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Abstract

Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing
osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater
PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear
progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice
developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased
bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from
1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months)
increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for
progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which
may have the potential to reduce the burden of osteoporosis.
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Introduction

Osteoporosis is a major public health problem that currently

affects 44 million Americans. Approximately one of every two

women and one of every four men will suffer a fracture due to

osteoporosis during their lifetimes. Eighty percent of bone density is

genetically determined while the other 20% is determined by

lifestyle and environmental factors such as diet, exercise, smoking,

and various medications [1]. The two most significant risk factors

associated with the development of osteoporosis are the peak bone

mass achieved and the rate of bone loss. Peak bone mass is

dependent on the rate of bone growth, which is highest during

infancy and during the pubertal growth spurt. Adolescence is a

particularly critical period of bone acquisition, since the rate of bone

growth is nearly double that from earlier years, and approximately

40% of the peak bone mass is acquired from periosteal expansion.

At the end of puberty, the epiphyseal growth plates fuse and linear

bone growth ends. However, bone mass continues to increase both

at the endocortical and trabecular bone surfaces and within a few

years of the age of 20, 90–95% of the peak bone mass has developed

[2]. Although the intake of calcium and vitamin D through diet and

supplements and weight-bearing exercise during puberty have

modest impacts on the augmentation of peak bone mass [3,4,5,6],

interventions with greater efficacies have yet to be developed.

Progesterone is known for its effects on the reproductive system,

and its physiological roles in skeletal metabolism remains unclear.

In clinical studies, oral contraceptives that contained progesterone

[7,8] resulted in a modest reduction of bone mineral density

(BMD) that was within one standard deviation of placebo-treated

controls in both the central and peripheral skeleton

[9,10,11,12,13,14,15]. In postmenopausal women, treatment with

a synthetic progestin (norethisterone) did not prevent bone loss

[16,17]. In contrast, treatment with cyclic medroxyprogesterone

increased spinal cancellous bone density by approximately 1.7%

during a one-year long, randomized, double-blind, placebo-

controlled trial in premenopausal women with disturbed menstru-

ation [18]. In animal models, reports of progesterone’s effects on

bone density have been variable and are influenced by estrogen,

the dose of progesterone administered, skeletal site analyzed, and

the stage of skeletal maturation [19,20].

Progesterone nuclear receptors (nPR) are present in human

osteoblasts [21,22,23] and osteoclasts [24]. A high cancellous bone

mass phenotype was reported in female progesterone receptor

knockout mice (PRKO) in the proximal tibia metaphysis at 26 weeks

of age [25]. The investigators reported that a higher bone mass was

associated with higher surface-based bone formation rates that were

assessed in 24-week-old PRKO mice compared to control animals.

Interestingly, the nPR antagonist, RU486, administered at a

dose of 10 mg/kg for four weeks prevented bone loss in three-

month-old estrogen-deficient rats [26]. However, another study

reported that RU486 did not stimulate bone formation when used

at the same dose in normal, estrogen-intact, sexually mature three-
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month-old rats [27]. Based on these data, we hypothesized that the

‘‘timing’’ of the progesterone receptor’ inhibition is critical for

augmenting bone mass. We found that compared to the WT

littermates, female mice lacking nPR (PRKO) had accelerated

bone formation and cancellous bone gain in the distal femoral

metaphysis between 1–3 months of age, and the cancellous bone

mass was maintained thereafter. In contrast, the male PRKO mice

and WT littermates had similar bone acquisition from one to six

months of age, but the PRKO male mice had less bone resorption

and less age-related bone loss compared to WT littermates from 6–

12 months of age. RU486, administered immediately after

weaning in one to three-month old female WT mice recapitulated

the rapid gain in femoral bone mass and the high bone mass

phenotype. Our findings illustrate that the nPR inhibit bone

acquisition and bone formation in female mice; and that the

temporary inhibition of nPR during the linear bone growth period

may provide a novel approach to augment peak bone mass.

Results

Bones from female and male PRKO mice and WT littermates

(C57/BL6 backgrounds) were analyzed from 4–48 weeks (1–12

months) of age. The first evaluation was performed at four weeks

of age (one month) which is pre-pubertal time point that is just

prior to rapid skeletal acquisition. The second evaluation was

performed at 12 weeks of age (three months), which is a post-

pubertal time point when the peak bone mass has been mostly

achieved, bone mass acquisition has slowed, and the mouse

reproductive system is fully developed. The evaluation was

repeated every three months until the mice were 12 months old

to record longitudinal and cortical bone growth. We also

performed cell culture experiments using 12-week-old, mice when

the maximum bone growth was observed.

Body Weights
Body weights were recorded each month. The body weight

increased with age from 15 grams to 26 grams from four to 24

weeks of age. There were no differences in body weight between

the genotypes.

