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Abstract: The carbon market is recognized as the most effective means for reducing global carbon
dioxide emissions. Effective carbon price forecasting can help the carbon market to solve envi-
ronmental problems at a lower economic cost. However, the existing studies focus on the carbon
premium explanation from the perspective of return and volatility spillover under the framework
of the mean-variance low-order moment. Specifically, the time-varying, high-order moment shock
of market asymmetry and extreme policies on carbon price have been ignored. The innovation
of this paper is constructing a new hybrid model, NAGARCHSK-GRU, that is consistent with the
special characteristics of the carbon market. In the proposed model, the NAGARCHSK model is
designed to extract the time-varying, high-order moment parameter characteristics of carbon price,
and the multilayer GRU model is used to train the obtained time-varying parameter and improve the
forecasting accuracy. The results conclude that the NAGARCHSK-GRU model has better accuracy
and robustness for forecasting carbon price. Moreover, the long-term forecasting performance has
been proved. This conclusion proves the rationality of incorporating the time-varying impact of
asymmetric information and extreme factors into the forecasting model, and contributes to a powerful
reference for investors to formulate investment strategies and assist a reduction in carbon emissions.

Keywords: carbon price forecasting; time-varying; high-order moment; NAGARCHSK; gate recurrent
unit network

1. Introduction

Dramatic increase in greenhouse gas emissions directly leads to the aggravation of
negative environmental externality. The emission of pollutants such as carbon dioxide is a
serious threat to human health, and it is unacceptable that the pollution of this harmful gas
will continue in the foreseeable future. According to the report of the Word Bank, the global
carbon emissions in 2018 were 2.1 times the 1960 level, the per capita emissions increased
by nearly 67%, and the per capita energy consumption increased by nearly 60% (data from
author’s calculation based on the Wind database). Economic growth, CO2 emissions and
energy consumption are complementary [1,2]. Based on the scientific report released by
the National Oceanic and Atmospheric Administration (NOAA) of the United States in
2020, the global CO2 concentration was 280 ppm at the beginning of the first industrial
revolution, that is, the CO2 quality accounted for 2.8% of the global atmospheric quality. In
2017, this data increased to 400 ppm, and in 2019, it increased to 415 ppm. The continuous
growth of carbon dioxide emissions not only leads to the rise of global temperature, triggers
sea-level rise, aggravates glacier melting and other severe environmental problems, but
also threatens human health, and ultimately affects the sustainability of global economy
and human civilization. Therefore, it has become an urgent task for human society to
effectively curb the global climate problems and reduce greenhouse gas emissions.
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The establishment of carbon market is a market-oriented means for the international
community to solve climate problems and reduce pollution emissions. Based on the “Kyoto
Protocol” signed in 2005 and the “Paris Agreement” passed in 2015, the carbon allowance
assets traded in the carbon market have commodity and financial attributes, and there
exists three exclusive characteristics that cannot to be ignored compared with other capital
markets. The first is the asymmetric distribution of market returns, the tail distribution
has the characteristics of left deviation, and the skewness is negative [3–5]. The second
is the high sensitivity to policy events or external events [6]. For example, the policy
implementation of banning interterm storage of carbon quotas led to a serious decline in
European carbon price at the end of 2007; the fall in carbon price caused by the expiration
of the second phase of emission reduction in Europe at the end of 2012; the outbreak of
COVID-19 virus led to global economic downturn and triggered a sharp drop in carbon
price. The third is the time-varying characteristics of carbon price volatility [7–9]. Therefore,
the research into carbon price prediction and pricing models need to reflect the above
three indispensable characteristics. The price mechanism is the core of the carbon market
to promote emission reduction of the whole society. Consequently, studying the pricing
mechanism of the carbon market in this paper can better serve the emission reduction
practice of entity enterprises and create a healthier social environment.

The structure of this paper is as follows: the second part is the literature review; the
third section analyzes the econometric model; the fourth section is the empirical analysis
and discussion; the last part summarizes the conclusion and the prospects.

2. Literature Review

Existing research methods on carbon price forecasting mainly focus on two aspects:
one is the volatility modeling technology and the other is artificial intelligence-integrated
technology.

2.1. Volatility Modeling Technology

As for volatility modeling technology, Byun and Cho [10] pointed out that the GARCH
family model could better fit the carbon future returns than other volatility models. Con-
ducting the asymmetric threshold GARCH model, Chevallier [11] concluded that the stock
and bond market variables could effectively explain the asymmetric volatility of carbon fu-
ture returns. Based on the autoregressive, comprehensive, moving average model, Dhamija
et al. [12] found that the asymmetric ARIMA-GARCH model can fit the conditional return
and variance of European carbon price. Using the multi-GARCH model, Oberndorfer [13]
stated that the EUA (European Union Allowance, EUA) price was positively correlated with
the electricity stock return, and the stock market return did not cause EUA market volatility.
Based on the ARCH regression model, the crude oil, natural gas and coal returns have
a significant effect on carbon price [14,15]. Testing the EGARCH model, Chevallier [16]
maintained that the abnormal events, policy factors, compliance events and uncertainty
after the Kyoto Protocol are evidence of the instability of carbon price. The time-varying
GARCH model with generalized nonlinear parameters can effectively fit the carbon price
for prediction [16]. Designing bilaterally modified variables, Ren et al. [17] point out that
the AR-GARCH model can reveal the impacts of regulatory update events on the Chinese
carbon market. Employing the dynamic nonlinear (DMA) model, Koop et al. [18] found
that the pricing precision of the DMA model is superior to the time-varying parameter
regression model (TVP). The European carbon price is characterized by heterogeneous
volatility, the prediction performance of the GARCH model based on Markov regime
switching is better than other GARCH models [19].

