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Background: Ferroptosis is a form of iron-dependent cell death with increased free iron and massive lipid 
peroxidation. The discovery of ferroptosis offers insights into hepatocellular carcinoma (HCC) treatment. 
However, post-transcriptional regulation mechanisms of ferroptosis in HCC remain to be elucidated. The 
present study explored ferroptosis-related genes and their post-transcriptional regulation mechanisms in 
HCC.
Methods: A ferroptosis score was computed in The Cancer Genome Atlas (TCGA) cohort via gene 
set variation analysis (GSVA), and ferroptosis-related genes were screened by differential expression and 
correlation analyses. CircRNA/miRNA-mediated ferroptosis-related genes were predicted, and associations 
of ferroptosis-related genes with m1A/m5C/m6A regulators were analyzed. Immune cell infiltrations were 
inferred via CIBERSORT. NUDCD1 expression was examined in L-02, SMMC7721, and HepG2 cells via 
real time quantitative polymerase chain reaction (RT-qPCR) and western blots. After NUDCD1 was silenced, 
cell viability, glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) expression, and oxidized 
glutathione/glutathione (GSSG/GSH) and glutathione (GSH) levels were detected in SMMC7721 and 
HepG2 cells.
Results: The ferroptosis score was linked to poor overall survival (OS) of HCC, which was independent 
of other clinicopathological parameters. Ten ferroptosis-related genes were determined, namely UGT1A6, 
ATP6V1C1, MAFG, NUDCD1, PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2, which were 
post-transcriptionally regulated by circRNA/miRNA and m1A/m5C/m6A modifications in HCC. Most 
were significantly linked with most immune cell compositions within the immune microenvironment, 
and contributed to undesirable clinical outcomes. NUDCD1 was up-regulated in HCC cells, and its loss 
facilitated the ferroptosis of HCC cells.
Conclusions: Overall, our findings determined ferroptosis-related genes post-transcriptionally regulated 
by circRNA/miRNA and m1A/m5C/m6A RNA modifications, and experiments demonstrated that loss of 
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Introduction

Liver cancer is the third leading cause of cancer death 
worldwide in 2021 (1). Hepatocellular carcinoma (HCC) 
is the most common primary liver cancer (2). Despite the 
expanded implementation of resection and liver transplant 
globally, approximately 50–60% of HCC patients will 
eventually receive palliative therapy (3). Systemic molecular 
therapy has become the mainstay treatment for advanced-
stage patients. It has been exciting time in the systemic 
therapy field for HCC. Sorafenib as single agent available 
for decades has limited survival benefits (4). Additionally, 
immunotherapy is revolutionizing the management of 
HCC (5). Despite this, only a minority of patients benefit 
from immunotherapy (6), and novel therapeutic strategies 
are therefore urgently required.

Successful circumvention of cell death regulation 
is the hallmark of tumorigenesis, leading to unlimited 
replication and immortality of cells. Ferroptosis is a form 
of iron-dependent cell death with increased free iron 

and massive lipid peroxidation. It is morphologically, 
genetically, and biochemically different from other types 
of cell death (apoptosis, necroptosis, pyroptosis, etc.) (7). 
The discovery of ferroptosis offers insights into cancer 
research. Dysregulated metabolic pathways and impaired 
iron homeostasis participate in mediating the progression 
of HCC through ferroptosis (8). Accumulated evidence 
demonstrates that ferroptosis is post-transcriptionally 
regulated in cancer cells (9). Circular RNAs (circRNAs) 
are a class of non-coding RNA molecules with tissue- or 
cancer-specific expression patterns (10). Most exert crucial 
functions in cancer development and progression via 
varying mechanisms of action, and have potential clinical 
implication and utility (11). Several circRNAs have been 
experimentally verified to participate in the ferroptosis of 
HCC cells. For instance, circ0097009 serves as a competing 
endogenous RNA to mediate the expression of SLC7A11, 
which is a critical regulator of ferroptosis, through sponging 
miR-1261 in HCC (9). CircIL4R attenuates ferroptosis in 
HCC via modulating miR-541-3p/glutathione peroxidase 
4 (GPX4) signaling (12). Modifications of mRNAs mainly 
include N1-methyladenosine (m1A), 5-methylcytosine 
(m5C), and N6-methyladenosine (m6A), which form the 
epitranscriptome (13). The modification of m1A affects the 
first nitrogen atom of the adenine base and is positively 
charged under physiological conditions, which is deposited 
via “writers” (TRMT6/10C/61A/61B), erased via “erasers” 
(ALKBH1/3), and recognized via “readers” (YTHDF1/2/3 
and YTHDC1) (14). The modification m5C has long been 
analyzed as an epigenetic modification in DNA. Recently, 
m5C was found to exist in mRNA of eukaryotic cells, 
which is deposited via “writers” (DNMT1/3A/3B), erased 
via “erasers” (TET1/2/3), and recognized via “readers” 
(MBD1/2/3/4, MeCP2, NEIL1, NTHL1, SMUG1, TDG, 
UHRF1/2, UNG, ZBTB4/33/38, etc.) (15). The modification 
m6A, which involves methylation at the sixth nitrogen 
atom of RNA base A, is the most abundant internal mRNA 
modification in eukaryotic cells. It is deposited via the m6A 
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Highlight box