Gonadal hormones or reproductive hormones
Gonadal hormone levels have been reported to be similar

between PRKO and WT mice and our results agree with the

previous findings [28,29,30,31,32]. The gonadal or reproductive

hormone levels, from reproductively mature WT and PRKO mice

were similar at three months of age (estrogen in the females: WT

52613 pg/mL vs. PRKO 61615 pg/mL; progesterone in the

female: WT 7.263.1 ng/mL vs. PRKO 11.962.9 ng/mL;

testosterone in the males: WT 5.661.0 ng/mL vs. PRKO

6.261.8 ng/mL). Follicle-stimulating hormone (FSH) levels were

similar in the female but lower in the male PRKO mice (in

females: WT 4.4 62.3 pg/mL, PRKO 3.961.6 pg/mL; in males:

WT 27.765.3 pg/mL, PRKO 6.762.7 pg/mL). Inhibin A levels

were higher in the female PRKO and were similar in the male

mice (in females: WT 58.4614.3 pg/mL, PRKO 169.1638.9 pg/

mL; in males: WT 50.466.9 pg/mL, PRKO 41.367.2 pg/mL).

Mice without the nuclear PR had higher bone mass than
WT mice

In order to evaluate if the nPR was present in bone cells, we first

examined nPR expression using western blotting on both

osteoblasts and osteoclasts that were cultured from bone marrow

cells. Uteri from WT or PRKO mice were used as positive or

negative controls for nPR expression. We confirmed that the nPR

was expressed by both osteoblasts and osteoclasts in the WT mice

and that nPR expression was absent in the PRKO mice (Figure 1).

We then studied the effects of the nPR on bone acquisition in

experiments in which female and male PRKO mice or female WT

mice were treated with a PR antagonist.

The WT female mice had the highest cancellous bone mass in

the distal femur between 1–3 months of age. Cancellous bone

volume was lost at an average rate of 1.4% per month from 4–12

months of age. In contrast, the highest cancellous bone mass (bone

volume/tissue volume ratio, BV/TV) in the distal femur was

observed at three months of age, and the mass was approximately

70% higher in the PRKO female mice than the WT mice.

Cancellous bone volume loss was observed at an average rate of

0.4% per month from 4–12 months of age. At 12 months of age,

the female PRKO mice had 600% more cancellous bone than the

WT mice (Figure 2, n = 6–8 per genotype).

In the male mice, the highest cancellous bone mass was

observed in three-month-old WT mice, and bone mass was lost at

an average rate of 1.1% per month between 4–12 months of age.

In male, the highest femoral cancellous bone mass was observed in

six-month old PRKO mice, and this cancellous bone mass was

approximately 23% higher than that of the WT mice. In the

PRKO male mice, cancellous bone volume loss occurred at an

average rate of 0.9% per month between 3–12 months of age. The

cancellous bone mass in the distal femoral metaphyses was

approximately 33% higher in the male PRKO than in the WT at

12 months of age (Figure 2).

Cortical bone thickness measured at the mid-femoral shaft

increased with age for both sexes and was significantly higher in

the female PRKO mice than the WT mice from 3–12 months of

age. There was an age-related 70% increase in cortical bone

thickness in the males between 3–9 months of age, but no

difference was observed between the PRKO and the WT mice.

The femoral length increased from approximately 13 mm to

nearly 17 mm for both WT and PRKO in both male and female

mice from one to12 months of age. However, there were no

significant changes in the femoral length measurements between

the genotype and sexes at any of the time points (Figure 2).

PR inhibition during linear growth period induced higher
bone formation

To examine the in vivo cellular activities in the PRKO female

and male mice, we performed surface-based static and dynamic

histomorphometry on three-month-old mice. We observed that

both the surface-based bone formation parameters (mineralized

surface, MS/BS and bone formation rate/bone surface, BFR/BS)

and bone formation markers (propetide of type 1 procollagen

(P1NP), and osteocalcin) were 50% higher in both the female and

male PRKO mice than the WT mice (Figures 3, n = 8–10 per

genotype) at three months of age.

To assess osteogenesis, we cultured osteoblasts derived from

three-month-old WT or PRKO mice (n = 4–6 per genotype).

Alkaline phosphatase (ALP) levels and mineralized nodule

formation (stained by alizarin red, AR) were approximately

50%–100% higher in both the female and male PRKO mice

compared to the WT-derived cultures (Figure 4). RNA was

extracted from the osteoblast cultures and tested for expression of

genes associated with osteoblast maturation, Runx2, osterix,

osteocalcin and osteopontin (OPN). The levels of expression of

these genes were four to 13-fold higher in the cultures from the

female PRKO than the WT controls (Figure 5). Gene expression

of receptor activator of NK kappa B ligand (RANKL), an

osteoclast activator, was decreased by more than 4.5-fold in both

female and male PRKO mice compared to the WT control mice.

