through-
out the animal kingdom. Interestingly, a recent paper describes an interaction between sdn-1
and another C. elegansWnt ligand,mom-2, where SDN-1 concentrates the MIG-5/Dishevelled
protein in early embryogenesis [62].

We also identified several genes that may contribute to post-translational modifications of
proteins, possibly including Wnts, such as an O-acyltransferase (oac-9), a mannosidase (mans-
1), a pterin-4-α-carbinolamine dehydratase (pcbd-1), a putative sugar transporter (B0041.5), a
subtilisin-like endoproteases (bli-4) and a dual-oxidase (bli-3). It should be possible to use the
lin-44—sdn-1 interaction we describe below to tease out potential contributions of these mole-
cules to Wnt-dependent functions. Two of the genes are likely involved in mitochondrial func-
tion (stl-1, and F43G9.3), although it is unclear whether this function is contributing to the
embryonic lethality when knocked down in sdn-1.

An unanticipated outcome of the RNAi SynLet screen was the discovery of three genes
where RNAi was lethal to our control strain yet showed incomplete penetrance in ptp-3 or sdn-
1mutant backgrounds. Two of those genes, C18B12.4 andmnp-1 are reported to cause lethality
when mutated, or when knocked down in wild-type animals via RNAi [63–66]. The third gene,
F17B5.6, is predicted to code for a glycosyl transferase and has not previously been reported to
have a role in embryonic development.mnp-1, which encodes a 781 amino acid protein related
to the M1 family of metalloproteinases, is required during embryonic development to facilitate
muscle cell migrations from lateral to dorsal and ventral positions [66]. Previous work has
demonstrated thatmnp-1 genetically interacts with the Eph Receptor vab-1, which is SynLet
with ptp-3, suggesting that the interactions between these genes maybe more complicated than
previously suggested. Interestingly,mnp-1 is predicted to be catalytically inactive due to the
lack of three of four essential zinc-binding amino acids, and thus may function in more of a
structural role, perhaps by occluding peptidase sites to promote structural integrity.

In the course of our screen we found other genes that interacted genetically with ptp-3 and/
or sdn-1, but these interactions were either too variable, or did not repeat in multiple assays, to
formally conclude their role in embryonic and larval development (S1 Table). Some of these
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caused slowed growth (Gro) or an apparent sickness (Sck) that lead to decreased viability over
the experimental window, while others may have caused increased changes in the body mor-
phology defects (Bmd or Vab) (S1 Table). Although these were not included in the list of Syn-
Let candidates, the genes may merit analysis in the future when attempting to further
understand how PTP-3 or SDN-1 contribute to morphogenesis.

Epidermal junction defects do not correlate with SynLet phenotypes
PTP-3B is associated with cell junctions during the cellular migrations and tissue rearrange-
ments that occur during embryogenesis, and ptp-3Bmutants exhibit low-penetrance epidermal
morphology (Vab) defects [5]. SDN-1 also localizes to the plasma membrane, being concen-
trated at cell-cell junctions in early embryos [62]. We hypothesized that lethality might arise
from disruption of epidermal junction formation or patterning. To assay this we examined a
marker for epidermal junctions, AJM-1::GFP, in sdn-1 or ptp-3mutants alone and when grown
on enhancer gene RNAi expressing bacteria.

In wild type animals, AJM-1::GFP can be seen accumulating at cell junctions outlining the
epidermal cells, starting around the lima bean stage of embryogenesis, and persisting through-
out development (Fig 4). Epidermal cell junctions in wild-type animals are well organized, and
only rarely display gaps or misshapen cells. In contrast, we found that both ptp-3 and sdn-1
mutants had apparent cell-shape changes consistent with defects in either cell positioning or
cell polarity (Fig 4, Table 3).

Fig 4. Epidermal junctions can be maintained in cell-adhesion mutants and RNAi treated animals.We used an AJM-1::GFP transgene (jcIs1) to
examine epidermal morphology in animals being tested. A: In wild-type jcIs1 animals, AJM-1::GFP is localized to cell junctions (arrow) and outlines epidermal
cells. Here a view of the dorsal epidermal cells is visible. B: A dorsal view of an sdn-1(zh20) animal showing disorganized epidermal cells in the posterior half
of the embryo. C: Ventro-lateral view of a wild-type embryo just after ventral enclosure. Asterisks mark the hexagon-shaped lateral seam cells. Note the
regular morphology. D: A sdn-1(zh20) animal treated with lin-44 RNAi. While some lateral seam cells (asterisks) are correctly positioned, others are grossly
disorganized (note, some of these seam cell identities were made tentatively, and are based on location). Scale bar = 10 μm.

