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Abstract

Chromosomes are exceedingly long topologically-constrained polymers compacted in a cell 

nucleus. We recently suggested that chromosomes are organized into loops by an active process 

of loop extrusion. Yet loops remain elusive to direct observations in living cells; detection and 

characterization of myriads of such loops is a major challenge. The lack of a tractable physical 

model of a polymer folded into loops limits our ability to interpret experimental data and detect 

loops. Here, we introduce a new physical model – a polymer folded into a sequence of loops, 

and solve it analytically. Our model and a simple geometrical argument show how loops affect 

statistics of contacts in a polymer across different scales, explaining universally observed shapes 

of the contact probability. Moreover, we reveal that folding into loops reduces the density of 

topological entanglements, a novel phenomenon we refer as “the dilution of entanglements”. 

Supported by simulations this finding suggests that up to ~ 1 – 2Mb chromosomes with loops are 

not topologically constrained, yet become crumpled at larger scales. Our theoretical framework 

allows inference of loop characteristics, draws a new picture of chromosome organization, and 

shows how folding into loops affects topological properties of crumpled polymers.

I. INTRODUCTION

Three-dimensional organization of chromosomes is a multi-scale complex physical system 

that has been challenging the field of polymer physics and stimulated the development 
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of a broad range of polymer models. Such models mostly concern large-scale properties 

of chromosomes and include topologically constrained polymers [1–4], non-equilibrium 

polymer states [5, 6], gels and supercoiled polymers [7], and active polymers systems [8, 9].

Recent experiments allowed characterizing chromosome folding at all scales. A Hi-C 

experiment produces a map of contact frequency P i, j  between all pairs of genomic 

positions i and j [10]. Besides variety of local features visible in P i, j  maps [11], the 

physical state of a chromosome polymer can be characterized by the scaling of the average 

contact probability P s  with the genomic distance s = i − j . At large scales, in the range 

of s = 1 − 5 Mb, the scaling of P s s−1, markedly different from s−3/2 expected for a ideal 

chain (i.e. 3D random walk) or s−3/2 followed by a plateau for the equilibrium globule 

[12]. The P s s−1 scaling suggested that chromosomes are folded into the “crumpled” 

states [1, 10, 13] conjectured more than three decades ago [14, 15]. These polymer states 

are characterized by largely unknotted conformations that are stabilized by topological 

interactions between segments of the chain, i.e. their inability to path through each other. 

A chain from the melt of large unknotted non-concatenated rings is a canonical example of 

the topologically-stabilized polymer state, which is believed to have the fractal dimension 

df = 3 asymptotically (R s s1/df and P s s−γ, γ ≈ − 1.1) [1, 3, 16–18] at scales s ≫ Ne, 

where Ne is the entanglement length. As we show below, existence of the minimal scale (the 

topological blob), at which the crumpled polymer actually develops the crumpled statistics 

has a crucial impact on organization of chromosomes.

At smaller scales the P s  curve generally exhibits not a power-law behavior with a 

characteristic “shoulder” at s ≈ 100 − 200kb, which, as we show below, reflects folding 

of the chain into loops. We and others suggested that at smaller scales (s < 1 Mb), 

chromosomes are folded into loops formed by an active, energy-dependent, process of 

loop extrusion. We hypothesized that loop-extruding motors associate to a chromosome, 

extrude loops, and dissociate, thus maintaining the chromosome polymer in the steady state, 

where it is folded in an array of non-overlapping randomly positioned loops [19, 20]. Loop 

extrusion was observed in vitro [21], yet detecting and characterizing myriads of transient 

loops presumably present in vivo remains a major challenge.

Other models of interphase chromosomes folded into different types of loops, including 

giant rings (3 – 4Mb) [22], random overlapping loops (crosslinks) with a broad size 

distribution [23, 24], and rosettes of loops [25], were proposed but not systematically 

tested against HiC data. Analytical solution for even the simplest case of random crosslinks 

[26], however, gave P s s−3/2 followed by a plateau being markedly different from the 

experimental P s . Dense arrays of loops were also considered in models of mitotic 

chromosomes [27], where the interplay of factors determine the “optimal”-sized loops 

that maximize compaction and simultaneously minimize inter-chromosome entanglements. 

While accumulation of experimental data about interphase chromosomes continues yielding 

P s  curves of similar shapes, no polymer physics model could have explained such a 

universal P s , nor attempted to infer sizes and characterize organization of chromosomes.
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The main challenge for an overarching model of chromosome organization is to take into 

account both the crumpled statistics of the chain and its folding into loops. While some 

attempts have been made to explain the crumpled organization itself by loops (e.g. [24, 28]), 

recent experiments have clearly demonstrated that they represent two independent modes 

of chromatin organization. Experimental depletion of loop-extruding protein complex of 

cohesin has removed the local shoulder on P s  at s < 1Mb and revealed the power-law 

behavior of P s s−1 in the two orders of magnitude range of scales, s ≈ 50 − 5000kb [29, 

30].

Here we develop a model of a polymer of an arbitrary fractal dimension df (including 

df = 3 for the crumpled state) folded into randomly positioned and non-overlapping loops, 

as expected to be produced out of extrusion. Our model being analytically tractable shows 

how such loops perturb fractal polymer organization across scales, agrees with a broad 

range of experimental Hi-C data, and allows to infer parameters of the loops organization. 

Furthermore, we reveal and describe a novel topological phenomenon, the dilution of 
entanglements, taking place in a crumpled chain folded into short-scale unentangled loops. 

Namely, we demonstrate that the loops would drastically increase the entanglement length 

Ne of a crumpled chromosome (~ 10-fold or even more). As a result, a chromosome with 

loops turns into an unentangled though a not crumpled polymer at the megabase length 

scales. Our study provides a novel view on organization of chromosomes and, broadly, 

of topologically-stabilized polymer chains, where density of topological constraints can be 

modulated by formation of short-scale loops.

II. A MODEL. POLYMER CHAIN FOLDED INTO LOOPS

Let us consider a classical bead-spring model of a polymer chain [12, 34, 35]. Without 

long-ranged interactions it corresponds to a three-dimensional random walk at sufficiently 

large scales (i.e. ideal chain with fractal dimension df = 2 ). One can generalize it to the 

case of arbitrary fractal dimension, df ≥ 2, via introduction of special quadratic pairwise 

interactions between the beads [2], in particular, allowing to describe the crumpled states 

with df = 3. The effective interactions result in the mean-squared spatial size of the polymer 

segment of s beads that behaves as r2 s s2/dfb2 for beads of the length b. An important 

experimentally measured characteristic of such a chain is the contact probability between 

ends of the segment, P0 s , that according to the mean-field argument [1, 10, 18, 36], is 

inversely proportional to the volume spanned by the segment

P0(s) ∝ 1
s3/df

(1)

Though (Eq.1) is not true in general, it holds for the class of fractional Brownian polymers 

[2, 4, 37], for which (Eq.1) is the normalization of the Gaussian distribution of end-to-end 

distance.

Polovnikov et al. Page 3

Phys Rev X. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Now, we consider this fractal chain folded into consecutive and non-intersecting loops 

with the average contour length, λ, and separated by gaps that have an average contour 

length, g, both exponentially distributed (Fig. 1A). Importantly, we assume that the fractal 

dimension df of the polymer at large scales and within a loop is not changed by the addition 

of the loops. Also each “loop” is modelled as an additional bond in its base, so that the 

ring-shaped cohesin protein does not topologically embrace two strands of chromatin but 

chemically binds them [38]. Then the full sequence of the gaps comprises the main chain 

(the backbone), controlling its equilibrium conformation properties at large scales. Clearly, 

such folding into loops reduces distances in polymer, turning it into a comb-like chain with 

loopy side bristles.

The effect of the loops on P(s) can be calculated using the frozen disorder approach 

as follows. First, one calculates the contributions of different diagrams at equilibrium, 

classifying relative positions of the points i, j with respect to the loop bases (Fig. 2A). 

For each diagram one computes the variance r2  of the vector r  connecting the points 

of interest and makes use of the Gaussian relation P(s) r2 −3/2 for the corresponding 

equilibrium contact probability, see (Eq.1). For the diagrams (b) and (d) the vector r 1

(loop), r 2 (backbone) and r 1 (loop), r 2 (backbone), r 3 (loop), respectively. In the diagrams 

(b)-(d) a loop resembles a fractal bridge of the same dimension df, for which the effective 

Hamiltonian from [2] is used (see Appendix A).

Second, one averages these probabilities over all possible pairs of monomers i, j involving 

different diagrams, such that i − j = s (Fig. 2A). The exponential distribution of lengths 

for loops and gaps allows to make use of the well-known expression for the propagators of 

the two-state Markov process [39] and properly weigh contributions of different diagrams. 

Finally, the remaining averaging over the distribution of random loops and gaps is performed 

(see Appendix A). The ultimate result is factorized into the unconstrained conditional 

probability P0(s) of a loops-free chain (Eq.1) and function P of the scaled genomic distance 

s/λ and the density parameter d = λ/g (for connection of this parameter to the linear loop 

density see [40]):

P(s)/P0(s) = P(s/λ; λ/g) .

(2)

The function P accurately accounts the contributions from four diagrams (a)-(d) depicted in 

(Fig. 2A); it is expressed in the form of multiple integrals involving the Bessel functions, 

which are to be computed numerically.