Progesterone in Bone
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The expressions of genes associated with apoptosis (Foxo1 and

FasL) were 15,30-fold lower in both the female and male PRKO

mice than the WT mice (Figure 5).

We also performed real time RT-PCR gene arrays to measure

osteogenesis and apoptosis from RNA extracted from the tibial

cortical bone from three-month-old WT and PRKO mice (n = 3

per genotype). The female PRKO mice had significantly higher

expression of osteogenesis-related genes (Figure 6A), while both

female and male PRKO mice had decreased expression of

apoptosis-related genes (Figure 6B).

PRKO mice and nPR inhibition reduced osteoclast
maturation and bone resorption

Next, we studied the activity of primary osteoclast cells that were

extracted from the long bones of the three-month-old mice (n = 3–5

for each genotype). We observed that mature osteoclasts, measured

by TRAP+ cells, were 200% lower in male PRKO mice (Figure 7B

and 7C). There was no difference between the number of TRAP+
cells in female PRKO mice (Figure 7A and 7C). In vivo bone

resorption, measured by urinary excretion of DPD/Cr and dynamic

histomorphometric measurement of the osteoclast surface, indicated

that bone resorption was decreased in PRKO mice, when

compared to the WT mice of the same sex (Figure 7D and 7E).

PR inhibition by RU486 during linear growth period
increased bone mass

To determine if we could reproduce the PRKO high bone mass

phenotype in female WT mice, we treated female WT mice with

RU486 from one to three months of age. Cancellous bone BV/TV

in the distal femur increased by 60% in female WT mice treated

with RU486 compared to the WT control mice, and the BV/TV

was similar to that of three-month-old PRKO mice (Figure 8). The

increase in bone mass was associated with increased bone formation

measured by serum bone formation markers, P1NP and surface-

based bone formation rate, BFR/BS. Total osteoclast surface was

not altered by RU486 treatment. However, the osteoclast

maturation (TRAP+ cells formation) and function (DPD/Cr) was

decreased following RU486 treatment (Figure 8).

Discussion

We found that nPR null mice develop a higher peak bone mass

when compared to the WT mice. At three months, the cancellous

peak bone mass was 70% higher and the femoral cortical bone

thickness was 30% greater in the female PRKO than in the WT

mice. Also, the nPR null female mice demonstrated a more

significant gain in bone mass during the linear bone growth period

(between one to three months of age) compared to the WT

controls. The male PRKO mice had 23% higher cancellous bone

mass when compared to the WT when the peak bone mass was

achieved at six-month of age. Both the female and male PRKO

mice had slower rates of bone loss than the WT controls with age.

Additionally, treatment with a progesterone antagonist, RU486,

during the rapid growth period (one to three months of age)

accelerated bone mass acquisition by stimulating of bone

formation in the female WT mice. These data suggest that

Figure 1. Expression of the progesterone nuclear receptor (PR-A and PR-B) in osteoblast and osteoclast. Bone marrow cells were
derived from WT mice and differentiated into osteoblasts in an osteogenic medium with ascorbic acid and b-glycerophosphate or into osteoclasts
with mCSF and RANKL stimulation. PR-A and PR-B were detected by immunofluoresence using PR (C19) primary antibody against both PR-A and PR-B
for mouse and FITC–Conjugated secondary antibody for osteoblasts (A, yellow arrow) or Texas-red conjugated secondary antibody for osteoclasts (B,
white arrows). DAPI was used to stain nucleus in the osteoclast culture (bright blue staining). C, osteoclast culture from the PRKO mice. Both PR-A and
PR-B were expressed by WT osteoblast (A, yellow arrow) and the WT osteoclast (B, white arrows) but not by the PRKO osteoclast (C). In osteoclasts,
the PR-A and PR-B expression was mainly observed around the nucleus, but weak expression was detected in the cytoplasm as well. Original
magnification, 1006. B, Western blot analysis of the expression of PR-A (molecular weight 96 kDa) and PR-B (molecular weight about 120 kDa)
proteins in osteoblasts and osteoclasts. Whole cell lysates were obtained from osteoblast or osteoclast cultures and probed with PR (C19) antibody.
Uterus tissue lysates from the WT were used as a positive control while the uterus tissue lysates from the PRKO were used as a negative control.
GAPDH was used as a housekeeping control. All the experiments were repeated three times.
doi:10.1371/journal.pone.0011410.g001
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progesterone influences bone acquisition and that inhibition of

nPRs during rapid bone growth can augment bone mass. Like

estrogen signaling, progesterone signaling seems to have inhibitory

effects on bone acquisition during the rapid bone growth period.

The pattern or bone growth and the age-related cancellous

bone loss of PRKO mice were similar to previous reports [33,34].