Key findings 
•	 Our findings identified new and yet-unrecognized regulatory 

molecular mechanisms of ferroptosis in hepatocellular carcinoma.

What is known and what is new? 
•	 Limited evidence suggests that the modifications of m1A/

m5C/m6A participate in regulating ferroptotic cell death of 
hepatocellular carcinoma. Nonetheless, mRNA modifications of 
most ferroptosis-related genes remain indistinct in hepatocellular 
carcinoma.

•	 The present study suggests that the ferroptosis-related genes 
preliminary elucidate the molecular mechanisms of HCC.

What is the implication, and what should change now?
•	 The research contributes to a better understanding of molecular 

mechanisms of ferroptosis in hepatocellular carcinoma, so we 
should shed light on the post-transcriptional regulation in 
hepatocellular carcinoma.
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methyltransferase complex (comprising METTL3/14/16, 
WTAP ,  KIAA1429 ,  and RBM15/15B ) ,  erased  v ia 
demethylases (FTO and ALKBH5), and recognized via 
binding proteins (such as YTHDF1/2/3, YTHDC1/2, and 
IGF2BP1/2/3) (16). Limited evidence suggests that the 
modifications of m1A/m5C/m6A participate in regulating 
ferroptotic cell death of HCC. For instance, hypoxia 
attenuates ferroptosis of HCC by suppressing METTL14-
triggered YTHDF2-dependent loss of SLC7A11 activity (17). 
Nonetheless, mRNA modifications of most ferroptosis-
related genes remain indistinct in HCC.

In the present study, we first screened ferroptosis-related 
genes and their post-transcriptional regulation mechanisms, 
mainly comprising circRNA/miRNA and m1A/m5C/m6A 
RNA modifications in HCC. Further analysis demonstrated 
their mechanisms in HCC. We present the following article 
in accordance with the MDAR reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-5750/rc).

Methods

Data acquisition

The circRNA microarrays (normalized series matrix files) 
of 3 paired HCC patient plasma and healthy control 
samples were acquired from the Gene Expression Omnibus 
(GEO) repository with accession number GSE166678 for 
the dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE166678) on the GPL28148 platform. The 
mRNA sequencing data (counts) and microRNA (miRNA) 
normalized sequencing data [reads per million miRNAs 
mapped (RPM)] of 374 HCC and 50 normal specimens 
were downloaded from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Data preprocessing

Because circRNA microarray data were log2 normalized, no 
data preprocessing was performed. The mRNA sequencing 
data (counts) were firstly converted into counts per million 
(CPM) values using the edgeR package (18), and then 
the mRNAs whose CPM sample mean <10 in the matrix 
were eliminated to obtain the final expression matrix for 
subsequent analysis. Normalized RPM sequencing data for 
miRNAs were log2 normalized.

Differential expression analysis

Differential expression of circRNAs or miRNAs between 
HCC and control specimens was calculated using the limma 
package (19). Meanwhile, differential expression analysis 
of mRNAs between HCC and control specimens was 
implemented with the edgeR package (18). The threshold 
was set to |fold change| >1.5 and adjusted P<0.05.

Functional enrichment analysis

By utilizing enrichGO and enrichKEGG functions of the 
clusterProfiler package (20), functional enrichment analysis 
for Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways of differentially expressed 
mRNAs was implemented on the basis of hypergeometric 
distribution. To prevent a high false discovery rate (FDR) 
in multiple tests, the q-value was also computed for FDR 
control.

Gene set enrichment analysis (GSEA) is a reliable 
approach for inferring biological functions of a specific gene 
set through calculating the overlapped previously defined 
gene sets (21). In accordance with the median expression 
value of each ferroptosis-related gene, HCC samples 
were classified into high- and low-expression groups. The 
differences in GO biological process terms and KEGG 
pathways were compared between groups.