Strikingly, already for the ideal chain df = 2  folded into loops the shape of the P(s) curve, 

best represented by its log-derivative, d log P(s)
d log(s) , qualitatively matches the corresponding 

curves computed from experimental Hi-C data, see Fig. 2 B,C and Fig. 1B.

In accord with experiments (Fig. 2C), loops perturb the power-law behavior of the P(s)
curve and result in the formation of a shoulder at s ≈ λ, and a corresponding “peak” and 
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“dip” on the log-derivative plot, see Fig. 1C. Moreover, in line with our theory, experiments 

where loops are eliminated by depletion of cohesin (a loop-extruding motor) [29, 30] give 

P(s) with an almost constant slope (i.e fractal) from ≈ 50 kb to ≈ 5,000 kb, yielding a 

near constant in the log-derivative without the characteristic peak and the dip (see Fig. 2C, 

left). Furthermore, experiments where loop sizes were increased by depleting the protein 

Wapl (see Fig. 2C, right) demonstrate an extension of the P(s) shoulder and displacement 

of the peak on the log-derivative the right. Consistently, we see that in our model (Fig. 2B) 

the shoulder on P(s) and the peak on the log-derivative curve, travel to the right upon the 

increase of the mean loop length, λ, at fixed λ/g.

As we see, using the simplest prior (ideal chain, df = 2) it is possible to explain qualitatively 

how the loops change the shape of the log-derivative. However, the ideal chain model does 

not capture an important aspect of chromosome organization such as the value of the P(s)
slope closer to −1, rather than −3/2 in most cell types [1, 10, 13–16]. Indeed, the ≈ −1 

scaling stretches for two orders of magnitude in genomic scale s, when cohesion-mediated 

loops are eliminated [29, 30, 41] (Fig. 2C). According to (Eq.1), it corresponds to the almost 

compact fractal folding with df ≈ 3. Such characteristics is a feature of the crumpled folding 

of a polymer, e.g. in a equilibrium melt of non-concatenated unknotted rings [1, 3, 13, 

16–18] or as a long-lived non-equilibrium state of a collapsed linear chain [5, 6, 14].

The results for a non-ideal polymer with df > 2 are shown in Fig. 3A and Fig. S1. In 

particular, the loopy chain folded with a larger fractal dimension has a slower decaying 

P(s) than the ideal chain with df = 2 at all scales, the former being consistent with 

Hi-C data. Accordingly, the baseline (loops-free) slope of P(s), i.e. its asymptotic value 
d log P0(s)

d log s = − 3/df, is lifting up with increase of df. These properties are not surprising, since 

they are put in the model by construction. A non-trivial observation, however, is that the 

amplitudes of peak and dip on the log-derivatives notably diminish for a non-ideal chain 

(Fig. 3A and Fig. S1). Intuitively it can be rationalized as additional compactness (negative 

tangential correlations) due to loops has a weaker effect on already somewhat compact 

chains with df > 2.

To additionally validate our analytical computations we compare them to numerical 

simulations. To calculate the contact probability P(s), (i) the loci i, j at the given contour 

distance s = i − j  are sampled on the randomly generated sequences of exponentially 

distributed loops and gaps, (ii) the mean equilibrium distances between the loci are 

computed accordingly to the diagram they belong to, (iii) the distances are translated 

into the contact probabilities using the mean-field relation (Eq.1) and, finally, (iv) the 

sample averaging is performed. This approach essentially allows to weight the contributions 

of different diagrams numerically via statistical sampling, while keeping the end-to-end 

distribution Gaussian. As we demonstrate in the Fig. S3, the numerical approach perfectly 

agrees with the results of our theory, irrespective of the value of λ/g.

A simple argument helps to understand how loops perturb the contact probability P(s), 
generating the curves we observe in the theory and experiments. Indeed, the loops impose 

two effects on P(s) at different scales. At small scales, the dominant contribution to the 
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elevation of P(s) comes mainly from contacts between two loci within the same loop (e.g. 

see Fig. S2, for λ/g ≥ 1/5). Within a loop, the contact probability is increased due to the 

smaller physical size of a loop compared to an open chain of the same contour length, and 

due to a shorter effective contour length between two points near the loop base. Thus,

P(s)/P0(s) ≈ 1 + Ω(s/λ) λ
λ + g; s ≤ λ

(3)

where Ω(s/λ) is some function describing the shape of the shoulder, which is weighted by the 

fraction of the chain within the loops.

At large scales, when s ≫ λ, the contact probability becomes elevated due to a shorter 

effective contour length between the two points, since the shortest path between monomers 

skips all intervening loops:

P(s)/P0(s) ∝ λ
g + 1

3/df; s ≫ λ

(4)

The interplay between the shoulder at small scales (Eq.3) and the elevation of P(s) at large 

scales (Eq.4) determines the shape of P(s) as well as the “peak” and the “dip” of the 

log-derivative. The peak is always present as a result of breaking of the scale-invariance due 

to loops formation. Fig. 1C displays a simple geometric condition for the dip: the shoulder, 

(Eq.3), at s ≈ λ must be higher than the elevation at s ≫ λ, (Eq.4). As the spacer, g, shrinks 

(loop density increases), the elevation at large scales (Eq.4) indefinitely grows, while the 

height of the shoulder (Eq.3) eventually saturates. Therefore, upon a gradual compaction 

of the chain into an array of loops, the dip becomes more shallow and dissolves. As the 

solution for the ideal chain (df = 2) suggests (Fig. 2B, left, Fig. S1), there is a critical value 

of parameter d = (λ/g)* ≈ 2, at which the dip completely disappears. For the compact chain 

(df = 3) the corresponding critical values is lower, d = (λ/g)* ≈ 1. Indeed, since the absolute 

perturbation at the shoulder Ω(s/λ) is smaller for chains with df > 2, the dip disappears at a 

lower loop density than for the ideal chain. Physically, this marks a crossover from sparse to 

relatively dense array of loops where the effective shortening of the polymer at large scales 

reaches the level of compaction at scales of a single loop.

Loops on a crumpled chain

The crumpled statistics cannot be realized at all scales in a physical system [3, 14, 16, 17]. 

For a physical crumpled chain there is a crossover length scale Ne, called the entanglement 

length (having the meaning of the topological blob), only above which the compact folding 

with df = 3 can take place. Below this scale the topological constraints are not sufficient and 

the segment remains ideal with df = 2 down to the persistent length (for a loosely entangled 

chain) or the concentration blob size [12, 34]. The end-to-end squared size of a segment s of 
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a crumpled chain with the entanglement length Ne and the persistent length lp can be written 

as

r2(s) =
slpb2, for lp < s < Ne

s2/3Ne
1/3lpb2, for s > Ne

(5)

To quantitatively explore the effect of this crossover in real crumpled chains on P(s), we 

generalize our theory to a non-fractal chain governed by (Eq.5). For smoothness of resulting 

P(s) we allow the crossover point in (Eq.5) to fluctuate around the mean Ne within the 

exponential distribution (see Appendix A).

We find that considering the scale Ne, where topological effects start to play important role, 

changes the behavior of the P(s) in the model. With increasing Ne, the crumpled polymer 

with loops starts to show much more pronounced “peak-and-dip” on the log-derivative 

curve (Fig. 3C). Since for s < Ne  the system behaves like an ideal chain with loops, for 

Ne ≫ λ the effect of topological crumpling becomes irrelevant and the log-derivative curve 

resembles that of loops on an ideal chain (Fig 3A, df = 2). Fig. 3C demonstrates this 

crossover from the crumpled (blue) to ideal chain regimes (yellow), upon the increase of 

Ne, with a pronounced “peak-and-dip” emerging when Ne ≈ λ. For example, for λ/g = 1, and 

Ne = 50 λ = 100, not atypical for dense polymer systems, one has a pronounced dip on 

the log-derivative, which is otherwise absent in the model without Ne. Further increase in Ne

results in even deeper dip, while the amplitude of the peak located at ≈ λ saturates.

The pronounced dip requires Ne ≳ λ, which in turn indicates that extruded loops cannot be 

crumpled. For a ring to be crumpled it needs to be several dozens of Ne in length (10 − 30Ne) 

[18, 43]. At the same time, the entanglement length for chromatin, estimated in the literature 

(see Table 2 in [1]; Ne ≈ 20 − 100kb) is comparable to the size of cohesin-mediated loops 

λ ≈ 100 − 150kb. Therefore, this picture suggests that the extruded loops in chromatin are 

practically not crumpled (unentangled).

Remarkably, a crumpled chain with unentangled loops captures both the pronounced peak 

and dip and levelling of the curve around ≈ −1 both seen across Hi-C experiments, and not 

captured by models that we considered above (the ideal chain, and the fractal chains with 

df > 2).

Dilution of entanglements in a crumpled chain induced by folding into loops

Can folding into unentangled loops, in turn, affect entanglements of the main chain? In 

what follows we suggest that since the loops are unentangled they do not impose any 

considerable topological constraints for the main chain. As more material goes into loops, 

the main chain shortens, which leads to the decrease of the total amount of entanglements 

(dilution) and increase of Ne of the main chain. This effect, that we refer to as the “dilution 

of entanglements”, can be physically understood as screening of entanglements by the loops 

inside the growing topological blob. As we demonstrate below, Ne of the main chain indeed 
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grows with the loop density, that in turn affects the contact probability P(s) of the loopy 

chain across scales. This way effects of large Ne considered in the previous section becomes 

even stronger.