Rickard et al. reported female PRKO mice developed significantly

higher cancellous bone mass in the tibial metaphyses than the WT

Figure 2. Changes in the distal femoral cancellous bone volume in the WT and PRKO mice 1 to 12 months of age. MicroCT was initiated
when the mice were one-month of age and repeated at three, six, nine and 12 months on the same animals (n = 6–8 per genotype). The cancellous bone
volume from the distal femur (BV/TV), cortical thickness of the mid-femur and femur length were recorded. Data was presented as mean 6 SD.
doi:10.1371/journal.pone.0011410.g002
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mice at six and 26 weeks of age [25]. They observed that the

surface-based bone formation rate was higher in six-month-old

PRKO mice than the WT controls. The differences between our

results and those reported by Rickard et al may be they performed

their outcome measurements at different time points using

different animals, whereas we followed the same groups of mice

over a 12-month period. Additionally, Rickard et al. reported

cancellous and cortical bone changes in the humerus and the

tibiae, while we measured bone changes in the distal femurs and

mid-femur. Since the trabeculae and cortical bone architecture

and surface-based turnover differ between the tibia and the

humeral cortical bone, this may account for the differences

observed in the two studies. Despite the differences, our

histomorphometric results at the distal femur were similar to their

observations at the proximal tibae.

Progesterone can stimulate the proliferation and differentiation

of osteoblasts in human- and rat-derived osteoblast-like cells

[35,36,37,38,39,40,41]. In a murine osteoblast cell line culture,

progesterone inhibited osteoblast apoptosis [42]. We observed that

nPR (PR-A and PR-B) were present in both osteoblasts and

osteoclasts. As in other studies published on the PRKO mice, we

found estrogen and progesterone levels were similar between

PRKO and WT mice in females and the testosterone levels were

similar between the PRKO and WT mice in males [29,31,32].

Therefore, the PRKO bone phenotype may be due to a lack of

nPR signaling rather than the changes in systemic sex hormone

levels [30,31,32,43,44]. However, it is possible that the bone

phenotype was induced by progesterone’s non-genomic effects. To

further clarify whether the PRKO bone phenotype was derived

from the loss of genomic PR signaling, we treated female mice

with an nPR antagonist, RU486. Female mice were used for this

initial RU486 intervention study because the female PRKO mice

had a significantly greater increase in bone mass than in the males.

Inhibition of the nPR with RU486 in WT mice replicated the

bone turnover changes and increased bone mass similar to what

we observed in PRKO mice. In humans and rats [45,46,47],

RU486 administration was reported to lower serum progesterone

and increase serum estradiol, cortisol, testosterone and inhibin

Figure 3. Bone formation parameters measured in the three-month-old WT and PRKO mice. Markers for bone formation, P1NP (A) and
osteocalcin (B) that were measured from serum. Surfaced-based bone histomorphometry was performed at the distal femoral metaphysis that
included (C), mineralized surface (MS/BS), and (D), bone formation rate/bone surface (BFR/BS). Data was presented as mean 6 SD.
doi:10.1371/journal.pone.0011410.g003
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levels. These hormonal changes following RU486 administration

were similar to what we observed in the PRKO mice. The high

bone mass phenotype observed in the PRKO mice and in the WT

female mice treated with RU486 was associated with increased

bone formation in comparison to the WT control group.

Interestingly, we observed some sex-related differences in the

bone turnover and bone cell activities between three-month-old

PRKO and WT mice. In the female PRKO mice, there was

accelerated bone acquisition between one to three months of age

with increased osteoblastic differentiation, osteoblastic activity,

and activation of the osteogenesis pathway, in vivo mineral

apposition rate and bone formation rates. In contrast, the male

PRKO mice had a modestly bone mass phenotype that developed

later in their life when compared to their WT littermates. The

male PRKO mice showed decreased bone resorption measured by

gene expression, in vitro osteoclastogenesis, bone resorption marker

and bone histomorphometry at three months of age. The

decreased bone resorption in the male PRKO mice may be

associated with the decrease in the systemic FSH level. There is

some evidence that gonadotropin-releasing hormones are involved

in regulating bone mass. Deletion of the FSH receptor is associated

with an osteoporotic phenotype [48]. FSH directly stimulates

osteoclast formation by enhancing tumor necrosis factor (TNF)

production from immune cells [49]. Moreover, serum FSH

increases with female reproductive aging and prior to changes in

estradiol (E2) [50]. Inhibin is a gonadal hormone synthesized by

the ovary and testis that can inhibit FSH production by the

pituitary while activin can stimulate its release [51,52,53]. In

females, both inhibin A and B increase during puberty and the

levels correlate with the levels of estradiol and FSH in the ovary

and pituitary [54]. A decrease in negative feedback from inhibin A

and/or inhibin B may explain the increase in FSH with age

[50,55]. Inhibin A was recently reported to be an endocrine

stimulator of bone mass and strength [56]. The systemic changes

in gonadotropin-releasing hormone levels may account for the sex-

related and phenotypic differences we observed in the PRKO

mice.