doi:10.1371/journal.pone.0121397.g004
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Interestingly, the presence of disorganized cells as visualized by AJM-1::GFP did not correlate
with the embryonic or larval lethality in the various mutant backgrounds assayed. For example,
only 4% (4/100) ptp-3mutants had obvious defects in the AJM-1::GFP pattern (Table 3). In con-
trast, 87% (87/100) of sdn-1mutants exhibited abnormalities in AJM-1::GFP expression. Despite
this, the rate of embryonic lethality in these two backgrounds is similar. Also, when we used
RNAi to knock down gene expression in our SynLet screen, we found no correlation between
the effect of RNAi on embryonic development and changes in the expression pattern of the epi-
dermal junction marker. Overall this suggests that while these genes may contribute to the posi-
tioning of epidermal cells or the organization of epidermal junctions, the proper localization of
AJM-1::GFP to these sites is insufficient to explain the lethality observed in the different genetic
backgrounds. This is similar to previous reports for cell adhesion molecules in C. elegans, e.g.
loss of the E-cadherin-like HMR-1, which results in lethality, yet the animals can form and
maintain intact epidermal junctions, even when some junctions are failing [67].

TheWnt ligand LIN-44 functions in gastrulation
One of the strongest SynLet interactions uncovered in our screen was between the Wnt ligand
lin-44 and sdn-1 (Fig 3, Table 1). Wnts and syndecan have been shown to function together in
multiple developmental contexts in both C. elegans and other systems [43, 46, 67, 68]. The C.
elegans genome encodes five Wnt ligands; cwn-1, cwn-2, egl-20, lin-44 andmom-2. Of these
onlymom-2 has been shown to function in embryonic development, as loss of function in
mom-2 results in maternal-effect embryonic lethality [56], although loss of multiple Wnts can
result in a more penetrant lethality [69]. In our screen, knockdown of lin-44 caused a robust in-
crease in the embryonic and larval lethality of sdn-1mutants, but not in ptp-3 or wild-type ani-
mals. We did not observe lethality in sdn-1 animals treated with egl-20 or cwn-2 RNAi, while
mom-2 knockdown caused embryonic lethality in all backgrounds tested. cwn-1 was not pres-
ent in our RNAi library hence was not assayed.

To better understand the morphogenetic defects behind the lin-44 and sdn-1 interaction, we
built and analyzed a double LOF line, lin-44(n1792); sdn-1(zh20). lin-44(n1792) is predicted to
be a complete loss of function mutation at the lin-44 locus, hence this strain was genetically null
for both genes in question. We found that sdn-1; lin-44 double mutants showed a significant in-
crease in the penetrance of embryonic lethality compared to either single mutant (Table 1).

Using time-lapse video microscopy, we found highly penetrant defects in the migration of
endodermal precursor cells Ea and Ep, in lin-44; sdn-1 double mutants at the 24-cell stage of
development (Fig 5). In wild type animals, gastrulation begins when Ea and Ep rotate and then
ingress from the surface of the embryo to the center [51]. In lin-44; sdn-1 double mutants, 48%

Table 3. AJM-1::GFP analysis by genotype.

wild-type ptp-3 sdn-1

Class RNAi Normal Defective % Defective Normal Defective % Defective Normal Defective % Defective