To estimate the effect of loops on Ne of the main chain we start with a known empirical 

expression for dense linear chains [1, 44, 45]:

Ne = lk
1

cξφk

2/5
+ 1

cξφk

2

(6)

where lk is the Kuhn length (in monomers), φk = φvk/lk = φlk
2 is the dimensionless volume 

density of Kuhn segments of volume vk and monomer volume density φ; cξ ≈ 0.06 is a 

phenomenological constant that was used to describe various simulation data for entangled 

polymers [44]. For loosely entangled linear chains, φk < 1, the quadratic factor in (Eq.6) 

dominates. Furthermore, for crumpled territoriral chains described by (Eq.5) one can 

straightforwardly show that the Kuhn volume density of a single chain is similarly related to 

its entanglement length,

Ne = lk
M
φk

2

(7)

for all φk and where M O(1) is the number of other chains populating the volume of a 

marked crumpled chain. The dependence of Ne on φk for the crumpled polymer can be 

understood in the picture of a chain in the array of topological obstacles (constraints) [46, 

47], which is collectively generated by spatial contacts between the crumples (see Fig. 

3B, Fig. 4A). Clearly, not all spatial contacts contribute to topological obstacles. However, 

similarly to linear chains [45], non-specific dilution of the contacts upon decrease of φk leads 

to a fewer topological obstacles in the system and, accordingly, increase the entanglement 

length, Ne (Eq.7).

We suggest that due to the commutative nature of topological constraints, unentangled side 

loops do not contribute to creating of the topological obstacles and hence do not crumple 

the main chain. Thus, in our system the effective volume density φk
eff, relevant for the 

entanglements, is controlled by the backbone, which is shortening upon folding into loops. 

Still the loops occupy a certain excluded volume in the space, creating the crowding effect 

for the main chain. The two phenomena, backbone shortening and loops crowding, are 

encoded in the theory for φk
eff of a crumpled polymer folded into loops of size λ and density 

parameter d = λ/g (see the full derivation in Appendix B):

φk
eff = φk

(0)

1 + d 1 − cαφk
(0)λ1/2 ; Ne = Ne φk

eff

(8)
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where the constant cα depends on the microscopic structure of the fiber, cα ∝ lk
−1/2; we treat 

cα as a free parameter in our model. The structure of (Eq.8) is quite transparent. Without 

loops (d = 0), the backbone resembles the original crumpled chain with effective volume 

density φk
(0). If the loops are sufficiently short so that their volume can be neglected, the 

decreased effective volume density is fully described by the backbone shortening, which 

yields the factor d + 1 = (λ + g)g−1 in the denominator of (Eq.8). In general, the loops 

partially compensate this effect by crowding the own volume of the chain, which leads to an 

increase of φk
eff. Importantly, as we show in the Appendix B, the compensation by the loops 

is always not complete cαφk
(0)λ1/2 < 1  for unentangled loops.

The effect of dilution of entanglements (Eq.6)-(Eq.8) on P(s) can be well-captured by 

extending our analytical framework (the full theory). For that we consider ideal loops, while 

the entanglement length Ne of the crumpled backbone is now a certain function of loop size 

and loop density, Ne = Ne φk
eff(λ, λ/g) . Qualitatively, the effect on P(s) can be understood 

as follows. As previously, the shape of P(s) at scales s ≈ λ (Eq.3) is largely determined by 

intra-loop contacts and is not sensitive to organization of the backbone chain. However, at 

large scales s ≫ λ the contact probability is now additionally decreased by the factor of Ne
1/2, 

reflecting spatial segregation of the loops due to the dilution of entanglements of the main 

chain

P(s)/P0(s) ∝ d + 1
Ne(d) , s ≫ λ,

(9)

As we see from (Eq.9), the increase in contact frequency due to chain shortening is now 

counteracted by spatial separation of the loops due to the increased Ne (Fig. 4A). Since 

in the regime of interest the entanglement length quadratically depends on the density 

parameter d, as seen from (Eq.7) and (Eq.8), at s ≫ λ one has

P(s)/P0(s) ∝ d + 1
αd + 1, α = 1 − cαφk

(0)λ1/2,

(10)

Interestingly, for sufficiently short unentangled loops, α ≈ 1, the backbone decompaction 

almost fully compensates its shortening (the crowding of loops, i.e. α < 1, still slightly 

elevates P(s) at small d), see Fig. 5A and Fig. S8. This result is physically related with 

the territorial organization of crumpled chains. Indeed, the size of the crumpled chain is 

controlled by the combination NNe
1/2, see (Eq.5); shortening of the backbone due to loops by 

a factor d + 1 leads to increase of Ne
1/2 by the same factor. As a result, crumpled chains with 

short-scale loops tend to decompact their shortened backbones to the volume of their own 

territories, nearly maintaining the spatial organization at large scales. While at large scales 

P(s) is almost unchanged (Δp2 = 0 in Fig 1C), at short scales it is elevated due to folding into 

loops Δp1 > 0 , see (Eq.3), which ensures formation of the dip independently of the loop 

Polovnikov et al. Page 9

Phys Rev X. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



density (Fig. 1C). Thus, territoriality of crumpled chains underlies the observed universality 

of experimental P(s) curves (Fig. 1B).

Taken together, the phenomenon of dilution of entanglements in real crumpled chains 

results in significant increase of Ne of the main chain upon folding of a polymer into 

loops. This effect in turn restores the dip on the log-derivative (Fig. 4D), compared to the 

model with fixed Ne, and generates the universal shapes of the contact probability observed 

experimentally.

Simulations of crumpled chains with loops—Next we examine the dilution of 

entanglements by direct polymer simulations. To test predictions of theoretical argument 

above we perform equilibrium polymer simulations of a crumpled loopy polymer rings 

(N = 90000 beads, ≈ 90Mb chromosomal region) with excluded volume and topological 

constraints (see Appendix C).

We observe that despite of topological constraints, and consistent with the theory, the loops 

on the chains are indeed ideal, as their squared gyration size Rg
2(L) grows linearly with their 

contour length, L, Fig. 4C.

Furthermore, we observe the increase of entanglement length Ne of the backbone with 

d = λ/g. In order to accurately check for this effect, we infer Ne and lp by fitting R(s) of the 

backbones from simulations by a theoretical curve. This curve was constructed by extending 

the worm-like chain model [48] to take into account the crossover from ideal to crumpled 

statistics at Ne (see Appendix C for details). Importantly, while the persistence length of 

the chain remains unchanged lp = 1.75  as a result of addition of loops, we see that the 

entanglement length grows 6 -fold from Ne ≈ 70 at d = 0 to Ne ≈ 420 at d = 3 (Fig. S4). As 

we find, the values of entanglement length of the backbone directly measured in simulations 

are in excellent agreement with our theoretical predictions by (Eq.6) and (Eq.8), see Fig. 4B.

Next we examined the physical origin of the backbone decompaction, i.e. the growth of 

Ne. The theory suggests that this effect is due to dilution of entanglements, and not due 

to the extension of the backbone by repulsion between the loops. To test this, we run 

additional simulations where we cut off loops from the backbone, turning it into the system 

of disconnected loops and the backbone. Then we equilibrated the resulting system under 

the same total volume density. First, we observe that the loops remain Gaussian, despite they 

are now deattached from the backbone (Fig. S5 A), and their sizes are unchanged. Second, 

for the same loop density the system with cut loops and the original one with attached loops 

produce indistinguishable, within the error bar, R(s) of the main chain (Fig. S5 B, C). We 

conclude that loop attachment and interactions between them do not deform the main chain.

While occupying some volume, loops do not crumple the main chain either. In fact, when 

we confined the single backbone chain to the same volume density, but without any loops, 

it became more crumpled, yielding a smaller Ne. Indeed, the effective substitution of the 

unentangled loops by the crumpled backbone in a unit volume results in stronger crumpling 

and the decrease of the entanglement length (Fig. S6, Fig. 4E). The observed value of Ne

corresponds to the loops-free system, Ne ≈ 70. These results demonstrate that the loops 
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indeed induce topological screening and decompaction of the main chain, however, their 

attachment to the backbone plays no role in this effect.

Simulations confirm both the increase in Ne and the mechanism of “dilution of 

entanglements” put forward by our theory. The main factor driving this effect is shortening 

of the main chain, accompanying by screening of entanglements by the unentangled loops 

(Eq.8).

In good agreement with the theoretical argument (Eq.9) in polymer simulations we further 

find that the shapes of P(s) log-derivatives demonstrate a pronounced amplitude irrespective 

of the loop density (Fig. 4D). As was explained above, this is a signature of increasing 

Ne of the backbone. In Fig. 4D we compare the log-derivatives of P(s) for the simulations 

of crumpled chains folded into loops with the theoretical curves computed for the original 

Ne = 70 (no increase of Ne induced by the loops), corresponding to the loops-less case 

(dashed black curves). It is clear that the model with fixed entanglement length cannot 

explain pronounced dip at all loop densities. On contrary, as the theory suggests, the increase 

of λ/g leads to gradual vanishing of the dip (Fig. 2B, Fig. S1), as long as Ne is fixed.