We performed in vitro primary cell cultures to investigate nPR

signaling during osteoblastogenesis and osteoclastogenesis in the

absence of the systemic hormonal influence. In vitro osteoclast

maturation was lower in the male PRKO mice, which suggested

that nPR had intrinsic specific effects on these bone cells. Since we

Figure 4. In vitro osteogenesis accessed in three-month-old mice. Bone marrow cells were obtained from WT female or male mice and
cultured in osteogenic conditions for 14 days or 21 days and then stained for alkaline phosphatase (ALP, A and B, top pannels) or alizarin red (AR, A
and B, lower pannels). The ALP level was quantified by absorbance at OD 410 nm (C)and normalized by total cell protein. The AR level was quantified
by absorbance at OD 490 nm (D).
doi:10.1371/journal.pone.0011410.g004
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only measured hormonal changes and cellular activities at one

time point, it is possible that we missed the ‘‘peak’’ cellular actions

for the males. Further studies to evaluate time-dependent changes

in hormone levels and cellular activities, as well as age-related

changes of PR in the WT mice are necessary.

Another interesting observation was that pro-apoptotic gene

expression, such as the expression of Foxo1 and FasL, was

significantly lower in PRKO mice compared to WT mice. These

results were measured by using an apoptosis real time RT-PCR

gene array and confirmed by regular real time RT-PCR. The

Forkhead O (Foxo 1, Foxo 3a, Foxo 4) subfamily of transcriptional

factors are critical in cell fate decisions in response to growth

factors [57,58] and they serve as a defense mechanism against

oxidative stress [57,59,60]. Sex hormones like estrogen and

androgen have pro-apoptotic effects on osteoclasts but they also

have anti-apoptotic effects on osteoblasts and osteocytes [61].

Estrogen exerts protective effects against oxidative stress in many

tissues including the heart, brain, kidney and bone mainly through

an anti-apoptotic mechanism [62,63,64,65,66,67]. Only recently

has estrogen’s anti-apoptotic effect been linked to the inhibition of

the PI3K pathway via control of Foxo 1 transcription [68]. The

PR is reported to regulate the transcriptional activities of Foxos,

especially Foxo1, which controls endometrial decidualization

[69,70]. A reduction in the progesterone concentration within

the endometrium allows the cytoplasmic fraction of Foxo1 to enter

the nucleus and bind to its direct target genes, including Bcl2 and

FasL, and induce apoptosis [71,72]. Estrogen is proposed to act

through a paracrine mechanism by up-regulating FasL in

osteoblasts which leads to the apoptosis of the pre-osteoclasts

[73]. Testosterone and 5a-dihydrotesterone, reportedly inhibit

Foxo1 and Foxo3 transcriptional activity in an androgen receptor

(AR)-dependent manner [74,75]. Androgen/AR reduces Foxo1

DNA binding and represses Foxo 1-induced cell death [76]. Our

data suggests that androgens may regulate osteoblast survival via a

PR-dependent mechanism. In the absence of PR, a decrease in

Foxo1 and FasL transcription activities may prolong the osteoblast

lifespan. FOXO proteins exist in phosphorylated and unpho-

sphorylated forms and these alternative post-translational forms

have opposing actions on anti-oxidant detoxification, DNA

repair mechanisms and cellular apoptosis. Therefore, merely

monitoring the overall mRNA levels of Foxo1 does not definitively

assess its apoptosis capabilities. The hypothesis that PR regulates

cell survival through FOXO signaling warrants additional

investigation.

In addition to its classic nuclear receptor activity, some of

progesterone’s effects are ‘‘non-genomic’’ and can be explained by

extranuclear signaling that involves rapid activation of Src/MAPK

(mitogen-activated protein kinases), phosphoinositide 3-kinases/

Akt and JaK2/Stat3 signaling pathways without the transcrip-

tional activities of the receptors [77,78]. The PR B-isoform is more

important for activating the Src/MARK signaling pathway

outside the nucleus than the A isoform of the PR [77,79,80].