2.2. Artificial Intelligence-Integrated Technology

The volatility modeling technology represented by the GARCH family model usually
requires the carbon price being subject to strict parameter assumptions and tail distri-
bution, which means the application of the model has great limitations [18]. Artificial
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intelligence-integrated technology with the advantages of mapping nonlinear relations and
without considering the tail distribution has been widely used in carbon price forecasting
research. The BP neural network model with high-frequency data has a more accurate
prediction performance on the CER (Certified Emission Reduction, CER) price than the
GARCH family model [20]. Tiwari et al. [21] found that the time-varying Markov switching
copula model can provide evidence of a time-varying tail-dependence structure, and AI
(artificial intelligence) is an effective means to capture carbon price. The finite distributed
lag (FDL) model based on a genetic algorithm (GA) has better performance on predicting
carbon price than other GARCH models [22]. Based on the idea of ensemble learning,
the EMD model (Empirical Mode Decomposition, EMD) is used to extract the intrinsic
mode function (IMF) that represents the different coexisting oscillation modes of carbon
series [23–25], and then a hybrid carbon price forecasting model integrating the variational
mode decomposition (VMD) and optimal combination forecasting model (CFM) is con-
structed, the results suggesting the superiority of the proposed hybrid model for carbon
price forecasting [26,27]. Conducting the EMD method, Wang et al. [28] proposed a new
random forest-based nonlinear ensemble paradigm for carbon price prediction and proved
the model’s superiority in European carbon price forecasting. Furthermore, the hybrid
carbon price forecasting model, for example the multiobjective grasshopper optimization
algorithm model proposed by Hao et al. [29] and the wavelet least-square support vector
machine (WLSSVM) model carried by Sun et al. [30] have been proven to have strong
superiority and accuracy in carbon price prediction. Different from the prediction of EMD-
type models, the LSTM (Long and Short-Term Memory network) model does not need to
decompose the data frequency, and shows advantages in capturing the long-term lag return
characteristics based on the special gate structure of forget gate, input gate and output
gate [31,32]. The application of the LSTM model in predicting stock market index has
stronger accuracy and robustness than other exponential smooth models and the ARIMA
model [33,34]. Employing the models of ARIMA, CNN, GARCH and LSTM to extract the
linear characteristics, hierarchical data structure, long memory characteristics and volatility
characteristics of carbon return, respectively, the conclusion suggests that the hybrid model
of ARIMA–CNN–LSTM and GARCH-LSTM contribute a lower prediction error [35,36].
Based on similar modeling ideas, the integrated models of EMD–LSTM and that composed
of total average EMD with LSTM (MEEMD–LSTM) have also proven to have significant
superiority in carbon price prediction [37,38].

The above literature provides valuable references for this paper. However, the most
obvious defect is that the existing literature ignores the time-varying impact of market
asymmetric information and extreme shock factors on carbon premium from the perspective
of high-order moment (skewness and kurtosis). More importantly, the time-varying high-
order moment characteristics have been ignored. In fact, studies have proven that the
financial assets of low-order moment information cannot fully reflect the actual financial
return distribution [39]. The innovation and contribution of this study is to construct
a new hybrid carbon pricing model, NAGARCHSK-GRU, that reveals the time-varying
high-moment volatility characteristics of carbon price. The proposed NAGARCHSK-GRU
price-forecasting model combines the advantages of the NAGARCHSK model in parameter
estimation of the time-varying, high-order moment characteristics and the superiority
of GRU (Gated Recurrent Unit, GRU) network in nonlinear fitting and forecasting. The
purpose for integrating the models of NAGARCHSK and GRU network is to improve the
robustness and generalization ability of the proposed pricing model, and then to provide
certain technical support for market participants to capture price information and predict
carbon price.

3. Econometric Modeling

Based on the classical GARCH models, this paper first constructs constant and time-
varying, high-order moment carbon price volatility methods to estimate the parameters of
the proposed pricing model. Secondly, the multilayer GRU network model is designed to
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realize the nonlinear prediction based on the time-varying, high-order moment parameters
estimated by the NAGARCHSK model.

3.1. High-Order Moment Volatility Model
3.1.1. Constant High-Order Moment Model

The constant high-order moment model assumes that the third-order moment skew-
ness and the fourth-order moment kurtosis have no impact on the first-order moment return
of carbon price, but assumes that they are constant. The common constant high-moment
model is the GARCHSK (q1,p1;0,0;0,0) model with the constant high-order moment term.
During modeling of the carbon price, we use the AR (R) model to describe the autocorrela-
tion process of carbon price series, assuming the return series follows a first-order lag AR
®process:

Rt = ρRt−1 + h1/2
t ξt (1)

where, h1/2
t is the conditional variance of carbon return; ξt means the conditional return

item; ρ indicates the autocorrelation coefficient, and ξt ∼ N(0, 1).
For modeling the conditional variance ht process that with the characteristics of

volatility clustering and asymmetric distribution, this paper uses the GARCH model and
its derivative models to estimate the parameters of the proposed carbon pricing model. As
the first-order GARCH model can simulate the financial return volatility, we introduce the
following common forms of conditional variance based on the GARCH (1,1) model.

Conditional variance of GARCH (1,1) is:

ht = β0 + β1ε2
t−1 + β2ht−1 (2)

Conditional variance of TGARCH (1,1) is:

h1/2
t = β0 + β1|εt−1|+ β2ht−1 + β3υt−1|εt−1| (3)

Conditional variance of NAGARCH (1,1) is:

ht = β0 + β1(εt−1 + β3h1/2
t−1)

2
+ β2ht−1 (4)

where, β0 represents the constant term of the variance equation, skewness equation and
kurtosis equation; β1 and β2 denote the ARCH and GARCH term coefficients of the high-
order moment equation, respectively; ε represents the residual term; β3 means the leverage
coefficient, reflecting the impact of asymmetric information on the carbon returns; υt−1
is a dummy variable that controls the impact direction of asymmetric information, when
εt−1 < 0, υt−1 = 1;εt−1 > 0, υt−1 = 0.