When we calibrate Ne according to the value of λ/g (Fig. 4B) and compute the 

corresponding theoretical P(s) log-derivatives, we see the restoration of the dip and 

much better quantitative agreement with simulations (solid black curve in Fig. 4D). Still 

the agreement is not perfect, since the theory is Gaussian, while crumpled polymers 

are clearly not [36], which is responsible for subtle deviations between the theory and 

simulations. Despite of this, we conclude that the theory with calibrated entanglement length 

Ne = Ne(λ/g) quantitatively accounts for the behavior of crumpled chains with loops in 

simulations and restores the dip on the log-derivatives. We thus emphasize that the observed 

effect of dilution of entanglements in crumpled chains leaves distinct signatures in the P(s)
curves – pronounced peak and dip, and leveling at −1 slope – which is evident in the Hi-C 

data for a broad range of cells and conditions.

IV. DISCUSSION

A polymer folded into loops is a new and exciting physical system. Surprisingly, loops affect 

not only local folding of the polymer, but also long-range organization of the chain, and its 

topological characteristics. As we show, the interplay between the loops-induced compaction 

at small scales and arrangement of an array of loops at large scales results in a characteristic 

shape of the P(s) seen across cell types and organisms. We find that the entanglement length 

Ne in crumpled chains and the comb-like organization of a loopy chain lead to an interesting 

effect where the loops and the main chain at the scale of a few loops are not crumpled. 

Moreover, folding into loops further reduces the density of topological entanglements, a 

phenomenon we refer as the dilution of entanglements. All these effects together lead to the 

shape of the P(s) log-derivative curve, similar to experimental one: with a pronounced peak 

and dip. Ultimately, this agreement with experiments suggests that chromosomes are folded 

into loops that are not crumpled (unentangled), and neither is the main chain at the scale 

of a few loops (~ 1−2Mb). Yet, at larger scales (> 10 loops) the main chain starts forming 
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a crumpled object. This result is in striking diversion from the current understanding of 

chromosome organization.

Importantly, as we further show in simulations (Fig. S7 A,B), compartmentalization of 

chromosomes does not affect the characteristic contact probability curve of a polymer 

folded into loops. Indeed, the typical scale of compartmental domains (in humans) is 

several megabases, which is an order of magnitude larger than the loop size, λ. When block-

copolymer interactions derived from experimental Hi-C maps (see Appendix C) are added 

into simulations to the fixed loops, the resulting P(s) curves do not change significantly (Fig. 

S7B); the constant ≈ −1.1 slope of the loops-free crumpled chain is also unperturbed by 

addition of compartments (Fig. S7A). Our result is also consistent with experiments where 

depletion of cohesin caused expected changes in the P(s) curves (the loss of the peak and dip 

on the log-derivative), yet retention and strengthening of compartments (Fig. 2C) [30, 41].

The dilution of entanglements is a novel exciting phenomenon in crumpled chains folded 

into loops. We suggest that formation of loops shortens the main chain and stores the 

material inside the unentangled loops; if loops are short (λ ≈ Ne), they are neither crumpled 

nor can crumple the main chain, serving as a “reservoir” of unentangled material. This 

evidently leads to reduction and dilution of topological obstacles along the main chain, both 

globally (the total amount of the obstacles) and locally (linear density of the obstacles). The 

latter results in the increase of entanglement length Ne of the main chain and, therefore, 

decompaction of chromosomes, which counteracts the effective contour length shortening. 

We suggest a theory explaining how this dilution effect depends on parameters of the loops, 

which is supported by the simulations. A similar effective stiffening of chromosomes has 

been recently suggested experimentally [49].

The developed theory allows to rationalize the shapes of experimental curves in different cell 

types and upon the change of conditions. Our model shows how sizes of loops, not directly 

visible in Hi-C data, can be inferred from the shape of experimental P(s) curves. First, the 

peak on the log-derivative corresponds to the size of the loops with a factor of order of 

unity (Fig. 5 A,B, Fig. S8), marginally dependent on the loop density. This observation 

allows to estimate the typical sizes of chromosome loops from in vivo data, yielding a range 

of λ = 100 − 200 kb for various human cells (Fig. 1B). The diagram of P(s) slopes at the 

peak and the dip further allows to infer the typical values of density parameter d and loop 

sizes λ from comparison of experimental data points with our theory (Fig. 5C). However, 

such an analysis of Hi-C curves should be done with caution: it is known that the coarse 

capture radius in Hi-C can flatten the P(s) at short scales (raising its log-derivative) [32, 33] 

(see also Fig. 1B). Accordingly, we see in Fig. 5C that a few Hi-C data points have larger 

amplitudes of the peak slope than the theory can explain. At the same time we find a rather 

good agreement of our theory with Micro-C experiment, where the capture radius is lower, 

approaching the size of a single nucleosome. The fit presented in Fig. 5D suggests that the 

loop size is λ ≈ 180kb, which also corresponds to the value derived from the peak position, 

and λ/g = 2.
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These estimates draw a picture of chromosome organization very different from a commonly 

accepted view (Fig. 6). For the estimated λ and λ/g, the entanglement length (of the main 

chain) becomes significantly large, Ne ≈ 700kb, further suggesting that at scale of Ne/ g ≈ 8
loops or s ≈ 2Mb of genomic distance, a chromosome is virtually unentangled. This result 

is a clear manifestation of the dilution of entanglements due to folding into loops. At 

s < 2Mb a chromosome backbone follows the statistics of an ideal chain (not crumpled), 

while at larger scales it becomes crumpled. When the loops are removed, however, Ne

drops to Ne 50 − 70kb [1] and the chain becomes crumpled in a large range of scales, 

experimentally 50kb< s < 5000kb [29, 30] (Fig. 2C).

Our theory has several implications and makes testable predictions. Unentangled 

organization of chromosomes at submegabase scales may be consistent with chromosome 

dynamics that appear to have Rouse scaling of MSD(t) t1/2 [50]. Our theory also suggests 

that tracing of the backbone (between the loops) in microscopy, if possible, would produce 

ideal statistics of the intrachain distances R(s) s1/2 up to several Mb with loops (Fig S4), 

while s1/3 without loops (as seen in [51]). More sparse entanglements in chromosomes 

with loops can also potentially render different mechanical properties of cell nuclei as 

compared to the case without loops. In Polymer Physics, we expect to observe a similar 

phenomenon of dilution of entanglements in equilibrium melt of linear chains folded into 

loops, where it can affect dynamics and response to mechanical stress.

While being analytically tractable and powerful in explaining experimental data, our theory 

has several limitations, that we outline below.

First, we consider here independent and exponentially distributed loops and gaps. This 

allows us to map the sequence of loops and gaps onto the two-state Markov process and 

obtain a precise expression for the weights of the diagrams. In the dynamic model of loop 

extrusion there exist nested loops, correlations between the consecutive loop and gap sizes 

and stalling interactions (collisions) between the neighboring motors, as well as with other 

proteins on chromosomes. It was shown before [20] that abundant collisions can result in 

a distribution of the loop sizes which can be approximated by the normal. However, the 

analytical form of the distribution of gaps for the simplest case of non-interacting (sparse) 

motors, as well as the microscopic rules of real extrusion in cell are not known at the present 

time.

Second, we consider only equilibrium loops, whereas loops actively extruded by motor 

proteins turn a polymer into an active/non-equilibrium system. The fixed loops approach 

relies on the assumption that the time to actively extrude the loop is larger than the 

time of its passive relaxation. Thus, there exists a critical length scale, s*, such that 

for loops λ < s* the relaxation is faster than extrusion, and our assumption largely 

holds. Quantitative estimates (see Appendix D) indicate that for the upper limit of the 

extrusion speed of r = 1 kb/s [52], the Kuhn segment lk = 4kb and Rouse diffusion 

coefficient DR = 10−2μm2s−1/2 [50] the critical equilibrium scale can be as large as 

s* = 100 ÷ 1000kb ≳ λ. Another experimental estimate from [50] is that a chain of ~ 500kb 

equilibrates in ~ 40min; extrapolating to 100kb loops it gives ~ 2min to equilibrate. 
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Loops of λ ≈ 100kb can be extruded in as little as ~ 2min if the speed is 1kb/sec or in 

~ 10min if experimentally measured cohesin residence time is used. Thus, at the lower 

limit of this range, loops may not be fully equilibrated. We note that equilibration of the 

loops and restoration/extinction dynamics of topological obstacles in the steady-state would 

create a non-trivial interplay, whose consequences on the contact probability are yet to be 

understood.

Third, for the sake of analytical tractability we employ here a Gaussian model, mapping a 

fractal chain onto the fractional Brownian motion [2]. We explicitly rely on the Gaussianity 

of the chain by making use of the mean-field connection between the equilibrium spatial 

distance and the contact probability (Eq.1). Moreover, the spatial distances in loops were 

computed by treating them as fBm bridges, which allowed us to exploit the effective 

Hamiltonian of fractal polymer states suggested recently [2, 37].

Fourth, we do not consider very dense arrays of loops, bottle brushes, that fold 

chromosomes into elongated compacted bodies (during mitosis [53], meiosis [54], and 

WaplKO). At λ/g > 4, the size of a Gaussian loop reaches the size of the Gaussian gap, 

marking a transition to the bottle-brush regime, when rigidity of the chain can become 

dominant. As shown in [55] for comb-like chains with linear side groups, in this regime 

(specifically, a loosely grafted bottle-brush) the gaps become fully stretched due to osmotic 

pressure generated by the side chains. In case of crumpled backbone a non-trivial interplay 

between the stretching and decompaction (increase of Ne) can happen in the dense regime. 