Control vector 108 0 0% 100 4 4% 13 87 87%

sdn-1 SynLet bli-4 94 6 6% 12 76 86% N/D

sdn-1 SynLet lin-44 42 81 66% 7 90 93% N/D

sdn-1 SynLet oac-9 22 82 79% 8 93 92% N/D

ptp-3 SynLet unc-40 92 6 6% 4 96 96% 3 99 97%

ptp-3 SynLet vab-1 35 82 70% N/D 2 100 98%

sdn-1 & ptp-3 SynLet ncx-4 94 6 6% 2 98 98% 6 79 93%

Other mnp-1 29 75 72% 0 100 100% 11 91 89%

doi:10.1371/journal.pone.0121397.t003
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Fig 5. sdn-1mutations enhance lin-44 gastrulation defects. A: In C. elegans, gastrulation is initiated by the inward migration of the endodermal precursor
cells Ea and Ep (black asterisks). In sdn-1 and ptp-3mutant animals, the cells ingress, become completely surrounded by neighboring cells, then divide
laterally (white asterisks). Note that Ea and Ep are completely internalized prior to the lateral cell division. In lin-44 and sdn-1mutants, Ea/Ep ingression is
often asynchronous. In addition, some lin-44 embryos show a more severe phenotype, where the Ea/Ep cells completely fail to ingress. The subsequent
lateral cell division positions two of the daughter cells onto the surface of the embryo, generating a “Gut on the exterior”, or Gex phenotype [77]. Similar but
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of embryos (11/24) showed defective Ea/Ep ingression, compared to 21% of lin-44 (5/23) and
20% of sdn-1 (3/15) single mutant embryos. As a comparison, we also examined ptp-3; sdn-1
embryos for Ea/Ep ingression failure. 29% (2/7) embryos showed defects in this process. In one
embryo, the Ea/Ep cells completely failed to ingress, while in another, Ep ingressed before Ea.
These data are not significantly different from sdn-1mutants alone, suggesting that ptp-3 has
no obvious role in early gastrulation. These defects in Ea/Ep ingression often resulted in endo-
dermal cells appearing on the embryo’s surface later in development (Gut on the exterior, or
Gex phenotype), with catastrophic consequences for subsequent epithelial cell migrations (Fig
5). Further analysis of our time-lapse data revealed that 15% (3/20) of lin-44 embryos showed
defects in neuroblast migration as manifested by an increase in gastrulation cleft duration and
failure of epithelial cells to enclose the embryo (Fig 3A and Fig 5). This is likely due to mis-po-
sitioned gut cells inhibiting or blocking epithelial cell migrations, or causing defects in overall
embryonic organization. While the lin-44; sdn-1 Ea/Ep ingression phenotypes appear to be ad-
ditive when compared to each single mutant, the increase in embryonic lethality is clearly syn-
ergistic (Table 1). As such, it appears that small defects in Ea/Ep ingression early in
development lead to severe consequences in later developmental events. Together these results
indicate that both lin-44 and sdn-1 contribute to the normal migration of Ea and Ep cells at the
onset of gastrulation, and that ptp-3 has no obvious role in this process. In addition, both lin-44
and sdn-1may also be involved in controlling neuroblast migration and gastrulation cleft clo-
sure later in embryogenesis, although in the case of lin-44, we cannot rule out that defects at
later time points are a consequence of earlier defects in Ea/Ep migration.

In other contexts LIN-44 has been shown to signal through the LIN-17 Frizzled-like re-
ceptor. We made double mutants of lin-17 with sdn-1, but found no significant increase in
the Emb phenotype compared to sdn-1 animals alone (Table 1). lin-17; sdn-1 double mutant
adults were strongly Unc, and often died early, around day 2–3 of adulthood, compared to
sdn-1 adults, which live for ~7–10 days (B.D. Ackley unpublished observations). This sug-
gests that LIN-44 affects gastrulation via a different receptor, and does not specifically func-
tion via LIN-17.

Finally, we examined whether ptp-3 loss of function also synergized with lin-44. We found
that double mutants of ptp-3(mu245); lin-44(n1792) exhibited Emb lethality at a rate similar to
ptp-3(mu245) single mutants (Table 1), although there was a slight increase in larval lethality
in the double mutants compared to each single mutant background. This suggests that lin-44
and ptp-3may be functioning in the same genetic pathway during embryonic development.
Overall, our results are consistent with ptp-3 contributing to lin-44-dependent embryogenesis,
and that at least one of the potential reasons that ptp-3; sdn-1 double mutants die is because of
a disruption in the lin-44 / ptp-3 signaling pathway.

Conclusions
Embryonic development requires an orchestrated set of cell migrations and rearrangements,
and the proper modulation of cell adhesion is critical to this process. Here we have demonstrat-
ed that the type IIa RPTP, ptp-3 and the syndecan ortholog, sdn-1, contribute to parallel genetic
pathways during C. elegans embryogenesis. The dual loss of these molecules results in develop-
mental failure due to defects in two major cellular rearrangements, gastrulation and epiboly.
Both sdn-1 and ptp-3 have roles at the onset of gastrulation, which is the first major cellular

more penetrant defects are observed in lin-44; sdn-1 double mutants. B: Summary of Ea and Ep cell ingression behavior by genotype. The lin-44; sdn-1
double mutants exhibit a higher rate of Ea and Ep ingression defects than either single mutant. C: Relative timing of developmental milestones as a function
of genotype. Note the lin-44; sdn-1 double mutants have a significantly longer period in which the gastrulation cleft is open.

doi:10.1371/journal.pone.0121397.g005

LAR-Syndecan Synthetic Lethality

PLOS ONE | DOI:10.1371/journal.pone.0121397 May 4, 2015 15 / 22



rearrangement seen in C. elegans development. In addition, both are clearly required for cell
migration events later in development at gastrulation cleft closure. Failure to close the gastrula-
tion cleft leads to subsequent defects in hypodermal enclosure and developmental failure via
ventral rupture at the onset of embryonic elongation.