3.1.2. Time-Varying High-Order Moment Model

The constant high-order moment model regards the third-order moment skewness and
fourth-order moment kurtosis as fixed constants and ignores the financial asset distribution
characterization of leptokurtosis and fat-tail caused by the market asymmetric information
and extreme factors, which make it difficult to meet the real asset volatility-modeling
requirements. Therefore, this paper considers the third-order skewness and fourth-order
moment kurtosis attributes with the exclusive features of time-varying volatility, so as to
describe the shock of market asymmetric information and policy factors on carbon price.
The specific form of the GARCHSK (q1,p1;q2,p2;q3,p3) model, considering the volatility of
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time-varying conditional variance, conditional skewness and conditional kurtosis, is as
follows: 

Rt = ρEt−1(Rt) + εt = µt + h1/2
t ξt; ξt|It−1 ∼ Fn(0, 1, st, kt)

ht = β0 +
q1

∑
i=1

β1,iε
2
t−i +

p1

∑
j=1

β2,jht−j

st = γ0 +
q2

∑
i=1

γ1,iξ
3
t−i +

p2

∑
j=1

γ2,jst−j

kt = δ0 ++
q3

∑
i=1

δ1,iξ
4
t−i +

p3

∑
j=1

δ2,jkt−j

(5)

The specific form of the NAGARCHSK (q1,p1;q2,p2;q3,p3) model with leverage effect
that considers the volatility of the time-varying, high-order moment, is as follows:

Rt = ρEt−1(Rt) + εt = µt + h1/2
t ξt; ξt|It−1 ∼ Fn(0, 1, st, kt)

ht = β0 +
q1

∑
i=1

β1,i(εt−1 + β3,ih
1/2
t−i )

2
+

p1

∑
j=1

β2,jht−j

st = γ0 +
q2

∑
i=1

γ1,iξ
3
t−i +

p2

∑
j=1

γ2,jst−j

kt = δ0 +
q3

∑
i=1

δ1,iξ
4
t−i +

p3

∑
j=1

δ2,jkt−j

(6)

where, It−1 represents the information set when the carbon return volatility reaches the time
of t − 1; Et−1(Rt) is the corresponding conditional expected return that can be obtained
steadily without risk impact under the certain It−1 information set. The form AR(1) is used
to depict the autoregressive carbon return process. Ft(0, 1, st, kt) represents the fourth-order
moment distribution type of the carbon return series based on the classical GARCH(1,1)
model, and we can obtain Et−1(ξt) = 0, Et−1(ξ

2
t )= 1, Et−1(ξ

3
t ) = st, Et−1(ξ

4
t ) = kt; st and kt

represents the skewness and kurtosis corresponding to standardized residual ξt = h−1/2
t εt.

β0, β1, β2, β3 denotes the coefficient of the conditional variance equation; γ0, γ1, γ2 repre-
sents the coefficient of the conditional skewness equation; δ0, δ1, δ2 means the coefficient
of the conditional kurtosis equation. (q1,p1);(q2,p2);(q3,p3) represents the lag order of the
conditional variance, conditional skewness and conditional kurtosis equations for captur-
ing the relationship between carbon return and its time-varying, conditional, high-order
moment term.

For estimating the parameters of the time-varying, high-order moment model (NA-
GARCHSK), the Gram–Charlier expansion of normal density function is used and truncates
it in the fourth moment. Then, the conditional probability density of the standard error can
be obtained under the information set It−1:

f ( ξt|It−1) = g(ξt)λ(ξt)/Γt

1√
2π

e−ξ2
t /2(1 + s∗t

3! (ξ
3
t − 3ξt) +

k∗t−3
4! (ξ4

t − 6ξ2
t + 3))/(1 + s∗t

3! +
k∗t−3

4! )
(7)

where Γt = 1 + s∗t
3! +

k∗t−3
4! .

Furthermore, the conditional distribution of εt is expressed as h−1/2
t f ( ξt|It−1), and

the log likelihood function is expressed as:

LF( εt|It−1,θ)= −
1
2

ln(2π)− 1
2

ln ht −
1
2

ξ2
t + ln(λ2(ξt))− ln(Γt) (8)

By maximizing the likelihood function above, the consistency estimation of the param-
eter vector can be obtained, and the parameter estimation results of the conditional mean
equation, conditional variance, conditional skewness and conditional kurtosis equations can
also be obtained simultaneously. Where θ= [β, γ, δ]′ = [β0, β1, β2, β3; γ0, γ1, γ2; δ0, δ1, δ2]

′
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is the parameter vector, representing the parameter to be estimated in the time-varying,
high-order moment, carbon price volatility model.

3.2. GRU Model

For mapping the nonlinear, time-varying, high-order moment shock of market asym-
metric information and extreme events on carbon price, this paper constructs a multilayer
GRU (Gated Recurrent Unit, GRU) model to predict and fit the carbon price with the
characteristic of the time-varying, high-order moment. Different from the special input
gate, forget gate and output gate structure of the LSTM (Long and Short-Term Memory
network, LSTM), another feedforward network structure similar to the GRU network, the
GRU model is constructed based on the gate structure of the LSTM and composed of update
gate and reset gate [40]. The GRU training structure can be showed in Figure 1.
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Figure 1. The model training structure of the GRU network.