Consistently the bottle-brush stiffening might be responsible for a slight deepening of the 

dip observed in Wapl knock-out experiments (Fig. 2C), where the increased abundance 

and processivity of cohesin (smaller g and larger λ) might turn a chromosome in a dense 

mitotic-like bottle brush.

In summary, we have developed an analytical theory of a crumpled polymer folded into 

loops and have revealed a novel topological phenomenon in such a system. We demonstrate 

that information about loops is contained in the shape of experimentally measurable 

contact probability curve, P(s), and primarily in its log-derivative. Our theory quantitatively 

reproduces the experimental curves and allows to infer parameters of the loops in vivo. 

Furthermore, we propose that the density of entanglements in chromosomes is reduced due 

to folding into loops, resulting in chromosomes that are not crumpled at scales up to ~ 1 

– 2 Mb. Together, our findings demonstrate that folding of a polymer into loops not only 

changes its conformational characteristics across scales, but also reduces the topological 

constraints in the polymer system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: DERIVATION OF THE CONTACT PROBABILITY FOR A 

FRACTAL POLYMER CHAIN WITH LOOPS

1. Basic properties of equilibrium ideal Gaussian chains

In the absence of SMC-mediated loops, the probability distribution of the separation vector 

R  between two sites of an equilibrium ideal linear Gaussian chain separated by contour 

distance s is given by (see Ref. [12, 34, 35])

P free(R ∣ s) = 3
2πσfree

2 s
3/2

exp − 3R2
2σfree

2 s ,

(11)

where

σfree
2 [s] = lpb2s

(12)

and b2 is the mean square length of a chain segment, lp is the persistence length. Gaussian 

property is supposed to be if s ≫ lp.

For an equilibrium ideal Gaussian bridge having size L, the probability distribution of the 

separation vector R  between two sites separated by contour distance s ( < L) is given by

Pbridge(R ∣ s, L) =

= 3
2πσbridge

2 s, L
3/2

exp − 3R2
2σbridge

2 s, L ,

(13)

where (see [12])

σbridge
2 [s, L] = lpb2s(L − s)

L .

(14)

2. Subdiffusive fBm trajectories and the effective Hamiltonian

To take into account non-Markovian properties of the trajectory at values of fractal 

dimension df > 2, we consider the class of fractional Brownian motion (fBm) with the 

Hurst parameter H = 1/df as a model to the fractal polymer fiber. To begin with, define the 

trajectory of a discretized random walk, or, similarly, a conformation of a polymer chain 
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in the three-dimensional space by a set of coordinates X = x0, x1, …, xN . There exist a 

unique stationary measure P(X) over the realizations of the walk X, which satisfies

p xk − xm = y = ∫ dXP(X)δ xk − xm − y =

= 3
2πlpb2s2/df

3/2
exp − 3y2

2lpb2s2/df
; s = |k − m|

(15)

for all k, m and some fixed constant df called fractal dimension of the walk.

It the recent works of one of us [2, 4, 37] it has been shown that in the limit of large N for 

the subdiffusive df > 2  fractal Brownian motion(fBm) one can write down P(X) as a Gibbs 

measure with a pairwise quadratic Hamiltonian:

P(X) = 1
Z exp(−V (X)); Z = ∫ exp(−V (X))dX;

V (X) = ∑
i < j

Aij(xi − xj)2

(16)

with a proper choice of interactions coefficients Aij (here Z is the partition function, and 

we use lowercase and uppercase bold letters to denote vectors in three-dimensional and 

3 × N-dimensional space, respectively). In particular, if the coefficients Akm depend only on 

the chemical distance between monomers k − m = s, so that Akm = A(s), and if for s ≫ 1 A(s)
decays algebraically:

A(s) cs−γ

(17)

with some c > 0, then depending on γ there are three possible asymptotic regimes of the 

chain statistics:

1. If γ ≤ 2 all monomers (points of the trajectory) asymptotically merge, and

⟨ xk − xm
2⟩ 0 when N ∞

(18)

regardless s = k − m ;

2. If γ > 3 the interaction is irrelevant and the large scale properties of the trajectory 

are indistinguishable from the standard Brownian motion with df = 2.

3. Finally, and most interestingly, if 2 < γ < 3 the relation (Eq.15) holds for 1 

1 ≪ s ≪ N with some renormalized b‾(c, γ) and a non-trivial fractal dimension
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df = 2
γ − 2

(19)

The value of γ = 3 is critical, giving rise to the logarithmic corrections to (Eq.15). Note that 

the conventional beads-on-a-string model corresponds to the choice

A(s) = 3
2b2δs, 1,

(20)

Now we can generalize Eq. (12) to an arbitrary fractal dimension df ≥ 2:

σfree
2 s = lpb2s2/df

(21)

Using the effective Hamiltonian (16) we will generalize Eq. (14) for a fractal bridge in the 

next section.

3. fBm-bridge

To get the distribution between sites inside a bridge having length L (measured in numbers 

of edges between monomeric units), let’s notice that a fBm-chain becomes a fBm-bridge iff 

the separation vector between first and last site is 0 (i.e. x0 = xL). By definition of conditional 

probability we have for any s the following probability distribution function (PDF):

Pbridge(r ∣ s, L) = ℙfree xs − x0 = r ∩ xL − x0 = 0
ℙfree xL − x0 = 0 ,

(22)

where ℙfree ⋅  is the probability measure (Eq.16) in a free polymer chain. If chain sections 

0…s and s…L were independent, one could represent the numerator as product of two 

probabilities P free(r ∣ s) and P free(r ∣ L − s) and arrive to the Eq. (14) valid for df = 2. But a 

general fBm walk for df ≠ 2 has long-range memory, therefore, we need a more delicate 

technique to express the probability above.

Using the Gibbs distribution Eq. (16) we can write

Pbridge(r ∣ s, L) =
= ∫ δ xs − x0 − r δ xL − x0 ⋅ P X DX

∫ δ xL − x0 ⋅ P X DX

(23)
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The denominator is calculated straightforward from (Eq.15) and proceeding with the 

nominator we can Fourier transform the delta functions

Pbridge(r ∣ s, L) = 2πσfree
2 L
3

3/2
.

⋅ 1
(2π)6

∫ G q, q′, r, s, L dq dq′
,

(24)

where the Green function has the following form (putting all formulas in (Eq.16) together)

G(q, q′, r, s, L) =

= 1
Z∫ dx0…dxLexp(− 1

2 ∑
i, j

Aij(xj − xi)2 +

+iq(xs − x0 − r) + iq′(xL − x0)) =

= 1
Z∫ dx0…dxLexp(− 1

2 ∑
i, j

aijxixj +

+iq(xs − x0) + iq′(xL − x0) − iqr) =

= 1
Z exp(−iqr)∫ dx0…dxLexp(− 1

2XTAX + BTX),

(25)

where the new matrix A = ∥ aij ∥ were introduced:

aij =
2

k
Aik, i = j

−2Aij, i ≠ j

(26)

and the new vector B ∈ ℝ3(L + 1) consisted of L + 1 parts

bα = iq δsα − δ0α + iq′ δLα − δ0α , α ∈ 0, …, L .

(27)

Using new notations we can express the full partition function Z (again from (Eq.16))

Z = ∫ dx0…dxLexp − 1
2XTAX = 1

det(A/2π) .

(28)

Using the resulting gaussian-like integral in (Eq.25), we get a new form of the Green 

function:

G q, q′, r, s, L = exp −iqr exp 1
2BTA−1B .
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(29)

Let us denote ωp and Ap (p = 0, 1, …, L) — eigenvalues and eigenvectors of A, respectively, 

ordered from the smallest eigenvalue to the largest. Using scalar (inner) products

βp = B, Ap = iq ap
s − ap

0 + iq′ ap
L − ap

0 ,

(30)

where ap
s − s-th component of the vector Ap, we can express

log G(q, q′, r, s, L) = − iqr + 1
2 ∑

p = 0

L
ωp

−1 βp
2

(31)

Substituting (Eq.31) into (Eq.24) gives us

Pbridge(r ∣ s, L) = (2πσfree
2 L )3/2

33/2(2π)6
∫ dq∫ dq′

exp(−iqr + 1
2 ∑

p = 0

L
ωp

−1 βp
2) = …∫ dq∫ dq′

exp(−iqr + 1
2 ∑

p = 0

L
ωp

−1 iq(ap
s − ap

0) +

+iq′(ap
L − ap

0) 2) = …∫ dq∫ dq′

exp(−iqr − 1
2 ∑

p = 0

L
ωp

−1 q(ap
s − ap

0) + q′(ap
L − ap

0) 2) .

(32)

This is a double Gaussian integral, which can be calculated explicitly through parenthesis 

expansion and grouping components of q and q′ into pairs:

Pbridge(r ∣ s, L) = 1
2π

3
9 det Σ

lpb2L2H

3/2

exp − 3r2
2

1
3 det Σ

σ22

,

(33)

where elements of the matrix Σ are
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σ11 = ∑
p = 0

L
ωp

−1 ap
s − ap

0 2

σ22 = ∑
p = 0

L
ωp

−1 ap
L − ap

0 2

σ12 = σ21 = ∑
p = 0

L
ωp

−1(ap
s − ap

0)(ap
L − ap

0) .