Non-genomic progesterone actions can be initiated at the cell

surface by progesterone membrane-bound receptors or through

the progesterone receptor membrane component 1 (PGRMC1)

[81,82]. Activation of the MAPK pathway is the key extra-nuclear

signaling pathway for steroid regulation of cell proliferation and

survival in various cell types including mesenchymal-derived cells

(osteoblasts and osteocytes) [83,84,85]. Progesterone acts directly

on osteoblasts through extra-nuclear signaling and activation of G-

protein coupled effectors such as phospholipase C, which leads to

increased intracellular calcium and inositol trisphosphate concen-

trations [86,87]. Postnatal activation of the G-proteins signaling

significantly enhances osteoblast function and increases cancellous

bone mass [88]. Our study with RU486 did not reproduce

completely the same bone phenotype as the PRKO mice, where

we observed RU486 treatment induced less bone gain compared

to the RPKO, suggesting the possible involvement of progesterone

Figure 5. Osteoblast differentiation and apoptosis-related gene expressions in osteoblastic cultures. Bone marrow cells were extracted
from 3-month-old mice and cultured with ascorbic acid and b-glycerophosphate from WT and PRKO mice to monitor osteoblastogenesis. RNA was
extracted from the cultures on day 14. Real-time PCR was performed to monitor gene expression for osteoblast differentiation (Runx2, Osterix,
Osteocalcin, OPG and RANKL) or apoptosis (Foxo1 and FasL). *p,0.05 compared with WT of the same sex.
doi:10.1371/journal.pone.0011410.g005
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extra-nuclear signaling in the regulation of bone cell activities.

Progesterone extra-nuclear signaling in osteogenesis and osteo-

clastogenesis is currently under investigation.

This study has a number of strengths including the use of a

unique PRKO mouse that lacks a nPR, and allowed the

assessment of skeletal acquisition to be assessed and thoroughly

characterized in the absence of this nuclear receptor. However,

there are some limitations of this study. For example there is not a

conditional or selective nPR knock out mouse, so we could not

control for the effects of deficient nPR signaling in other tissues.

Figure 6. Osteogenesis and apoptosis real time RT-PCR gene arrays. RNA was extracted from the tibiae after removal of the joint and bone
marrow cells from three-month-old WT and PRKO mice and run for osteogenesis real-time RT-PCR gene array (A) or real time RT-PCR apoptosis gene
array (B). All the genes present in this figure were significantly differ from the WT of the same sex (p,0.05).
doi:10.1371/journal.pone.0011410.g006
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Figure 7. Bone resorption parameters. A, Bone marrow cells were derived from three-months old female or male mice (n = 3–4/genotype) of all
genotypes and were treated in osteoclast medium that contained mCSF and RANKL for seven days. The cells were stained with TRAP to identify the
osteoclasts (A and B, black arrows show TRAP+ osteoclast. Original magnification 46). Cells with more than three nuclei were defined as TRAP+. C,
qualification of the TRAP+ cells. D, DPD/Cr, was measured from the urine. E, Osteoclast surface was measured from the trabecular surface of the distal
femoral metaphysis. N = 8-12/genotype for DPD/Cr and in vivo bone histomorphometry measurements.
doi:10.1371/journal.pone.0011410.g007

Figure 8. Bone mass and bone formation changes with RU486 treatment. One month-old female WT mice were treated with vehicle or
RU486 (500 mg/d, 5x/week for two months). MicroCT was performed at the distal femurs to measure the cancellous bone volume (A). Bone formation
was measured in either serum (P1NP, B) or at the distal femurs by surface-based bone histomorphometry (bone formation rate/bone surface, BFR/BS;
C). Bone resorption was measured in the urine (DPD/Cr, D), at the distal femurs by surface-based bone histomorphometry (osteoclast surface, Oc.S/
BS; E) and from bone marrow osteoclastic cultures (TRAP+, F). *p,0.05 compared with WT.
doi:10.1371/journal.pone.0011410.g008
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Other investigators have previously reported on the reproductive

and neurobiological aspects of the PRKO mice

[28,29,30,31,32,44,89,90]. We chose to use RU486 since it was

the only pharmacological compound that was commercially

available to block nPR. Because RU486 is not PR selective and

it is also a partial GR antagonist, this may have confounded our

observations. We are not advocating for the use of RU486 to

prevent or treat osteoporosis, as it also acts as an anti-cortisol drug,

which may induce an Addision-like disease with prolonged use.

Another concern involving RU486 is its potential detrimental side

effects, including the increased risk for endometrial cancer.

However, despite the toxicity of RU486, we evaluated if a very

short treatment regimen during skeletal modeling would augment

bone mass. Additional studies with more selective nPR inhibitors is

now warranted to further evaluate our preliminary findings.

In conclusion, mice that lack functional nPR acquire greater

bone mass than WT controls. The absence of nPR is associated

with increased bone formation in vivo and osteogenesis in vitro

compared to age-similar controls. The high bone mass phenotype

was more pronounced in the female PRKO mice than the males.

Selective inhibition of the nPR with RU486 in female mice,

partially reproduced the higher bone mass phenotype observed in

the PRKO female mice. These data suggest that selectively

inhibition of the nPR with a PR selective modular during skeletal

acquisition may be a potential approach for augmenting bone

mass. Further investigation of the roles of PR signaling in bone

remodeling is needed.

Materials and Methods

Generation of the mice and experimental protocol
The PRKO breeding pairs were obtained from a research

group from Dr. Judith Turgeon’s laboratory at University of

California, Davis. The heterozygous breeding pairs were used to

generate WT, heterozygous and homozygous mice for the study.