Development of a ferroptosis score and screening 
ferroptosis-related genes

The ferroptosis gene set (comprising FANCD2, NCOA4, 
TFRC, PHKG2, HSBP1, ACO1, FTH1, STEAP3, NFS1, 
IREB2, HMOX1, MT1G, ACSL4, AKR1C1, AKR1C2, 
AKR1C3, ALOX15, ALOX5, ALOX12, CARS1, CBS, 
CISD1, CS, DPP4, GPX4, HMGCR, LPCAT3, FDFT1, 
ACSL3, PEBP1, ZEB1, SQLE, FADS2, ACSF2, PTGS2, 
ACACA, GCLC, SLC7A11, KEAP1, NQO1, ABCC1, 
CHAC1, GSS, GCLM, NFE2L2, GLS2, SLC1A5, GOT1, 
G6PD ,  PGD ,  ATP5MC3 ,  CD44 ,  HSPB1 ,  CRYAB , 
RPL8, SAT1, TP53, EMC2, AIFM2, and NOX1) was 
acquired from previously published literature . The 
ferroptosis score was computed utilizing the gene 
set variation analysis (GSVA) package on the basis of 
expression profiling of the ferroptosis gene set (22).  
Through the psych package, correlation analysis of the 
ferroptosis score with differentially expressed mRNAs was 
performed. In accordance with the correlation coefficient, 

https://atm.amegroups.com/article/view/10.21037/atm-22-5750/rc
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the top 10 genes were selected as ferroptosis-related genes.

Prediction of circRNA-miRNA and miRNA-mRNA 
relationships

The circRNA and miRNA pairs were predicted using 
the Starbase database (http://starbase.sysu.edu.cn/) (23). 
Meanwhile, miRNA-mRNA relationships were predicted 
through the miRMap (http://cegg.unige.ch/mirmap) (24), 
miRanda (http://www.microrna.org) (25), miRDB (http://
mirdb.org) (26), TargetScan (targetscan.org) (27), and 
miTarBase (http://miRTarBase.cuhk.edu.cn/) (28) databases. 
An miRNA-mRNA relationship pair in at least 4 databases was 
finally determined. The circRNA-miRNA-mRNA networks 
were established by applying the Cytoscape software (29).

Associations of ferroptosis-related genes and m1A/m5C/
m6A regulators

The regulators of m1A/m5C/m6A RNA modifications were 
acquired from previously published literature (30). Pearson 
correlation was carried out to estimate the associations of 
ferroptosis-related genes and m1A/m5C/m6A regulators 
across HCC.

Immune cell infiltration analysis

The CIBERSORT approach (http://cibersort.stanford.
edu/) (31) was applied to characterize cell compositions of 
HCC and normal tissues on the basis of mRNA expression 
profiling. The leukocyte gene signature matrix LM22 
was utilized as a reference set, comprising 547 genes that 
distinguished 22 human hematopoietic cell populations (7 T 
cell types, naïve and memory B cells, plasma cells, NK cells, 
and myeloid subsets). Samples with CIBERSORT P<0.05 
were used for subsequent analysis.

Cell culture and transfections

L-02, SMMC7721, and HepG2 (China Center Type 
Culture Collection) cells were grown in Dulbecco’s 
modified Eagle’s medium (DMEM) plus 10% fetal bovine 
serum (Gibco, USA), 100 U/mL penicillin, and 0.1 mg/mL 
streptomycin at 37 ℃ with 5% CO2. To silence NUDCD1 
expression, SMMC7721 and HepG2 cells were transfected 
with 100 nM small interfering RNA (siRNA) of NUDCD1 
or scramble siRNA for 48 h using Lipofectamine 2000 
(Sigma-Aldrich, USA).

RT-qPCR

Total RNA from L-02, SMMC7721, or HepG2 cells 
was extracted with Trizol reagent (Solarbio, China). 
Subsequently, RNA was converted to cDNA, followed by 
RT-PCR (Takara, Japan). The primer sequences included: 
NUDCD1, 5'-AAAACCACGAGAGGTGTTTCG-3' 
(forward), 5'-CTGACAAGGTAACCCAGGTAGA-3' 
(reverse); GAPDH, 5'-CTGGGCTACACTGAGCACC-3' 
(forward), 5'-AAGTGGTCGTTGAGGGCAATG-3' 
(reverse). The relative expression was computed via the 2-ΔΔCt 
approach with GAPDH as an internal control.

Western blot

Total protein from L-02, SMMC7721, or HepG2 cells 
was extracted using a protein extraction kit (Solarbio, 
China). The protein concentration was quantified with the 
Bradford approach. Protein samples (50 μg) were separated 
via denaturing sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis, followed by transference onto polyvinylidene 
fluoride membranes. Membranes were blocked by 5% 
skim milk then incubated with primary antibodies targeting 
NUDCD1 (1/5,000; ab126902; Abcam, USA), GAPDH 
(1/5,000; ab199553), GPX4 (1/2,000; ab252833), and ferritin 
heavy chain 1 (FTH1) (1/2,000; ab75972), followed by a 
secondary antibody. Protein bands were developed with an 
enhanced chemiluminescence reagent.