Specifically, the update gate of GRU is combined of the input gate and forget gate of
the LSTM network, and this function is used to determine the information to be discarded
and the new information to be added. The reset gate determines the forgotten information
in the past time series, which can help to capture the short-term dependency of the finance
series. Unlike the LSTM model, which relies on the cell units to obtain the long-term
information, the GRU network gets rid of the cell state instead of the hidden state, in order
to transmit the previous information and obtain the long-term dependency. Although the
debate about the model superiority of GRU and LSTM network continues, it is generally
accepted that as an effective variant of LSTM network, the structure of the GRU network
is simpler and requires fewer parameters and training samples. Therefore, some studies
suggest that GRU is more effective than the LSTM model in solving the long dependency
problem of RNN networks [41]. According to the above GRU model diagram, the forward
propagation process of the GRU network is as follows:

Firstly, the state ht−1 transmitted from the previous network is combined with the
input xt of the current node to obtain the gate structure of the GRU network, that is, the
reset gate r and update gate z. Where σ means the activation function, which converts the
input data to a value in the range of 0–1 to act as a gating signal.

rt = σ(Wrxt + Urht−1) (9)

zt = σ(Wzxt + Uzht−1) (10)

Secondly, after obtaining the gating signal, the reset gate is used to obtain the data
after “reset”. If the element value rt in the reset gate is close to 0, it means the hidden state
element related to the reset gate should be set to 0, that is, the hidden state information of
the last time should be discarded. Further, the result of element multiplication is linked
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to the input of current time step, and the candidate hidden state h̃t is calculated by the
activation function tanh, and the element value ranges from −1 to 1. The calculation for
candidate hidden state is:

h̃t = tanh(Wxt + rtUht−1) (11)

Finally, the most critical process of training the GRU model is the update memory
stage. The update gate zt controls the forgotten information of the hidden layer ht−1 at
the previous moment, and the new hidden layer information h̃t needs to be added at the
current moment. The update gate zt is expressed as:

ht = (1− zt)ht−1 + zt h̃t (12)

It is worth noting that the value of updated gating zt is in a range from 0 to 1. The
closer the gating value is to 1, the more data there is to be remembered, while the closer it
is to 0, the more information is forgotten. The GRU model can realize data forgetting and
memory at the same time by using update gating zt, unlike the LSTM model that requires
multiple gating.

3.3. NAGARCHSK-GRU Model

The proposed hybrid carbon price forecasting model combines the advantages of
NAGARCHSK and GRU neural networks. Firstly, the NAGARCHSK model is better
than the constant high-order moment models and other time-varying, high-order moment
models in fitting the carbon price series with time-varying, high-order moment volatility
characteristics. Therefore, we select the NAGARCHSK model to estimate the time-varying
parameters of carbon price.

Secondly, we use these estimated parameters as network inputs, and use the GRU
neural network to train the time-varying, high-order moment volatility characteristics of
carbon price for improving the prediction accuracy. The basic idea of constructing the
proposed NAGARCHSK-GRU carbon-forecasting model shown in Figure 2.
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3.4. Evaluation Criteria and the Benchmark Model

For evaluating the prediction performance of the proposed time-varying, high-order
moment carbon-pricing model, this paper adopts the following criteria to measure the
model performance.

RMSE =

√
∑T

i=1 (yi − ŷi)
2

T
(13)

MAE =
1
T ∑T

i=1|yi − ŷi| (14)

MAPE =
1
T ∑T

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)



Int. J. Environ. Res. Public Health 2022, 19, 899 8 of 19

DA =
1
T ∑T−1

i=1 ai where ai =

{
1, i f (yi+1 − yi)× (ŷi+1 − yi) > 0
0, otherwise

(16)

where Y = {y1, y2, · · · , yT} represents the carbon return series; Ŷ = {ŷ1, ŷ2, · · · , ŷT}
represents the prediction return. T is a time series variable.

The values of root-mean-square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE) range from 0 to 1, and a larger value means the devi-
ation between predicted return and real return is greater, and the model performance is
worse. The correct investment direction prediction can help investors make more valuable
decisions. This paper uses DA (direction accuracy) index to measure the consistency proba-
bility of market trend and investors’ prediction direction. The larger DA value means the
predicted value of carbon return is closer to investors’ psychological expectation.

For assessing the performance of the proposed pricing model, this paper also selects
the following aggressors as the comparison benchmarks. The first one is the BP (back
propagation network) model with the advantage of nonlinear mapping. The second is
GBR (gradient boosting regression) model, which is a kind of integrated learning method.
The third is MLP (multilayer perceptron); the parameter optimization of the MLP can
improve the nonlinear mapping and carbon price-prediction accuracy. The fourth is the
RNN (recurrent neural network) model, which is an artificial neural network with a tree
structure, that has significant advantages in forecasting carbon price. The fifth is the LSTM
(long and short-term memory network) model, which is another improved structure of the
RNN model that shows superiority for solving the problems of gradient explosion.

4. Empirical Analysis and Discussion
4.1. The Data

This article selects the continuous futures contract of EUAf (European Union Al-
lowance future, EUAf) from the European Energy Exchange as the representative variable
of carbon assets. The data range from 22 June 2012 to 7 May 2021, with a total of 2274 data
samples. The sample selection rule refers to the experience of Wen et al. [42], that is, contin-
uous futures contracts with different maturity dates are connected according to the time
sequence. Based on this, the sample of this article integrates the daily settlement price of the
four futures contracts, DEC12, DEC16, DEC18 and DEC20. The reason for choosing EUAf
is that the EUAf is the largest emission reduction quota in the world. The carbon futures
trading of the European Energy Exchange accounts for about 70% of the global futures
trading, and the EUAf trading volume is larger than EUAs (European Union Allowance
spot, EUAs), the price discovery function is also relatively mature. It uses Rt to represent
the carbon assets return:

Rt = 100× (lnPt − lnPt−1) (17)

where Pt represents the carbon asset price, that is, the daily settlement price of EUAf
continuous futures contracts.