All animals were treated according to the United States

Department of Agriculture (USDA) animal care guidelines with

the approval of the UC Davis Committee on Animal Research.

Mice were weaned at three weeks of age and genotyped using the

following primers: P1, 59-TAG ACA GTG TCT TAG ACT CGT

TGT TG-39; P3, 59-GAT GGG CAC ATG GAT GAA ATC-39;

and N2, 59-GCA TGC TCC AGA CTG CCT TGG GAA A-39,

which were used for genotyping in previous studies [25,29,32,43].

MicroCT measurements
Repeated in vivo microCT scans were performed in groups of

mice (n = 6–8 per genotype) from all the genotypes between 1–12

months of age. The right distal femur and the mid-femur from

each animal was scanned and measured using the VivaCT 40

(Scanco Medical, Bassersdorf, Switzerland), with a voxel resolution

of 10 mm in all three spatial dimensions. We used a monoenergetic

(70 KeV) X-ray sources that was reported to be safe for both

structural bone endpoints and bone marrow cell viabilities in small

animals [91]. The lengh of the femur was measured from a two-

dimensional scout view image prior to each scan. We evaluated

200 slices, which were initiated approximately 0.2 mm away from

the distal end of the growth plate. The slides covered a total

metaphyses tissue volume of 2–3.5 mm3 for each scan and were

used to obtain the cancellous bone volume/total volume (BV/TV)

and cortical bone thickness at the mid-femoral region [92,93,94].

Anti-nPR treatment with RU486
A separate group of one-month-old female WT mice, (n = 6),

were treated with either RU486 (500 mg/mouse, subcutaneous

injection, 3x/week) or vehicle (sesame oil) for two months. Mice

were sacrificed at three months of age (two months post-

treatment). Repeated in vivo microCT scans were performed at

one month and three months using the same methods as above.

Biochemical measurements
We collected serum from all the mice that we used for cell

culture and bone histomorphometry to measure biochemical

markers of bone formation. Serum levels of procollagen I N-

terminal propeptide (P1NP) (Immunodiagnostic Systems Inc.,

Fountain Hills, AZ), osteocalcin (Biomedical Technology,

Stoughton, MA), urine deoxypyridinoline (DPD/Cr) (Quidel

Corporation, San Diego, CA) and gonadal and reproductive

hormones (P, E2, FSH and inhibin A, ALPCO Diagnostics) were

determined using the enzyme-linked immunosorbent assay

(ELISA). The manufacturer’s protocols were followed and all

samples were assayed in duplicate. A standard curve was

generated from each kit and the absolute concentrations were

extrapolated from the standard curve. The coefficients of

variations (CVs) for inter-assay and intra-assay measurements

were less than 10% for all assays and were similar to the

manufacturer’s references [92,93,94].

Bone histomorphometry
To obtain the surface based bone turnover measures, groups of

three-month-old mice from all the genotypes (n = 6–8/genotype)

or RU486 treated WT mice were sacrificed. These mice were

injected with 20 mg/kg alizarin red and 10 mg/kg calcein seven

and two days before sacrifice. The right distal femurs were

removed from each mouse and fixed in neutral phosphate-

buffered formaldehyde, dehydrated in graded concentration of

alcohol, embedded undecalcified in methyl methacrylate and

sectioned using a microtome (Leica/Jung 2255). Bone histomor-

phometry was performed using a semi-automatic image analysis

system (Bioquant Image Analysis Corporation, Nashville, TN)

linked to a microscope that was equipped with transmitted and

fluorescent light. The analyses were performed in the secondary

spongiosa of the distal femurs, which included the trabecular area

between 100 mm to 300 mm distal to the growth plate and

excluding the cortex. Bone turnover measurements included

single- (sL.Pm) and double-labeled perimeter (dL.Pm), interlabel

width (Ir.L.Wi), osteoclast number and perimeter. These indices

were used to calculate the mineralized surface (MS/BS), mineral

apposition rate (MAR), surface-based bone formation rate (BFR/

BS) and osteoclast surface (Oc.S/BS) [94,95,96].