Cell viability assay

Cell viability was assayed with Cell Counting Kit-8 (CCK-8) 
(Dojindo, Japan). SMMC7721 or HepG2 cells were seeded 
onto a 96-well plate and maintained for 0, 24, 48, 72, and 
96 h. Subsequently, 10 µL CCK-8 solution was added to 
each well. The absorbance values at 450 nm were quantified 
with a microplate reader.

Glutathione persulfide (GSSG)/glutathione (GSH) assays

GSSG and total GSH levels were measured in the 
supernatants of SMMC7721 or HepG2 cells in accordance 
with the manufacturer’s protocol of corresponding kits 
(Nanjing Jiancheng Bioengineering Institute, China).

Statistical analysis

Data are displayed as mean ± standard deviation . 

http://mirdb.org
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Differences between groups were compared with Student’s 
t-test, the Wilcoxon test, or one-way analysis of variance 
(ANOVA). Overall survival (OS), disease-specific survival 
(DSS), disease-free survival (DFS), or progression-free 
survival (PFS) were determined via the survival package. 
Correlations between variables were evaluated with the 
Pearson correlation test. All statistical analyses were 
implemented with R (version 3.6.3).

Results

Screening differentially expressed circRNAs, miRNAs, and 
mRNAs between HCC and control specimens

We acquired circRNA microarrays of 3 paired HCC patient 
plasma and healthy control samples from the GSE166678 
dataset. According to the threshold of |fold change| >1.5 
and adjusted P<0.05, 5,924 up-regulated circRNAs and 
9,675 down-regulated circRNAs were found in HCC 
compared to control specimens (Figure 1A,1B). Figure 1C 
lists the top 20 up- and down-regulated circRNAs. We 
also acquired the mRNA and miRNA sequencing data of 
374 HCC and 50 normal specimens from TCGA database. 
With the same threshold, we determined 102 up-regulated 
and 127 down-regulated miRNAs in HCC compared 
with controls (Figure 1D,1E). The top 20 up- and down-
regulated miRNAs are separately displayed in Figure 1F. 
Additionally, 2,003 mRNAs were up-regulated and 1,344 
were down-regulated in HCC compared with controls 
(Figure 1G,1H). A heatmap was used to visualize the top 
up- and down-regulated mRNAs (Figure 1I). Differentially 
expressed mRNAs participated in metabolic processes 
(Figure 1J) as well as tumorigenic pathways (Figure 1K; 
pathways in cancer).

Development of the ferroptosis score and screening 
ferroptosis-related genes

Using the GSVA approach, we computed the ferroptosis 
score for HCC on the basis of the ferroptosis gene set. 
With the median value of the ferroptosis score, we classified 
HCC patients into high- and low-ferroptosis score groups. 
Subsequently, we evaluated the survival difference between 
groups. Compared with the low-ferroptosis score group, 
a worse OS outcome was observed in the high-ferroptosis 
score group (Figure 2A). Univariate and multivariate cox 
regression analyses were conducted to investigate the 
associations of ferroptosis score and clinicopathological 

parameters with the OS of HCC cases. As illustrated in 
Figure 2B, ferroptosis score, pathological stage, T stage, and 
M stage were significantly linked to poorer OS. Further 
analysis demonstrated the independency of ferroptosis score 
in the OS of HCC cases (Figure 2C). Correlation analysis of 
ferroptosis score with differentially expressed mRNAs was 
conducted. In accordance with the correlation coefficient, 
the top 10 ferroptosis-related genes were determined, 
comprising UGT1A6, ATP6V1C1, MAFG, NUDCD1, 
PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2 
(Figure 2D).

Ferroptosis-related genes regulated by circRNA-miRNA 
networks

Through the miRMap, miRanda, miRDB, TargetScan, 
and miTarBase databases, we predicted miRNA-mRNA 
relationships. Relationship pairs that appeared in at 
least 4 databases were finally determined. As a result, 
we obtained 944 pairs of down-regulated miRNAs and 
up-regulated mRNAs (Figure 2E) as well as 974 pairs 
of up-regulated miRNAs and down-regulated mRNAs  
(Figure 2F). Meanwhile, we acquired 3493 pairs of up-
regulated miRNAs and down-regulated circRNAs as well 
as 2847 pairs of down-regulated miRNAs and up-regulated 
circRNAs. Through integrating circRNA-miRNA and 
miRNA-ferroptosis-related mRNA pairs, we established 2 
networks (up-regulated circRNA/down-regulated miRNA/
up-regulated ferroptosis-related mRNA, Figure 2G;  
and down-regulated circRNA/up-regulated miRNA/
down-regulated ferroptosis-related mRNA, Figure 2H). 
Altogether, the above data unveiled ferroptosis-related 
genes regulated by circRNA-miRNA networks.