4.2. Time-Varying High-Order Moment Characteristics Estimate

The study findings shown in Table 1 concluded that the ARCH and GARCH terms of
all constant and time-varying high-order moment models are significant, indicating that
the carbon return has obvious volatility clustering, which is not only caused by the variance
shock, but also conditional skewness and conditional kurtosis, representing the impacts of
asymmetric information and extreme factors on carbon return. All the volatility leverage
coefficients β3 are negative and significant, denoting that variance volatility has obvious
asymmetry shock on carbon return, and the degree of negative impact is greater than the
positive impact. This conclusion is completely consistent with the pioneering research
results of Engle and Manganelli [43] that the negative VAR impact of the stock market is
more significant. This finding indirectly proves that carbon assets have general financial
attributes and common volatility characteristics.
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The variance impact coefficient β2 is smaller than the coefficient of the constant model,
that is, with the addition of the conditional skewness and conditional kurtosis equations,
the volatility clustering effect from the shock of variance term gradually decreases, for
example, the β2 coefficient of the GARCH, TGARCH and AGARCH models are 0.8824,
0.8875, 0.8904, respectively. When the time-varying conditional skewness and conditional
kurtosis are added, the volatility clustering coefficients of AGARCH-K, NAGARCH-K and
NAGARCHSK models are reduced to 0.8358, 0.8685, 0.7873, respectively. This conclusion
is completely consistent with Harvey’s [39] research.

This phenomenon shows that when the time-varying, high-order moment models no
longer assume the skewness and kurtosis are constants, they can effectively identify the
volatility clustering effect caused by asymmetric information and extreme shocks through
the time-varying skewness and kurtosis equation. We can say that the impact of carbon
return from the time-varying skewness and kurtosis is becoming more obvious, resulting in
the variance impact coefficient decreasing as the skewness and kurtosis coefficient increases.
This similar reason can be used to explain why the extreme impact coefficient δ2 of the
NAGARCHSK model is smaller than that of the AGARCH-K and the NAGARCH-K model.

Table 1. Parameter estimation of the high-order moment volatility model for carbon return.

Coefficient
Constant High-Order Moment Volatility Model Time Varying High-Order Moment Volatility Model

GARCH TGARCH NGARCH AGARCH-K NAGARCH-K NAGARCHSK

ρ 0.0794 (3.744) 0.0981 (4.562) 0.0916 (4.317) 0.0007 (0.011) 0.0007 (1.708) 0.0247 (0.005)
β0 0.0012 (2.985) 0.0054 (4.4745) 0.0046 (3.951) 0.0715 (4.245) 0.0000 (2.177) 0.0483 (0.001)
β1 0.1182 (7.794) 0.0899 (9.737) 0.1173 (17.87) 0.1463 (2.456) 0.1313 (6.428) 0.0587 (4.302)
β2 0.8824 (70.919) 0.8875 (191.69) 0.8904 (185.7) 0.8358 (41.65) 0.8685 (50.659) 0.7873 (2.204)
β3 −0.0632 (4.911) −0.0536 (2.442) −0.0029 (3.031) −0.003 (3.848) −0.0600 (2.964)
γ0 0.7990 (0.807)
γ1 0.0214 (2.831)
γ2 0.0198 (5.325)
δ0 0.6978 (0.012) 0.4452 (0.281) 0.0821 (0.064)
δ1 0.3063 (3.086) 0.4265 (2.821) 0.6562 (1.987)
δ2 0.5363 (3.161) 0.5698 (3.101) 0.201 (3.256)

Likelihood 5159.771 5070.972 5067.591 6469 6473 4682

Note: The bold indicates the model with the minimum maximum likelihood value and the best parameter
estimation performance; the data in brackets indicate the t-statistic of parameter estimation of each model.

Compared with the constant model and other time-varying, high-order moment
models, it should be noted that the maximum likelihood value of the NAGARCHSK model
is the lowest, as shown in Table 1, therefore, this paper chooses the NAGARCHSK model to
estimate the model parameters of time-varying conditional variance, conditional skewness
and conditional kurtosis equations of the carbon return. Figure 3 shows that the conditional
high-moment series of carbon assets have obvious volatility persistence effects, the risk
of variance, skewness and kurtosis are large, and the high-moment volatility series also
shows time-varying characteristics.
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4.3. Predicting Results Analysis

We use the NAGARCHSK model to estimate the time-varying, high-order moment
parameter characteristics that represent the shock from the asymmetric information and
extreme external impact. Then, a multilayer GRU model is constructed to map and predict
the carbon returns based on the obtained high-order moment series. The first 70% of
samples of carbon return series are selected for model training, and the last 30% of samples
for testing the prediction performance.

4.3.1. GRU Structure Construction

Input unit, output unit, number of hidden layers and hidden layer neurons are the
basic structure of a deep-learning network. The input of the carbon price forecasting
NAGARCHSK-GRU model is the time-varying conditional lagging mean, conditional
variance, conditional skewness and conditional kurtosis of carbon returns estimated by
the NAGARCHSK model, and the output is the carbon return series we need to predict.
The hidden layer is a network structure for parameter optimization and feature learning.
Fewer hidden layers may limit the learning ability of the forecasting model, which makes
it difficult to reach the optimal solution. Research has found that a neural network with
two hidden layers can already solve most problems [44]. Similarly, the designing of hidden
layer neurons is to capture and map the input data. Although more neurons can improve
the learning and generalization ability of the network, it may also consume more training
time and lead to overfitting.

For determining the appropriate the GRU network structure, based on the experi-
mental method, this paper measures the forecasting performance when the hidden layers
number is 1, 2, 3, 4, 5, 6 and the hidden layers neuron nodes are 4, 8, 16, 32, 64, 128,
respectively (as showed in Table 2). It is found that when there are two hidden layers in the
NAGARCHSK-GRU model, and the neuron nodes in both layers are 16-16, the model’s
error criteria MSE, RMSE, and MAE values are 0.0006284, 0.0250681, and 0.1399925, re-
spectively, which are the lowest of the whole experimental sample. Therefore, the network
structure of the proposed NAGARCHSK-GRU forecasting model is designed as 4-16-16-1
for training the time-varying, high-order moment carbon series.