(34)

Importantly, the elements of matrix Σ have the meaning of the mean-square distances 

between corresponding monomers. Indeed, expressing these distances as sums over normal 

coordinates up = X, Ap  and using the equipartition theorem, which determines the average 

amplitudes of the normal modes at equilibrium (see [2] for more details), one gets 

uα, uβ = 3ωα
−1δαβ and, therefore,

xs − x0
2 = 3σ11

xL − x0
2 = 3σ22

xs − x0 xL − x0 = 3σ12 .

(35)

The left hand sides can be easily derived from properties of the fBm:

σ11 = lpb2s2H/3 = σfree
2 s /3

σ22 = lpb2L2H/3 = σfree
2 L /3

σ12 = lpb2
6 L2H + s2H − (L − s)2H =

= 1
6 σfree

2 L + σfree
2 s − σfree

2 L − s .

(36)

Getting back to Eq. (33) we obtain

σbridge
2 [s, L] = 3 det Σ

σ22
= 3σ11(1 − σ12

2

σ11σ22
) =

= σfree
2 s (1 − σfree

2 L + σfree
2 s − σfree

2 L − s 2

4σfree
2 s σfree

2 L ),

(37)

Notice that when H = 1/2 (standard Brownian motion)

σbridge
2 [s, L] = σfree

2 [s]L − s
L = lpb2s(L − s)

L ,
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(38)

which naturally matches Eq. (14).

4. Conditional contact probabilities for different diagrams

For an arbitrary polymer chain, the pairwise contact probability between two sites separated 

by linear distance s is given by

P(s) = Prob R < a0 ≈

≈ 4
3πa0

3∫ P(R ∣ s)δ(R)d3R = 4
3πa0

3P 0 ∣ s ,

(39)

where a0 is a cutoff contact-radius, and P(R ∣ s) is the probability distribution of the inter-

sites separation vector R . In derivation of Eq. (39) we assumed that a0 ≪ R2 .

From Eq. (39) we immediately find that the contact probability between two sites of a fBm 

chain with fractal dimension df and free ends behaves as 1/s3/df, where s is the contour 

separation between the points.

How does this result change in the presence of random loops? For a given realisation of 

the random loops array, one should consider four scenarios of the relative positions of the 

two sites as schematically shown in Fig. 7. Here we neglect the diagrams corresponding to 

the nested and overlapping loops configurations as they rarely occur under the conditions of 

the interphase. Under the assumption of equilibrium loops (quenched disorder of loops), the 

resulting contact probability is given by the sum

P(s) = 4
3πa0

3 ∑
i = a, b, c, d

p(i)(s ∣ A i) ,

(40)

where

p(i) s ∣ A i = 2πσ(i)
2 s ∣ A i

−3/2

(41)

is the contact probability conditional to the particular class of subchain. In what follows we 

work out exact expressions for σ(i)
2 s ∣ A i .
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FIG. 7. 
Four diagrams contributing to the contact probability between two sites (depicted as black 

dots) of polymer chain with a quenched disorder of random loops (depicted in red). The loop 

extrusion factors are depicted as orange squares.

First, let us consider the diagram (a). In the presence of an arbitrary number of loops 

between the two points of interest the variance of their physical separation reads

σ(a)
2 [s ∣ x] = σfree

2 [(1 − x)s],

(42)

where x (0 ≤ x < 1) denotes the fraction of the subchain length occupied by the loops. In 

other words, the intervening loops lead to the effective reduction of the contour distance 

between the points.

Next, let us consider a subchain of linear size s with one end belonging to the gap region and 

another end belonging to the loop. The loop containing one of two sites of interest can be 

parameterized by the lengths l1 and l2, as shown in Fig 7b. Clearly, the separation vector R
between two sites can be represented as a sum of mutually independent zero mean Gaussian 

random vectors, R 1 and R 2, whose statistical properties are described, respectively, by the 

normal distributions (11) and (13) under an appropriate chose of parameters. Recalling that 

the sum of independent Gaussian variables has normal statistics with the variance given by 

the sum of variances of the underlying terms we obtain
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σ(b)
2 s ∣ l1, l2, x =
= σbridge

2 l2, l1 + l2 + σfree
2 (1 − x) s − l2 ,

(43)

where 0 ≤ x < 1, l1 ≥ 0 and 0 ≤ l2 ≤ s. Now x is the fraction of contour length occupied by 

loops in the segment of size s − l2 enclosed between the loop base and the remaining end of 

the subchain.

Now let us consider a subchain located inside a loop, see Fig. 7c. Then

σ(c)
2 s ∣ l1, l2 = σbridge

2 s, l1 + l2 ,

(44)

where l1 ≥ 0 and l2 ≥ s.

Finally, for the last diagram on Fig. 7d

σ(d)
2 s ∣ l1, l2, ℎ, l1, l2 = σbridge

2 l2, l1 + l2 +
+σfree

2 1 − x ℎ + σbridge
2 l2, l1 + l2 ,

(45)

where l1 = L + ℎ + l2 − s, l2 = s − ℎ − l2, l1 ≥ 0, 0 ≤ l2 ≤ s, 0 ≤ ℎ ≤ s − l2, 0 ≤ x ≤ 1 and 

L ≥ s − l2 − ℎ. Here x is the fraction of contour length occupied by loops in the segment 

of size s − l2 − l2 enclosed between two loops depicted in Fig. 7d.

5. Statistical weights of the diagrams

To perform the averaging procedure over disorder of loops assumed in Eq. (40) one needs 

to know the probability distributions of the random variables A i, which parameterize 

contributions coming form different types of the diagrams (a-d).

Let us treat the sizes of the loops and of the gaps as the independent random variables 

having exponential probability distributions with αl = λ−1 and αg = g−1. Then, in order to 

derive the statistical weights of the diagrams, it is convenient to introduce an auxiliary 

Markov jump process with two states, “Loop” and “Gap”, in continuous time where time 

intervals are measured in the units of the polymer contour length. Clearly, the statistics of 

the random pattern of alternating loops and gaps is analogous to the joint statistics of the 

time intervals which the Markov process spends in the “Loop” (“L”) and the “Gap” (“G”) 

states in the course of its stochastic dynamics.

Based on this analogy, we can express the statistical weight of the diagram (a) as follows

Wa x ∣ s = pgg ”G”, s ∣ ”G”, 0 ℱ x ∣ s ,
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(46)

where pg = αl
αg + αl

 is the probability to find the statistically stationary Markov process in the 

state “Gap” if you visit it in a random time moment (i.e. the probability that a randomly 

chosen point of the polymer belongs to a gap), g(”G”, s ∣ ”G”, 0) = 1
αg + αl

αl + αge− αl + αg s  is 

the probability to find the Markov jump process in the state “Gap” after time s under the 

condition that it starts in the state “Gap” (i.e. the probability that the second point, which 

is separated by contour distance s from the first point, also belongs to a gap region) and 

ℱ(x ∣ s) is the probability distribution of the random variable x representing the fraction of 

time that the Markov process spent in the state “Loop” under the condition that it starts in 

the state “Gap” and find itself in the state “Gap” after the time s (i.e., x is the fraction of the 

contour length occupied by loops for a segment whose both ends belong to the gap regions), 

which is given by (see [39])

ℱ(x ∣ s) = αg + αl

αl + αge− αl + αg s e−αgsδ(x) +

+ αgαl(1 − x)s2
x

1/2
I1 2 αgαlx(1 − x)s2 ×

× e−αg(1 − x)s − αlxs ,

(47)

with I1[x] denoting the modified Bessel function of the first kind [56].

Next, the statistical weight of configurations responding to the diagram (b) is

Wb l1, l2, x ∣ s = 2plρ l1 ρ l2 g ”G”, s ∣ ”G”, l2 ×
× ℱ x ∣ s − l2 ,

(48)

where pl = αg
αg + αl

 denotes the probability to find the statistically stationary Markov process 

in the state “Loop” if you visit it in a random time moment, the factors ρ l1 = αle−αll1 and 

ρ l2 = αle−αll2 represent, respectively, the probability densities of the random time l1 elapsed 

since the last entrance to the state “Loop” and of the random time l1 remaining before the 

next jump to the state “Gap”, and ℱ x ∣ s − l2  is the probability distribution of the fraction 

of time x that the Markov process spent in the state “Gap” under the condition that it starts 

in the state “Gap” and find itself also in the state “Gap” after the time s − l2. Note also that 

factor 2 in Eq. (48) arises due to the left-right symmetry in the choice of point which is 

assumed to reside on the loop.

Similarly, the statistical weight of configurations responding to the diagram (c) is

Wc l1, l2 ∣ s = plρ l1 ρ l2 .
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(49)

Finally, the statistical weight of subchains described by the diagram (d) is given by

Wd l1, l2, ℎ, x, L ∣ s = plρ l1 ρ l2 ρ(L)αg ×
g ”G”, l2 + ℎ ∣ ”G”, l2 ℱ x ∣ ℎ .

(50)

Substituting (42)-(45) and (46)-(50) in Eq. (40) we come to the final expressions of contact 

probability in the fractal polymer model (see Supplementary Materials).

6. Entanglement length Ne

Now let us add to our model of a fractal chain with loops another ingredient, the 

entanglement length Ne. This parameter allows us to describe the crossover in r2 between 

two regimes of s:

r2 s ∣ Ne =
s lpb2, for lp < s < Ne

s2HNe
1 − 2Hlpb2, for s > Ne

,

(51)

where H = 1/df and df is the fractal dimension. For df = 3 this behaviour accounts for the 

real crumpled polymer chains, such as a ring from the melt of unknotted non-catenated 

rings [16, 36]. Thus, the physical meaning of Ne is the scale of the minimal crumple, below 

which the crumpled polymer does not feel topological constraints in the system and has 

ideal statistics.