Ferroptosis-related genes regulated by m1A/m5C/m6A 
modifications

We further investigated the post-transcriptional regulatory 
mechanisms of ferroptosis-related genes by mRNA 
modifications. UGT1A6, ATP6V1C1, MAFG, NUDCD1, 
AIFM2, CTSA, and CTNND2 exhibited positive associations 
with most m1A, m5C, and m6A regulators (Figure 3A-3C). 
Meanwhile, PPP1R1A and TSKU were negatively correlated 
with most m1A, m5C, and m6A regulators. CTSB was 
positively or negatively correlated with several m1A, m5C, 
and m6A regulators. Altogether, these ferroptosis-related 
genes were post-transcriptionally regulated by m1A/m5C/
m6A modifications. Their mRNA expression was compared 
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between HCC and normal samples. AIFM2, ATP6V1C1, 
CTSA, MAFG, NUDCD1, and UGT1A6 displayed up-
regulated expression in HCC compared with normal 
samples (Figure 3D). Meanwhile, CTSB, PPP1R1A, and 
TSKU expression was down-regulated in HCC compared 
with controls. No significant difference in CTNND2 was 
observed between HCC and normal samples.

Associations of ferroptosis-related genes with immune cell 
compositions within the tumor microenvironment

Through employing the CIBERSORT algorithm, 22 
immune cell compositions were inferred in HCC and 
normal tissues (Figure 4A). There were marked differences 
in most immune cell compositions between HCC and 
normal tissues (Figure 4B,4C). Specifically, HCC tissues 
exhibited higher infiltration levels of resting dendritic 
cells, M0 macrophages, follicular helper T cells, and 
regulatory T cells (Tregs) than normal tissues. Meanwhile, 
lower infiltration levels of naïve B cells, M2 macrophages, 
monocytes, neutrophils, and plasma cells were observed in 
HCC compared with normal tissues. Correlation analysis 
of ferroptosis-related genes with immune cell compositions 
was further evaluated across HCC tissues. The results 
demonstrated that ferroptosis-related genes exhibited 
significant associations with most immune cells, especially 

macrophages M0 and Tregs (Figure 4C-4N).

Biological processes and pathways involved in ferroptosis-
related genes

Biological processes and pathways involved in ferroptosis-
related genes (UGT1A6, ATP6V1C1, MAFG, NUDCD1, 
PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2) 
were analyzed with GSEA. The results demonstrated 
that most ferroptosis-related genes were positively linked 
to the production of molecular mediators involved in 
inflammatory responses, innervation, negative regulation of 
bone mineralization, propanoate metabolism, malaria, and 
osteoclast differentiation, and were negatively associated 
with the interferon-mediated signaling pathway, sulfate 
transport, intra-S DNA damage checkpoint, arginine 
biosynthesis, other glycan degradation, and ribosome  
(Figure 5A-5T).

Prognostic implication of ferroptosis-related genes in HCC

Among ferroptosis-related genes, up-regulated AIFM2 
expression was positively correlated with the OS and DSS of 
HCC cases (Figure 6A,6B). High CTSA or CTSB expression 
contributed to poor OS outcomes (Figure 6C,6D). Patients 
with down-regulated MAFG expression had significant 