Table 2. Performance of the proposed NAGARCHSK-GRU: hidden layers and hidden nodes.

Hidden
Layer Node

NAGARCHSK-GRU Hidden
Layer Nodes

NAGARCHSK-GRU

MSE RMSE MAE MSE RMSE MAE

1 4 0.0010592 0.0325455 0.2575152 4 4 0.0007587 0.0275444 0.1993575
1 8 0.0007156 0.0267501 0.1769118 4 8 0.0006820 0.0261152 0.1653054
1 16 0.0007580 0.0275324 0.1745386 4 16 0.0007306 0.0270302 0.1982328
1 32 0.0011345 0.0336824 0.3124025 4 32 0.0005733 0.0239427 0.1742260
1 64 0.0013580 0.0368505 0.4301757 4 64 0.0007967 0.0282252 0.2044582
1 128 0.0026156 0.0511425 0.6136194 4 128 0.0011475 0.0338750 0.2910599

Avg 0.0012735 0.0347506 0.3275272 Avg 0.0007815 0.0277888 0.2054400

2 4 0.0007035 0.0265229 0.1684342 5 4 0.0009507 0.0308342 0.2467976
2 8 0.0007153 0.0267458 0.1627419 5 8 0.0006662 0.0258103 0.1402034
2 16 0.0006284 0.0250681 0.1399925 5 16 0.0006943 0.0263491 0.1738529
2 32 0.0006848 0.0261686 0.1953299 5 32 0.0008011 0.0283045 0.2853657
2 64 0.0009183 0.0303032 0.2546803 5 64 0.0012432 0.0352584 0.2500270
2 128 0.0011984 0.0346173 0.4536587 5 128 0.0011692 0.0341942 0.3119049

Avg 0.0008081 0.0282376 0.2291396 Avg 0.0009208 0.0301251 0.2346919

3 4 0.0008391 0.0289676 0.2116799 6 4 0.0007273 0.0269685 0.1978246
3 8 0.0007236 0.0268994 0.1764938 6 8 0.0007203 0.0268387 0.1932607
3 16 0.0008080 0.0284251 0.1900228 6 16 0.0006415 0.0253283 0.1762878
3 32 0.0008078 0.0284224 0.1932762 6 32 0.0006575 0.0256409 0.2317956
3 64 0.0011074 0.0332772 0.2451673 6 64 0.0009107 0.0301776 0.2643418
3 128 0.0016887 0.0410936 0.2753646 6 128 0.0013865 0.0372361 0.3278892

Avg 0.0009958 0.0311809 0.2153341 Avg 0.0008406 0.0286984 0.2319000

Note: Bold numbers are the minimum MSE, RMSE and MAE, respectively.
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4.3.2. Performance of the NAGARCHSK-GRU Model

For testing the prediction performance of the proposed NAGARCHSK-GRU model,
this paper compares the prediction results of the proposed model and benchmark evalua-
tion models. The results are shown in Table 3.

For high-order moment pricing models that consider time-varying conditional vari-
ance, conditional skewness and conditional kurtosis in Panel A, the NAGARCHSK-GRU
model has significant advantages over other benchmark models in all the error evaluation
criteria and market expected criteria. That is, the NAGARCHSK-GRU model has better
prediction ability than other benchmark models (as shown in Figure 4).

Table 3. Performance of the proposed and benchmark model for forecasting the carbon price.

Proposed Model Benchmark Model

Panel A: Pricing model considering the features of conditional variance, conditional skewness and conditional kurtosis

NAGARCHSK-GRU NAGARCHSK-LSTM NAGARCHSK-RNN NAGARCHSK-MLP NAGARCHSK-GRB NAGARCHSK-BP

RMSE 0.509902 0.546867 3.348075 2.031849 2.033564 3.000422
MAE 0.172333 0.205202 2.413839 1.470269 1.471746 2.183393

MAPE 0.594527 1.219059 7.415169 0.705615 0.881136 3.450703
DA 0.984211 0.978947 0.742475 0.875 0.877551 0.729114

Panel B: Pricing model considering the features of conditional variance and conditional kurtosis

NAGARCHK-GRU NAGARCHK-LSTM NAGARCHK-RNN NAGARCHK-MLP NAGARCHK-GRB NAGARCHK-BP

RMSE 2.034801 4.616283 3.347897 2.867784 2.036477 2.972087
MAE 1.473751 2.380641 2.413814 2.118404 1.475259 2.149908

MAPE 0.835218 3.237167 3.198746 3.293093 0.879472 2.526902
DA 0.731621 0.505615 0.583471 0.843725 0.715412 0.762763

Panel C: Pricing model without considering the feature of time-varying, high-order moment

GRU LSTM RNN MLP GBR BP

RMSE 3.103279 3.623880 3.348127 3.107803 3.187022 3.822661
MAE 2.129058 2.434801 2.413955 2.261274 2.261036 2.194043

MAPE 7.316744 11.140187 7.395187 8.082685 8.035241 2.827125
DA 0.74368 0.536842 0.74 0.872774 0.875318 0.746231

Note: Bold numbers are the minimum MSE, RMSE, MAE, respectively, and the maximum of DA.
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Specifically, as for the error evaluation criteria, the RMSE, MAE, and MAPE values of
the NAGARCHSK-GRU model are 0.509902, 0.172333, and 0.594527, respectively, which are
lower than those of benchmark models such as NAGARCHSK-LSTM, NAGARCHSK-RNN,
NAGARCHSK-MLP, NAGARCHSK-GBR, and NAGARCHSK-BP. This result concludes
that the NAGARCHSK-GRU model has better robustness and stability for fitting carbon
price series with time-varying, high-order moment characteristics. For the market-expected
criteria, the DA of the NAGARCHSK-GRU model was 0.984211, which is higher than that
of the benchmark models NAGARCHSK-LSTM (0.978947), NAGARCHSK-GRB (0.877551),
NAGARCHSK-MLP (0.875), NAGARCHSK-RNN (0.742475) and NAGARCHSK-BP (0.729114).
This indicates that the NAGARCHSK-GRU model is in line with investors’ psychological
expectations for predicting carbon return, and the predicted returns are strongly consistent
with the real return. As a result, the pricing model can provide technical support for
investors to judge market conditions and formulate investment strategies.