Expression (Eq.51) is non-smooth, making the analysis of log-derivatives of the respecting 

curves problematic. Thus, it is worth to smooth (Eq.51) by averaging over a certain 

distribution of Ne. If we take Ne as an exponentially distributed random variable x with 

mean Ne, we can average r2 above and use it as a new function σfree
2 s, Ne :

σfree
2 s, Ne =

0

∞

r2(s ∣ x) ⋅ e−x/Ne

Ne
dx =

= lpb2s2H
Ne

0

s

x1 − 2H ⋅ e−x/Ne dx + lpb2s
Ne

s

∞

e−x/Ne dx

= lpb2 Ne
s

Ne

2H
γ 2 − 2H, s

Ne
+ se−s/Ne ,

(52)

where γ(x, y) is the lower incomplete gamma function. Since lp ≪ Ne one can substitute 

the lower bound by zero in (Eq.52). The resulting averaged σfree
2 s, Ne  is substituted instead 

of (21) in Eq. (37) and Eq. (42)–(45). Noticeably, since all bridges and the backbone are 
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independent, we can use different entanglement lengths, one for bridges and one for the 

backbone.

APPENDIX B: DERIVATION OF THE EFFECTIVE VOLUME DENSITY OF A 

CHAIN FOLDED INTO LOOPS

The increase of the entanglement length for a chain with loops is associated with the 

decrease of the effective volume density of the polymer, according to the formula (Eq.6). 

The effective Kuhn volume density φk
eff relevant for the entanglements, of a crumpled 

polymer with loops can be expressed as follows

φk
eff = NMvk

lk(d + 1)
1

V 0 − V loops
,

(53)

where vk ∝ lk
3 and lk are the volume and the size of the Kuhn segment, respectively; M is the 

number of chains sharing the volume V 0 of a single chain; d = λ/g is the density parameter 

(see [38]); V 0 = R0
3 is the volume occupied by one chain, i.e. the cubed size of its backbone; 

V loops is the total volume of the loops. The spatial size of the backbone is controlled by its 

contour length, N0 = N/(d + 1), the entanglement length Ne and the Kuhn length lk as follows

R0 = N0/Ne
1/3 Ne/lk

1/2lkb,

(54)

therefore,

V 0 = R0
3 = N

d + 1Ne
1/2lk

3/2b3 .

(55)

Since each loop is unentangled, their spatial size can be approximated by the size of a 

Gaussian bridge, Rloop
2 = λlkb2/4, and their overlap with each other can be neglected. The 

mean number of the loops occupying the volume V 0 reads nloops = M N
d + 1

d
λ . Then one can 

estimate the total volume of the loops as follows

V loops = nloopsRloop
3 = 1

8λ1/2d lkb2 3/2 M N
d + 1

(56)

The total number of chains M populating the volume V 0 is determined by the total Kuhn 

volume density of the system φk
(0) = φk

eff(d = 0) and the entanglement length Ne as
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M = φk
(0)lkV 0
Nvk

= φk
(0)b3

vk(d + 1)Ne
1/2lk

5/2

(57)

Collecting (Eq.53), (Eq.55), (Eq.56) and (Eq.57) together, one arrives at the following 

expression for the effective volume density of the backbone

φk
eff = φk

(0)

1 + d(1 − cαφk
(0)λ1/2)

(58)

where the constant cα depends on the parameters of the fiber, cα = lk
5/2b3/ 8vk ∝ lk

−1/2. In 

particular, cα depends on the numerical coefficients in the expression for the excluded 

volume of the Kuhn segment, vk ∝ lk
3, which are determined by the microscopic structure of 

the fiber. Fitting the resulting Ne = Ne φk
eff  as predicted by (Eq.58) to the one computed in 

simulations, we find the phenomenological expression for cα ≈ 0.02 lk
−1/2.

The structure of (Eq.58) is quite transparent. Without loops (d = 0), the backbone resembles 

the original crumpled chain with effective volume density φk
(0). If the loops are sufficiently 

short so that their volume can be neglected, then the main contribution to the decreased 

volume density comes from the backbone shortening, which yields the factor d + 1 in the 

denominator. In general case, the loops occupy a certain volume partially compensating the 

effect of the backbone shortening.

To understand better the role of the compensation effect, it is instructive to introduce the 

entanglement length Ne of a single (M = 1) crumpled chain without loops of the same length 

N and same Kuhn volume density φk
(0). Clearly from (Eq.57), Ne is controlled by the volume 

density of the chain, Ne ∝ (φk
(0))−2. Then the combination cαφk

(0) = 1
8Ne

−1/2
 and one can rewrite 

(Eq.58) as follows

φk
eff = φk

(0)

1 + d(1 − (λ/64Ne)1/2)

(59)

From (Eq.59) it is evident that the compensation effect by the loops is not full, as long 

as the loops placed on the chain are shorter than its entanglement length (non-topological 

loops), λ < Ne. This compensation can be accounted as an effective decrease of the density 

parameter to deff < d, such that

1 − deff
d = λ

64Ne

1
2 < 1 .

(60)
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Then, the increase of entanglement length of a chain folded into loops can be described as a 

result of backbone shortening of a chain with effective density parameter deff:

φk
eff = φk

(0)

1 + deff
.

(61)

Indeed, for sufficiently short loop sizes λ < λcr = 64Ne, the loops induce the decrease of 

the effective entanglement density and the associated increase of the entanglement length, 

Ne, of the backbone. At λcr the loops are not Gaussian anymore, violating the condition of 

unentangled loops and, thus, ceasing the dilution of entanglements in the system.

APPENDIX C: POLYMER SIMULATIONS

Polymer simulations are done using polychrom (available at https://github.com/open2c/

polychrom), a wrapper around the open source GPU-assisted molecular dynamics package 

OpenMM [57]. In simulations of crumpled polymers with loops the polymer is represented 

as a closed uknotted chain (ring) of N ≈ 90000 monomers with one monomer corresponding 

to 1 kb, so that the total simulated genomic length is 90Mb. The chains are equipped with 

harmonic bonds Ubond, quadratic angular potential Uangle and excluded volume Uev interactions. 

Simulations are conducted in the box with periodic boundary conditions (PBC) at volume 

density ρσ3 ≈ 0.3.

The excluded volume potential Uev is introduced via the auxiliary Weeks-Chandler-Anderson 

(WCA) potential U ri, rj  [58, 59], which is a lifted Lennard-Jones repulsive branch

U rij = ri − rj =
4ε σ/rij

12 − σ/rij
6 + ε, rij ≤ 21/6σ

0, rij > 21/6σ

(62)

where σ = 0.02μm is the characteristic scale of the excluded volume repulsion and ε = 1. In 

order to avoid strong repulsive forces close to the singularity of (Eq.62) in simulations, the 

WCA potential is further smoothly truncated

Uev rij = ℋ U rij − εtr εtr ×

1 + tanh U rij
εtr

− 1 + ℋ εtr − U rij U rij ,

(63)

at the prescribed truncation value εtr = 10, corresponding to a strong mutual volume 

exclusion of the beads. In (Eq.63) ℋ is the step function. The potential (Eq.63) acts between 

every pair of beads, except for neighboring ones.

The energy of harmonic bonds reads as follows
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Ubond = 3
2a2 ∑

i = 1

N − 1
(ri, i + 1 − lb)2,

(64)

where a is the standard deviation of the monomer-to-monomer distance ri, i + 1 = ri + 1 − ri

from the equilibrium bond length lb. We preset a ≈ 0.06σ. In order to repress occasional 

crossing of two closely located polymer bonds one through another, we choose the value of 

the equilibrium bond length lb = 0.8σ. As we found, the value of lb somewhat smaller than 

the excluded volume scale facilitates conservation of topology in simulations of crumpled 

chains.

The angular energy is a harmonic quadratic potential for the consecutive bond angles θi, i + 1, i + 2

between the corresponding monomers:

Uangle = ∑
i = 1

N − 2
k(θi, i + 1, i + 2 − θ0)2 .

(65)

We chose k = 2 and θ0 = π. The resulting persistence length of such a model was found to be 

lp = 1.75 monomers and the Kuhn segment lk = 3.5.

In order to test if compartments can interfere with loop extrusion and change the 

resulting P(s), we have also introduced block-copolymer interactions in some of our 

simulations. Annotation into A and B compartments for simulations has been take from 

Hi-C experiments (the fist eigenvector of the centralised observed over expected Hi-C map; 

chromosome 14 in 250kb resolution [60]). The resulting median size of the compartmental 

domains is ≈ 2.3Mb. The attractive potential between the beads of the same type is the same 

as described in [61].

First the ring chain without loops is equilibrated in the PBC box starting from a knot-free 

configuration. After the equilibration the averaged contact probability resembles a typical 

law for the unknotted non-concatenated rings with d log P(s)
d log s ≈ − 1.1 (Fig. S7A).

At the second step we gradually extrude (one-side) the loops on the chain and then fix the 

loops positions. Extrusion is chosen instead of the instantaneous fixation of the loops in 

their final positions in order to make sure that the loops are not catenated with each other. 