Primary osteoblast culture and assays
The tibia and the left femur bone marrow cells were harvested

from the femurs of three-month old WT or PRKO mice from both

sexes. These bones and the serum from these mice were also used

for bone histomorphometry and bone biochemical marker

measurements. The cells were flushed out and plated at 36106

in 6-well plates in primary medium with phenol red free a-MEM,

10% fetal bovine serum (FBS) and 1% antibiotics. At day 5, the

cells were replenished with the secondary medium containing all

the ingredients of the primary medium plus 50 mg/ml ascorbic

acid and 10 mM b-glycerophosphate. The cell cultures were fixed

in 10% neutral buffered formalin on days 14 and 21, and each well

was assayed for alkaline phosphatase (ALP) activity and mineral-

ization (alizarin red staining). ALP activity was determined by

staining the cells with a solution consisting of equal parts of p-

nitrophenol phosphate (Sigma 104) and alkaline buffer solution

(Sigma 221) [97]. All procedures were repeated in quadruplicate.
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Osteoclast culture
Bone marrow cells were collected from three-month-old WT or

PRKO mice as described above. For the RU486 experiment,

three-month-old female WT mice (n = 3/group) were treated with

RU486 (500 mg/mouse, subcutaneous injection, 3x/week) for 1

week. Bone marrow cells were collected from the femurs. Cells

were cultured in 24-well plates at 16106/well with 10 ng/ml

macrophage colony-stimulating factor (M-CSF). After two days,

non-adherent osteoclast precursors were transferred to a new plate

and maintained in aMEM, 10% FBS, 101 ng/ml m-CSF, 50 ng/

ml RANKL. For the tartrate-resistant acid phosphatase (TRAP)

assay, the cells were stained for TRAP using the Sigma Acid

Phosphatase Leukocyte Kit according to the manufacture’s

instructions. Multinucleated (more than three nuclei per cell)

TRAP+ cells, identified by a dark purple red color, were

considered mature osteoclasts. All procedures were repeated in

quadruplicate.

Western Blots/Antibodies:
Protein lysates were obtained from osteoblast or osteoclast

culture in WT or PRKO mice in cold RIPA buffer. Debris was

removed by centrifugation and the protein concentration was

measured by the BioRad DC kit (Bio Rad). Immunoprecipitates

were analyzed by SDS-PAGE and western blot analyses using

standard conditions with the antibody against PR (PR C-19),

Santa Cruz Biotechnology). Immune complexes were visualized

following incubation with horseradish peroxidase–conjugated

secondary antibody. Protein bands were detected with chemilu-

minescence (ECL) detection system (Amersham Biosciences).

Quantification of the intensity of the bands in the autoradiograms

was performed using a Kodak imaging system and analyzed by

SCION IMAGE. Normalization was performed with the

glyceraldehydes 3-phosphate dehydrogenase (GAPDH) antibody.

RNA preparation and real-time RT-PCR
Total RNA was extracted from cell culture or from tibiae. After

removal of the joint and bone marrow, the total RNA from bone

was isolated using a modified two-step purification protocol

employing homogenization (PRO250 Homogenizer,

10 mm6105 mm generator, PRO Scientific IN, Oxford CT) in

Trizol (Invitrogen, Carlsbad, CA) followed by purification over a

Qiagen RNeas column (Qiagen, Valencia, CA). PCRs were run 3–

5 times for individual samples in each group. Real-time reverse-

transcript (RT) PCR was carried out on ABI Prism 7300 (Applied

Bioscience, Foster City, CA). Primer sets for real-time RT-PCRs

were purchased from SABioscience (Frederick, MD). All the test

genes were expressed relative to a control gene, b-actin or

GAPDH. The results were expressed as fold changes from WT

group, where fold changes = 22DDCt. Osteogenesis and apoptosis

real time RT-PCR gene arrays (n = 3 per genotype) were

purchased from SABioscience (Frederick, MD). There were 96

genes (wells) for each array including test genes, house keeping, no

primer and no cDNA controls (detailed gene information can be

found at http://www.sabiosciences.com/RTPCR.php). We ex-

cluded genes that had Ct values of 36 or more cycles as low

expression levels can result in large-fold changes, but the

differences were not significant. After these exclusions, 71 genes

remained on the osteogenesis RT-PCR arrays, and 70 genes were

left on the apoptotic PCR arrays. Gene expressions that were

significantly differed from WT were presented in this report.

Statistics
The means and standard deviations were calculated for all

parameters from all groups. Repeated measures analysis of

variance (ANOVA) was used to evaluate parameters derived from

repeated in-vivo micro-CT scans such as cancellous bone volume

(BV/TV), cortical thickness (Ct,Th) and femoral length and

Bonferroni post-tests were used to compare time (age)-dependent

changes within the same sex or between WT and PRKO at the

same time point. Peak bone mass was defined as the highest BV/

TV value obtained that was significantly different from baseline.

For the measurements collected in three-month-old mice (bone

markers, cell culture assays, bone histomorphometric parameters),

two-way ANOVA was used to invest the main effects of sex,

genotype and their interactions. Bonferroni post-hoc tests were

used to make comparisons between the groups (SPSS Version 12,

SPSS Inc., Chicago, IL; GraphPad Prism, La Jolla, CA). The real

time RT-PCR findings were expressed as fold changes from the

WT. Unpaired t-test was used to detected difference between

PRKO and WT mice within the same sex. Differences were

considered significant at p,0.05.
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