In contrast, the error-evaluation criteria and market-expected criteria of the NAGARCHSK-
RNN model shows the worst prediction effect of all models, that is, the RMSE, MAE
and MAPE values are, respectively, 3.348075, 2.413839 and 7.415169, and the DA value
is 0.742475. We can conclude that using the NAGARCHSK-RNN model it is difficult to
map the carbon price series with the time-varying, high-order moment feature, and its
predictive ability cannot meet investors’ expectations.

For the high-order moment forecasting models considering time-varying conditional
variance and conditional kurtosis, as shown in Panel B, the NAGARCHSK-GRU model
still has obvious forecasting advantages in error evaluation criteria and is relatively better
in market-expected criteria compared with other benchmark models. Specifically, the
error indexes RMSE, MAE and MAPE of the NAGARCHSK-GRU model are 2.034801,
1.473751 and 0.835218, respectively, which are lower than other benchmark criteria, the
market-expected criteria DA is 0.731621, which is second only to the 0.843725 of the
NAGARCHSK-MLP model. It is worth noting that the NAGARCHSK-LSTM model, which
has the advantage in fitting financial time series, has the worst performance in carbon
prediction among all models. The error criteria RMSE, MAE and MAPE are 4.616283,
2.380641 and 3.237167, respectively, and the market-expected criteria DA is 0.505615. This
shows that the NAGARCHSK-LSTM model’s prediction ability and generalization ability
are declining. The conclusion that the gap between the fitting curve and the real value is
extremely obvious is also shown in Figure 5, and the correlation is poor.
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For the carbon pricing model without considering the shock of time-varying, high-
order moment, the GRU network model has the smallest error evaluation criteria (as
shown in Panel C), which denotes that the GRU model still has strong prediction accuracy
and robustness even without considering the characteristics of time-varying, high-order
moment. However, the market-expected criteria DA is 0.74368, which is only higher than
the 0.536842 of the LSTM model. We can conclude that the prediction performance of the
model makes it difficult to satisfy the investors’ psychological expectations.

Although the error criteria of other benchmark models are lower than those of the
GRU model, the difference is not significant (as shown in Figure 6), particularly the RMSE
and MAE of all models are basically close, and the deviation is small. More obviously,
the market-expected criteria of the GBR and MLP models are significantly higher than
those of other models, with DA values of 0.875318 and 0.872774, respectively, indicating the
carbon-prediction performance of those two models is relatively stable and has a certain
robustness. The market prediction performance suggests a reliable reference for investors
making investment decisions.
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Comparing the prediction results of all the pricing models of Panel A, Panel B and
Panel C in Table 3, firstly, the carbon price-forecasting performance of the NAGARCHSK-
GRU model is the best among all pricing models in Panel A, Panel B and Panel C. Secondly,
the error criteria RMSE, MAE, and MAPE of the carbon pricing model in Panel A are
significantly smaller than those of the error criteria in Panel B and Panel C, while the
market-expected indicator DA is significantly higher than other models. Furthermore, the
error criteria RMSE, MAE, and MAPE of the pricing model in Panel C are relatively high,
while the market-expected index DA is relatively low.

The empirical results shown in Table 3 conclude that the deep-learning, carbon price
forecasting model that considers the time-varying, high-order moment characteristics can
provide more confident carbon premium evidence. This conclusion further proves that
the carbon return is not only affected by the low-order moment attribute pricing factor,
but also that the time-varying, high-order moment attribute that reflects the market asym-
metric information and extreme shock is also an important explanatory factor for carbon
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return. The research results of this article can provide valuable reference for investors,
commercial banks, and emission-reduction companies to judge market conditions and
predict market trends.

4.3.3. Robustness of the NAGARCHSK-GRU Model

The significant advantage of the GRU model is that the parameter training structure
of the long memory function can fit the finance time series, especially the time series over a
long period time. Therefore, to prove the robustness of the NAGARCHSK-GRU model in
different prediction period, this paper analyzes the performance of the proposed pricing
model in the short-term, medium-term and long-term, respectively. Among them, the last
4 months, 10 months, and 15 months of the carbon returns are used as the prediction set
in the short-term, medium-term, and long-term, respectively, and the rest of the data are
used as the training set. The pricing model structure adopts the optimal network structure
decided in the previous section. This part mainly describes the prediction performance of
the carbon price-forecasting model that considers the time-varying, high-order moment
characteristics, furthermore, the RMSE, MAE, MAPE error criteria are used to evaluate the
model’s pricing accuracy and stability.

For carbon price-forecasting performance in different periods (as shown in Table 4), the
NAGARCHSK-GRU pricing model has significant superiority in the short-term, medium-
term and long-term for all the error criteria, that is, the values of RMAE, MAE and MAPE are
significantly lower than other benchmark models, and the proposed model has satisfactory
robustness over all periods. The error distribution of the proposed and benchmark pricing
models can be seen in Figures 7–9.

Table 4. Prediction performance of the pricing model considering the feature of time-varying, high-
order moment.