Figure 1 Screening differentially expressed circRNAs, miRNAs, and mRNAs between HCC and control specimens. (A,B) Volcano and 
heatmap diagrams for up- and down-regulated circRNAs in HCC and healthy control samples from the GSE166678 dataset. (C) Heatmap 
of the top 20 up- and down-regulated circRNAs in HCC. (D,E) Volcano and heatmap diagrams for up- and down-regulated miRNAs in 
HCC and control samples from TCGA database. (F) Heatmap of the top 20 up- and down-regulated miRNAs in HCC. (G,H) Volcano 
and heatmap diagrams for up- and down-regulated mRNAs in HCC and control samples from TCGA database. (I) Heatmap of the top 20 
up- and down-regulated mRNAs in HCC. (J,K) The main GO terms and KEGG pathways enriched by differentially expressed mRNAs. 
circRNAs, circular RNAs; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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Figure 2 Development of the ferroptosis score, screening ferroptosis-related genes, and construction of circRNA-miRNA-mRNA 
regulatory networks. (A) OS curves between high- and low-ferroptosis score groups across HCC patients. (B,C) Forest diagrams of 
univariate and multivariate cox regression analyses of the ferroptosis score and clinicopathological parameters of patients with hepatocellular 
carcinoma. (D) The top 10 ferroptosis-related genes. (E) Venn diagram of overlapped down-regulated miRNA and up-regulated mRNA 
relationships that were predicted by the miRMap, miRanda, miRDB, TargetScan, and miTarBase databases. (F) Venn diagram of overlapped 
up-regulated miRNA and down-regulated mRNA relationships that were predicted by the miRMap, miRanda, miRDB, TargetScan, 
and miTarBase databases. (G) The network of up-regulated circRNAs (triangle), down-regulated miRNAs (diamond), and up-regulated 
ferroptosis-related mRNAs (oval). Green indicates down-regulation and orange indicates up-regulation. (H) The network of down-regulated 
circRNAs (triangle), up-regulated miRNAs (diamond), and down-regulated ferroptosis-related mRNAs (oval). Green indicates down-
regulation and orange indicates up-regulation. OS, overall survival; circRNA, circular RNA; HCC, hepatocellular carcinoma.
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Figure 3 Ferroptosis-related genes regulated by m1A/m5C/m6A modifications in HCC. (A) Heatmap of the associations between m1A 
regulators and ferroptosis-related mRNAs. Red indicates positive correlation and blue indicates negative correlation. (B) Heatmap of 
the associations between m5C regulators and ferroptosis-related mRNAs. (C) Heatmap of the associations between m6A regulators and 
ferroptosis-related mRNAs. (D) Box plot of the mRNA expression of ferroptosis-related genes in HCC and normal samples (ns, no 
significance; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001). HCC, hepatocellular carcinoma.
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Figure 4 Associations of ferroptosis-related genes with immune cell compositions within the tumor microenvironment. (A) Landscape of 22 immune 
cell compositions across HCC and normal tissues. (B,C) Box plot and heatmap of the infiltration differences in immune cell compositions between 
HCC and normal tissues. (D) Heatmap depicting the associations of ferroptosis-related genes with immune cell compositions. Red indicates positive 
correlation, while blue indicates negative correlation. (E-N) Associations of (E) AIFM2, (F) ATP6V1C1, (G) CTNND2, (H) CTSA, (I) CTSB, (J) 
MAFG, (K) NUDCD1, (L) PPP1R1A, (M) TSKU, and (N) UGT1A6 with immune cell infiltrations. *P<0.05; **P<0.01; ***P<0.001. 
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advantages in OS ,  DSS ,  DFS ,  and PFS outcomes  
(Figure 6E-6H). Additionally, lower OS, DSS, and DFS 
outcomes were observed in patients with high NUDCD1 
expression (Figure 6I-6K). The above evidence demonstrated 
the prognostic implication of ferroptosis-related genes in 
HCC.

NUDCD1 suppression attenuates the proliferative capacity 
of HCC cells

NUDCD1 is an oncogene commonly up-regulated in several 
human cancer types, but its biological implication in HCC is 
still unknown. The expression of the ferroptosis-related gene 
NUDCD1 was verified in L-02, SMMC7721, and HepG2 
cells. In comparison to L-02 cells, NUDCD1 exhibited higher 
expression in SMMC7721 and HepG2 cells (Figure 7A-7C). 
Subsequently, si-NUDCD1 was transfected into SMMC7721 
and HepG2 cells, and the results confirmed that NUDCD1 
was knocked out (Figure 7D,7E). By utilizing CCK-8, a 
cell viability assay was performed. As a result, NUDCD1 
suppression remarkably attenuated the proliferative capacity of 
HCC cells (Figure 7F,7G).

NUDCD1 suppression facilitates the ferroptosis of HCC cells

Western blots also demonstrated the knockdown of 
NUDCD1 in both SMMC7721 and HepG2 cells following 
si-NUDCD1 transfection (Figure 8A-8C). GPX4 utilizes 
GSH to protect cells from ferroptosis via eliminating 
phospholipid peroxides (32). In NUDCD1-knockout 

SMMC7721 and HepG2 cells, GPX4 expression was 
markedly attenuated (Figure 8D,8E). FTH1 is a crucial 
determinant for ferroptosis. Higher FTH1 expression was 
observed in NUDCD1-knockout SMMC7721 and HepG2 
cells (Figure 8F,8G). Additionally, in both SMMC7721 and 
HepG2 cells, NUDCD1 suppression markedly elevated 
GSSG/GSH and mitigated GSH (Figure 8H-8K). Altogether, 
NUDCD1 suppression facilitated the ferroptosis of HCC cells.