At first glance our results seem at odds with data from other organisms, where LAR-RPTPs
and syndecans have been found to function as a ligand-receptor pair [33, 34]. In the Drosophila
neuromuscular junction, cis-interactions on the neural membrane between DLar and syndecan
interfere with trans-interactions between neural DLar and muscle-derived glypican. The bind-
ing of DLar to syndecan reduces the adhesion at the NMJ and serves to permit expansion of
the structure. However, the C. elegans isoform most similar to DLar, shown to bind syndecan,
is PTP-3A, which is genetically and functionally distinct from the isoform we found to cause
embryonic defects, PTP-3B. In our assays ptp-3A had no effect on embryonic viability, either
alone or in combination with sdn-1, suggesting that the differences between our observations
and others are due to the isoform being analyzed.

The PTP-3B isoform that our data implicate as functioning in parallel to SDN-1 appears to
be conserved evolutionarily in vertebrates, but is not obviously found in Drosophila. In verte-
brates a short isoform of the LAR/PTP-3F receptor has been identified that has the same do-
main architecture as PTP-3B, being comprised of 5 Fibronectin type III domains in the
extracellular portion and two tandem phosphatase domains intracellularly (Uniprot—
H0Y4H1). Thus, it is possible that the interaction we have observed between LAR and synde-
can is conserved in vertebrates as well.

Our results suggest that in C. elegans embryonic development, the syndecan and LAR pro-
teins have overlapping roles, and can partially compensate for the absence of each other. Fur-
ther, we found that animals lacking both ptp-3 and sdn-1 exhibited variable points of
developmental arrest. This was most apparent in the animals that lacked any maternal ptp-3
contribution, which arrested embryogenesis during epiboly or at hatching, after completing
embryogenesis. The variable arrest points of the sdn-1; ptp-3 double mutants suggests that
there are likely multiple phases of development in which SDN-1 and PTP-3 function in parallel
to provide essential functions. However, an alternative hypothesis is that an early defect at the
onset of gastrulation can lead to a variable arrest point later in development. Based on our
time-lapse analysis, our data favor the former, but it is possible that subtle defects during early
development are occurring. To address this point we will need to identify the mechanism(s)
that underlie the lethality of the ptp-3; sdn-1 double mutant animals.

Additional factors likely provide some compensatory function in the absence of both PTP-3
and SDN-1, permitting animals to get through critical developmental periods. For example,
some sdn-1; ptp-3 embryos fail to complete epiboly; if this were the earliest function of PTP-3
and SDN-1, and they could not be compensated for during this process, we would expect 100%
of the embryos to arrest at that point in development. However, we find that some animals
complete epiboly, but arrest at a later time point. The variable arrest points seen in the double
mutants suggest that there are potentially multiple proteins that could partially compensate for
the loss of ptp-3 and/or sdn-1 during development, including the Eph-ephrin, and slit-robo
pathways, which have previously described roles in this process [6, 7, 52].

The SynLet phenotype observed in ptp-3; sdn-1 double mutants provided us with a powerful
platform to identify novel genetic interactions required for embryonic development. We found
that we can induce lethality in either the ptp-3 or sdn-1mutant backgrounds by knockdown of
orthogonal genes using RNA interference (RNAi). Like most screens using RNAi we observed
some variability in the efficacy, compared to known loss-of-function mutations. While this
may complicate the interpretation of epistatic relationships, we found RNAi had a robust effect
for the purposes of discovery.
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Based on the results of our SynLet screen, we propose that there are at least three, and likely
more, different cell-adhesion pathways functioning semi-redundantly during C. elegans devel-
opment, at least two of which utilize ptp-3 and sdn-1. This is not surprising, as development re-
quires an integrated symphony of cell movements, wherein adhesion must be transiently
changed in an orchestrated fashion. However, it is interesting to note that some cell adhesion
proteins, e.g. laminin, perlecan, collagen IV, and integrins are categorically essential to embry-
onic viability, whereas others, like ptp-3 or sdn-1, have a more flexible requirement. As laminin,
perlecan, and collagen IV are all components of the basal lamina, and integrins receptors for
some of these proteins, it suggests that the basal lamina is a crucial reference point for cell mi-
grations. Cell adhesion, via proteins like PTP-3B or SDN-1, appears to be a more redundant
process, with multiple proteins capable of contributing to this role.