Proposed Model Benchmark Model

NAGARCHSK-GRU NAGARCHSK-LSTM NAGARCHSK-RNN NAGARCHSK-MLP NAGARCHSK-GRB NAGARCHSK-BP

Panel A: Long-term prediction performance (15 months)

RMSE 0.752385 1.157871 2.996408 1.981738 1.985327 3.001473
MAE 0.218883 0.412011 2.352625 1.559398 1.560740 2.393809

MAPE 0.354984 0.299397 0.765891 0.692497 0.689473 6.234842

Panel B: Medium-term prediction performance (10 months)

RMSE 0.825573 0.877745 3.699027 2.388462 2.388496 3.686389
MAE 0.246388 0.345985 2.629891 1.698282 1.698174 2.590053

MAPE 0.476214 1.997452 10.473157 0.809171 0.838451 11.833577

Panel C: Short-term prediction performance (4 months)

RMSE 1.109585 0.761311 3.348173 2.160763 2.162539 3.209178
MAE 0.408066 0.258531 2.414090 1.560627 1.562554 2.334026

MAPE 0.264886 0.873019 7.400078 0.794943 0.807474 2.576337

Note: Bold numbers are the minimum MSE, RMSE, MAE, respectively. The network structure of the proposed
and benchmark models adopts the optimal structure decided experimentally in the previous section, that is, the
structure of 4-16-16-1.

Based on the estimation errors of the pricing models over different periods, it is
found that as the forecasting period gradually increases from short-term to long-term, the
forecasting errors of all pricing model gradually decrease, resulting the improvement of
model accuracy and stability.

In particular, the NAGARCHSK-GRU model has the smallest prediction error and the
best prediction performance, that is, the long-term prediction error RMSE, MAE and MAPE
are 0.752385, 0.218883 and 0.354984, respectively, the medium-term prediction error RMSE,
MAE and MAPE are 0.825573, 0.246388 and 0.476214, respectively, and the short-term
prediction error RMSE, MAE and MAPE are 1.109585, 0.408066 and 0.264886, respectively.
This evidence shows that the accuracy and stability of the NAGARCHSK-GRU model are
gradually optimized with the extension of forecasting time, and it is significantly better than
other benchmark models for forecasting the 15 month lagged returns. Since the advantage
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of the GRU model is fitting the longer finance time series, the findings of this article provide
further evidence for this convinced conclusion and also the robust performance of the
proposed model for different prediction periods.
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5. Conclusions and Prospects
5.1. Conclusions

As a market-oriented mechanism for innovation to curb global climate issues, the
carbon market is recognized as the most effective means to reducing the global carbon
dioxide emissions and realize the sustainability of human society and economic growth.
Compared with other financial markets, the carbon market has obvious market asymmetry,
is sensitive to policy shocks and has time-varying volatility. However, the existing carbon
price-forecasting research mainly focuses on the price information transmission and risk
volatility spillover from the perspective of low-order moment of return, and ignores the
time-varying impact of asymmetric information and extreme policies on carbon assets
from the perspective of high-order moment attributes (market skewness and kurtosis). The
explanation for carbon premium lacks sufficient evidential support.

The innovation and contribution of this article are constructing an integrated carbon
price-forecasting model, NAGARCHSK-GRU, based on the special characteristics of car-
bon assets such as market asymmetry, strong policy-shock sensitivity, and time-varying
volatility. The proposed forecasting model considers the time-varying impact of market
asymmetric information and extreme factors on carbon prices from the perspective of high-
order moment attributes, so as to provide new evidence to explain the carbon premiums.
The main work and research conclusions of this paper are as follows:

Firstly, carbon assets have obvious time-varying, high-order moment volatility charac-
teristics. Compared with constant high-order moment volatility models, the time-varying,
high-order moment volatility NAGARCHSK model can reveal the time-varying impact
of systemic risk, asymmetric information and extreme factors on carbon premium by the
function of time-varying variance, time-varying skewness and time-varying kurtosis equa-
tions. Moreover, the time-varying, high-order moment characteristics estimated by the
NAGARCHSK model can explain the volatility clustering and premium mechanism of
carbon price.

Secondly, the proposed machine-learning pricing model has more accuracy and stabil-
ity in predicting carbon price with time-varying, high-order moment volatility characteris-
tics. The time-varying impact of asymmetric information and extreme factors on carbon
price is also important evidence for explaining carbon premium. This conclusion shows
that the carbon pricing model proposed in this paper can fit and forecast carbon return
effectively, specifically, the NAGARCHSK-GRU model is significantly better than other
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deep-network models. Further research shows that the NAGARCHSK-GRU model has
reliable advantages in long-term, medium-term and short-term carbon price fitting and
forecasting. In particular, the long-term carbon price-forecasting ability is outstanding, that
is, it has perfect stability and accuracy for 15 months of prices forecasting. This conclusion
not only confirms the advantages of the NAGARCHSK-GRU model in fitting long-term
financial data, but also proves that the carbon pricing model considering time-varying,
high-order moment volatility can provide a strong explanation for carbon price.

The theoretical and practical implications of this paper are: firstly, as for the theoretical
innovation, the findings show the rationality and effectiveness of incorporating the time-
varying impact characteristics of asymmetric market information and extreme factors into
the carbon price-forecasting model. The accuracy of carbon price forecasting can suggest a
stronger reference for investors to judge market conditions, formulate investment strategies
and may serve the implementation of carbon emission reduction. Secondly, as for the
practical function, the maturity of carbon pricing mechanisms provide a decision-making
basis for the government to speed up the construction of carbon market mechanisms and
enhance the ability of the financial system to manage climate change. The conclusion of
this paper also provides technical support for investors, emission-reduction entities and
other market participants to capture price information and predict price changes.

5.2. Prospects

The focus of this paper is carbon premium explanation from the perspective of high-
order moments. In the proposed high-order-moment pricing framework, each pricing term
is a statistically structured factor, and the actual meaning behind the statistical indicators of
high-order-moment attributes is not clear. Based on this, employing text-mining technology
to obtain unstructured carbon pricing data that represent investor sentiment, policy impacts
and other pricing factors, rather than the statistical moment attributes, is a valuable avenue
for continuing relevant research in the future.
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