Discussion

HCC represents a global health issue, with rising incidence 
and mortality. Ferroptosis is a newly discovered form of 
iron-dependent cell death, characterized by iron-dependent 
lipid peroxidation, loss of the endogenous antioxidant 
GSH ,  and altered mitochondrial morphology (33).  
Here, we computed a ferroptosis score on the basis 
of expression profiling of the ferroptosis gene set. 
Consistent with previous research (34), the ferroptosis 
score correlated with the poor OS of HCC cases, which 
was independent of other clinicopathological parameters. 
The present study determined 10 ferroptosis-related 
genes, namely UGT1A6, ATP6V1C1, MAFG, NUDCD1, 
PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2. 
Among them, ATP6V1C1 has been identified as an iron 
metabolism-related and methylated gene in HCC (35). 
MAFG possesses prognostic implications and correlates 
with ferroptosis in bladder cancer (36). CTSB acts as a 
promoter of ferroptosis (37). AIFM2 is a GSH-independent 
ferroptotic suppressor (38). Many studies have shown that 
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Figure 5 Biological processes and pathways involved in ferroptosis-related genes. (A-T) GSEA of biological processes and pathways 
involved in (A,B) AIFM2, (C,D) ATP6V1C1, (E,F) CTNND2, (G,H) CTSA, (I,J) CTSB, (K,L) MAFG, (M,N) NUDCD1, (O,P) PPP1R1A, 
(Q,R) TSKU, and (S,T) UGT1A6.
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Figure 6 Prognostic implication of ferroptosis-related genes in HCC. (A,B) OS and DSS curves between high and low AIFM2 expression 
groups. (C,D) OS curves between high and low CTSA or CTSB expression groups. (E-H) OS, DSS, DFS, and PFS curves between high and 
low MAFG expression groups. (I-K) OS, DSS, and DFS curves between high and low NUDCD1 expression groups. OS, overall survival; 
DSS, disease-specific survival; DFS, disease-free survival; PFS, progression-free survival; HR, hazard rate; HCC, hepatocellular carcinoma.

alterations of m6A modification affect the development 
and progression of HCC, and they have important 
implications in the diagnosis, treatment and prognosis of 
HCC (39,40). Preliminary evidence suggests that m6A/
m1A/m5C regulated genes play important biological roles 
in the progression of HCC, which was associated with 
poor prognosis and survival of HCC patients (41). Further 
analysis demonstrated their post-transcriptional regulation 
mechanisms (circRNA/miRNA and m1A/m5C/m6A RNA 
modifications) in HCC.

Iron-dependent cell death of tumor cells can cause the 
release of intracellular damage-associated molecular pattern 
(DAMP), which plays a dual role in anti-tumor immunity (42).  

On the one hand, DAMP brings out immunogenic cell death 
and enhances the anti-tumor function of dendritic cells 
and CD8+T cells, while CD8+T cells can in turn secrete 
IFN- γ to promote the occurrence of iron-dependent cell 
death (43,44); On the other hand, tumor cells release special 
DAMP, which stimulate TAM to transform into M2 type 
anti-inflammatory and tumor-promoting phenotype, thus 
promoting tumor occurrence and progression (45).

The composition of the immune microenvironment is 
the result of the interaction of immune suppressor cells, 
immune effector cells, cytokine milieu, and tumor cell 
intrinsic signaling pathways (2). Ferroptosis-related genes 
were significantly linked to most immune cells, especially 
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Figure 7 NUDCD1 suppression attenuates the proliferative capacity of HCC cells. (A) RT-qPCR of NUDCD1 mRNA expression in L-02, 
SMMC7721, and HepG2 cells. (B,C) Western blots of NUDCD1 expression in L-02, SMMC7721, and HepG2 cells. (D,E) RT-qPCR for 
verifying the knockout effects of si-NUDCD1 in SMMC7721 and HepG2 cells. (F,G) CCK-8 for the cell viability of NUDCD1-knockout 
SMMC7721 and HepG2 cells. **P<0.01; ***P<0.001; ****P<0.0001. HCC, hepatocellular carcinoma; RT-qPCR, real time quantitative 
polymerase chain reaction ; CCK-8, cell counting kit-8.