Our SynLet screen has identified multiple genes with previously undiscovered roles in em-
bryonic development. The identification ofmnp-1 lethality being reduced by mutations in ptp-
3 and sdn-1 lethality suggests a complex interplay between cell adhesion and matrix remodeling
proteins during embryogenesis. The Eph receptor vab-1 has previously been shown to function
in parallel withmnp-1 during C. elegans embryonic muscle cell migration [66]. vab-1 also func-
tions in parallel with ptp-3 to regulate epidermal migration during morphogenesis [5]. The ge-
netic interactions we observe suggest that loss of ptp-3 was protective to animals wheremnp-1
had been knocked down. Thus, it will be interesting to determine if this reveals a previously un-
known role for ptp-3 in muscle cell migration, or a role formnp-1 in epidermal cell migration.

One of the interactions we uncovered using our SynLet RNAi approach was a genetic inter-
action between sdn-1 and lin-44, one of the five Wnt ligands encoded by the C. elegans genome
[70]. Prior to this,mom-2 was the only Wnt ligand that had been demonstrated to affect gastru-
lation. However, it has been shown that other Wnt ligands can influence this process as cwn-1
and cwn-2mutations enhance themom-2 lethal phenotype. The fact that the cwn-1;cwn-2;
mom-2 triple mutants exhibit a fully penetrant lethality indicates at least some functional re-
dundancy of Wnt ligands in embryogenesis [69].mom-2 contributes both to endodermal speci-
fication and gastrulation through partially overlapping functions [56]. Ultimately, MOM-2,
functioning through the frizzled-like receptor MOM-5, results in the phosphorylation of myo-
sin light chain to induce constriction of the apical surfaces of the Ea and Ep cells to induce
their internalization. Recent work has also uncovered a novel role for SDN-1 in embryogenesis,
where it functions in a MOM-2-dependent pathway to control the orientation of the mitotic
spindle earlier in embryogenesis (6 to 8 cell stage of development) [71].

Here we find that lin-44 also affects the internalization of the Ea and Ep cells, albeit to a less-
er extent thanmom-2. The loss of sdn-1 significantly enhances the penetrance of Ea and Ep in-
gression defects, and synergistically causes a highly penetrant embryonic lethality. Further,
genetic evidence suggests that the LIN-17 frizzled-like receptor does not function in this event,
although previous reports have generally found that LIN-44 signals through LIN-17 [72–76].

Previous work suggested that LIN-44 appears to prime cells for other Wnt-signals. For ex-
ample, in the PLMmechanosensory neurons, LIN-44 activity was required to induce asymmet-
ric localization of LIN-17 which then acted as a receptor for the EGL-20 Wnt ligand [73, 76].
One possibility is that LIN-44 also primes the Ea and Ep cells to respond to the MOM-2 ligand,
although this remains to be determined.

The use of parallel genetic backgrounds to identify SynLet interactions allowed us to imme-
diately assign a candidate gene into a genetic pathway, based on the outcome of the screen. For
instance, lin-44 RNAi knockdown strongly enhanced sdn-1 Lof phenotypes, yet showed no
synergistic phenotypes in a ptp-3mutant background. This suggests that ptp-3 somehow func-
tions in the Wnt pathway during C. elegans embryonic development. The lin-44; ptp-3 double
mutants had an increase in larval lethality over the single mutant backgrounds, it did not result
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in complete synthetic lethality as nearly 70% of the animals survived to adulthood. This indi-
cates that during larval development, ptp-3 and lin-44may actually function in separate path-
ways, which contrasts with their linear genetic relationship during embryogenesis. Our future
studies will harness sdn-1 synergistic effects to allow us to further explore the mechanisms by
which lin-44 and ptp-3 affect gastrulation in C. elegans.

Supporting Information
S1 Table. Total Results from RNAi screen. S1 Table provides a complete list of the genes tar-
geted by RNAi in our screen, along with the phenotypes observed in the different mutant back-
grounds. Because all clones were screened a minimum of two times the phenotypes observed
could be from either assay.
(XLSX)
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