M0 macrophages and Tregs. Most ferroptosis-related 
genes exhibited positive associations with the production of 
molecular mediators involved in inflammatory responses, 
innervation, negative regulation of bone mineralization, 
propanoate  metabol i sm,  malar ia ,  and osteoc las t 
differentiation, and displayed negative correlations with the 
interferon-mediated signaling pathway, sulfate transport, 

intra-S DNA damage checkpoint, arginine biosynthesis, 
other glycan degradation, and ribosome, indicative of 
the crucial functions of these ferroptosis-related genes in 
diverse biological processes and pathways. Among the 10 
ferroptosis-related genes, up-regulated AIFM2 expression 
contributed to undesirable OS and DSS; high CTSA and 
CTSB expression correlated with poor OS outcome; down-
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Figure 8 NUDCD1 suppression facilitates the ferroptosis of HCC cells. (A-G) Western blots of NUDCD1, GPX4, and FTH1 expression in 
NUDCD1-knockout SMMC7721 and HepG2 cells. (H-K) GSSG/GSH and GSH levels in NUDCD1-knockout SMMC7721 and HepG2 
cells. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. HCC, hepatocellular carcinoma.

regulated MAFG expression was positively associated 
with unfavorable OS, DSS, DFS, and PFS outcomes; and 
high NUDCD1 expression was linked to worse OS, DSS, 
and DFS outcomes, demonstrating the crucial prognostic 
implications of the above ferroptosis-related genes in HCC.

NUDCD1 is linked to Barcelona Clinic Liver Cancer 

(BCLC) staging and OS of HCC cases (46). Consistently, 
the present evidence showed the up-regulation of 
NUDCD1 expression in HCC tissues as well as the positive 
associations of NUDCD1 expression with poor OS, DSS, 
and DFS outcomes for HCC patients. NUDCD1 up-
regulation was also observed in HCC cells compared 
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with normal hepatocytes. Depletion of NUDCD1 activity 
attenuated the viability of HCC cells, indicative of the 
crucial function of NUDCD1 in HCC progression. 
Previous research reported the biological implications 
of NUDCD1 in other cancer types. For instance, loss of 
NUDCD1 mitigates the proliferation and metastases of 
pancreatic cancer (47) and colorectal cancer (48) through 
the epithelial-mesenchymal transition (EMT) process for 
non-small cell lung cancer cells through activating IGF1R-
ERK1/2 (49). GPX4, a member of the GSH peroxidase 
family, reduces lipid peroxidase in cells, thereby aiding in 
cell survival (50). Depletion of GPX4 activity enhances 
phospholipid hydroperoxide and facilitates lipoxygenase-
mediated lipid peroxidation, eventually resulting in 
ferroptotic cell death (51). GPX4 expression is markedly 
up-regulated in HCC tissues compared with controls (52), 
and is linked to HCC (53). Sorafenib, a multiple oncogenic 
kinase inhibitor, induces ferroptosis in HCC. Nevertheless, 
evidence suggests that several HCC cell lines exhibit lower 
sensitivity to sorafenib-induced ferroptosis. Suppression 
of GPX4 may sensitize HCC cells to sorafenib-induced 
ferroptosis (54). FTH1 is crucial for iron metabolism and 
ferroptosis and exhibits up-regulation in HCC cells with 
the ferroptosis inducer erastin or sorafenib treatment (55). 
In the present study, loss of NUDCD1 activity attenuated 
GPX4 expression, elevated FTH1 expression, enhanced 
GSSG/GSH levels, and reduced GSH levels in HCC cells, 
demonstrating that NUDCD1 suppression facilitated the 
ferroptosis of HCC cells. The most ferroptosis-related 
genes were positively associated with HCC and exhibited 
prognostic value in HCC (56). SLC7A11, SLC1A5, RPL8, 
CARS1 and TFRC could serve as potential biomarkers 
for drug screening and provide additional targets for the 
immunotherapy of HCC (57). The present study suggests 
that the five ferroptosis-related genes could elucidate the 
molecular mechanisms of HCC and lead to a new direction 
for the improvement of predictive and preventive for HCC.

Several limitations should be pointed out. Although we 
screened 10 ferroptosis-related genes, more experiments 
will be implemented to verify their functions in the 
ferroptosis of HCC cells. Additionally, these ferroptosis-
related genes were post-transcriptionally regulated by 
circRNA/miRNA and m1A/m5C/m6A RNA modifications, 
which should be experimentally validated in HCC.

Conclusions

Collectively, the present study determined 10 ferroptosis-

related genes (UGT1A6, ATP6V1C1, MAFG, NUDCD1, 
PPP1R1A, TSKU, CTSB, AIFM2, CTSA, and CTNND2) in 
HCC, which were post-transcriptionally regulated by circRNA/
miRNA and m1A/m5C/m6A RNA modifications. Among 
them, in vitro experiments demonstrated that suppression of 
NUDCD1 facilitated the ferroptosis of HCC cells. Altogether, 
our findings identified new and yet-unrecognized regulatory 
molecular mechanisms of ferroptosis in HCC.
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