We check explicitly that the loops are indeed non-catenated at the end of the extrusion 

by computing the Gaussian linking number for each pair of the loops. Loops constraints 

are introduced as additional harmonic bonds between non-neighboring beads of the same 

energy as the polymer bonds (Eq.64). The loop lengths l1, l2, …, lk, k = [N/(λ + g)] are drawn 

randomly from the exponential distribution with the mean λ = 100kb. The starting positions 

of the loop extruders x1, x2, …, xk are drawn randomly, such that the gap lengths xi + 1 − xi − li

for i = 1, 2, …, k − 1 are distributed exponentially with the mean g. We extrude the loops up 
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to the pre-calculated lengths and then equilibrate the chain with fixed extruders at their final 

positions for another diffusive relaxation time.

To ensure the chain with loops is sufficiently equilibrated we compute the displacement of 

a single monomer in the frame of the center-of-mass of the chain (g2 function in notations 

[62]) in the course of simulation. As we show in Fig. S7C, at some point the displacements 

saturate at the gyration size of the whole chain. At this point the monomer starts displacing 

together with the center-of-mass of the chain (diffusive relaxation time), which is a dynamic 

evidence of sufficient equilibration of the chain. To provide an estimate of the computation 

time, such simulation takes ≈ 10 days on a single GPU core (NVidia RTX 2080 Ti).

Quantitative analyses of the chains from simulations (contact probability, P(s), and end-to-

end distances of the backbone chain, Rbb
2 (s)  are conducted using the module for the analyses 

of polymer conformations in polychrom (polymer analyses). The contact probability was 

computed for two cutoff radii, as shown in Fig. 4D by a strip, cutoff = 3σ and 5σ.

To calculate the entanglement length of the backbones in our simulations we have 

generalized the expression for the end-to-end squared distance R2(s) in the worm-like chain 

model to account for the crossover at Ne. Specifically, we consider the following model

R2 s ∣ Ne =
RWLC

2 (s), for s ≤ Ne

s/Ne
2/3RWLC

2 Ne , for s > Ne

(66)

which is further smoothed using the exponential distribution of Ne:

R2(s) = 1
Ne 0

∞
R2 s ∣ Ne

′ exp −Ne
′ /Ne dNe

′ .

(67)

The functional form of RWLC
2 (s) accounts for the transition from the rod-like behavior at short 

scales to the random-walk behavior at larger scales, describing a persistent polymer chain 

[48]

RWLC
2 (s) = 2lps 1 − lp

s 1 − exp −s/lp .

(68)

The integration (Eq.67) is performed numerically for various pairs of parameters lp and 

Ne with the steps Δlp = 0.25 and ΔNe = 10. The obtained curves are fit to the end-to-

end distances computed on the simulated backbone trajectories in the interval [0, 1000] 

monomers (1Mb), see Figs. S4–S6. The error of the fit ε0 is computed as the point-wise L2

distance between theoretical and numerical curves (mean-squared error). The optimal set of 

lp, Ne  values is determined as the pair yielding the minimum value of the error ε0. An error 
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of optimal Ne is estimated as the interval around the optimal value yielding the error-of-fit 

not exceeding 150% of ε0.

APPENDIX D: ESTIMATION OF THE CRITICAL EQUILIBRIUM LOOP 

EXTRUSION SCALE

The fixed loops model is a reasonable approximation of the active loop extrusion process at 

scales, for which the extrusion rate rcoℎ ≈ 1 kb/s is smaller than the rate of thermal relaxation. 

In contrast with the rate of active extrusion, passive relaxation rate of a polymer non-linearly 

depends on the contour (genomic) length scale, s; e.g., in the framework of the Rouse model, 

it can be estimated as rtℎ = s/τR(s) = lK
2 / τ0s , where τ0 is the microscopic Rouse time (the 

diffusion time of one monomer at the scale of order of the Kuhn length, [12, 48, 63]). 

Thus, at short length scales s < s* thermal relaxation is faster than extrusion and the chain 

is effectively equilibrium, while at larger scales s > s* the non-equilibrium effects should be 

important. The crossover scale between the two regimes is

s* = lk
2 rcoℎτ0

−1

(69)

The reported microscopic parameters for chromatin in the literature vary greatly and 

are quite ambiguous [64, 65]. For the coarse-grained modeling one typically takes 

lk = 3 ÷ 4 kb, [66, 67]. As a reference value of the Rouse diffusion coefficient one can 

take D = 10−2μm2s−1/2, [50, 60]. This yields τ0 = rk
4D−2 ≈ 10−1 ÷ 10−2 s for the Rouse 

microscopic time, where we have used the conversion ratio c = 60 bp/nm and the Kuhn 

segment size rk ≈ 50 nm. Note, however, that a small ≈ 10 nm uncertainty (20%) in the Kuhn 

segment size translates into an order of magnitude uncertainty for the microscopic Rouse 

time.

Plugging these values to (Eq.69) one arrives at the following rough estimate of the crossover 

genomic scale

s* ≈ 100 ÷ 1000 kb .

(70)
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FIG. 1. 
Folding of a fractal polymer into random loops recapitulates universal P(s) profiles in Hi-C 

experiments. A: a sketch of fractal polymers with different fractal dimensions df folded 

into loops. The mean size of the loops is λ, the mean size of the gaps (spacers) is g. B: 

a collection of 24 contact probability curves P(s) (left) and its log-derivatives (right) from 

experimental Hi-C and Micro-C data for different human cell types [31–33]. The shape of 

the profiles is universal across experimental conditions and cell types. C: a sketch of the 

typical behavior of the contact probability P(s) with and without loops (left) along with its 

logarithmic derivative (right) up to several megabases. A geometrical argument explains that 

formation of the dip is due to the difference in elevation of P(s) at small and large scales.
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FIG. 2. 
Contact probability for the fractal chain folded into an array of random loops. A: Illustration 

of the possible diagrams contributing to the contact probability. The three dots (…) denote 

a chromosome segment that may contain an arbitrary number of loops. B: Evolution 

of the P(s) and its log-derivative for the ideal chain (df = 2) upon the change of the 

parameter d = λ/g (left) and the mean loop length, λ (right), where the value of the other 

parameter is fixed as indicated. C: Behavior of the P(s) and its log-derivative in a Hi-C 

(specifically, Micro-C) experiment upon (left) disruption of cohesin complexes by Rad21 

depletion, thus eliminating loops; (right) Wapl depletion, thus increasing of the loops size. 

Rad21 is a subunit of cohesin, thus, its near-complete depletion results in disruption of 

cohesin-mediated loops on chromosomes. Wapl protein on the contrary unloads cohesin 

from chromosomes, thus its depletion increases cohesin residence time and, as a result, the 

average loop length λ. The cell type is mouse embryonic stem cell, same for the two datasets 

[29].
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FIG. 3. 
Effects in the non-ideal chain: a polymer with df > 2 folded into loops. A: The effect of 

the fractal dimension on P(s) and its log derivative (λ/g = 1, λ = 100kb). B: A physical 

picture of the crumpled polymer as a chain in the space with topological obstacles [42]: at 

short scales (between the obstacles) it is ideal (df = 2) and at large scales it is crumpled 

(df = 3). The entanglement length Ne defines a crossover length scale between the two 

regimes. C: Upon the increase of Ne a crumpled polymer restores ideal statistics at larger 

length scales (λ/g = 1, λ = 100kb). The dash curves respond to asymptotic loopy fractals 

with Ne = 0 (df = 3, blue) and Ne = ∞ (df = 2, yellow).
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FIG. 4. 
Dilution of entanglements upon folding of a crumpled chain into loops. A: A sketch for 

the effect of dilution of entanglements upon addition of the loops. Short-scale loops are 

unentangled and do not contribute to the crumpling of the backbone. Shortening of the 

backbone of the chain with loops (right) as compared to the loops-less situation (left) drives 

reduction of entanglements and increase of Ne. B: Increase of the entanglement length 

as a function of parameter d = λ/g as measured in simulations (red) and computed in the 

theory according to (Eq.6)-(Eq.8) (black). For the theoretical curve the conventional value 

of the parameter cξ = 0.06 in (Eq.6) is used, which was previously found in [44] to match 

various entangled systems; the value of the microscopic constant cα in (Eq.8) is found to be 

cα ≈ 0.02 lk
−1/2, which yields cα ≈ 0.01 for lk ≈ 4 kb. The corresponding decrease of the effective 

monomer volume density φeff (which is lk
2 times smaller than φk

eff in (Eq.8)) is shown in 

the inset. C: Squared gyration size of the loops in simulations as functions of their contour 

length for various loop densities (λ/g = 0.5, 1, 2, 3). The average loop size is = 100 kb. D: 

Slopes of the contact probability P(s) for various densities of the loops λ/g = 1, 2 and λ/g = 3
from simulations (red); theory with fixed Ne = Ne(λ/g = 0) = 70 (dashed black); theory with 

Ne(λ/g) that is growing with the loop density, according to Fig. 4B (solid black). The 

value df = 2.7 (not df = 3) is chosen for the theory as it corresponds to the loops-free slope 

3/df ≈ 1.1 in simulations (not −1). The red strip of the simulations is bound by two values 

of cutoff (capture radius of contact): rc = 3kb and rc = 5kb. Different thin red lines correspond 

to different replicates. The average loop size is indicated by the vertical line, λ = 100kb. The 

arrow indicates deepening of the dip in the theory upon taking into account the dilution of 

entanglements. E: The snapshots from simulations are shown for the backbone of a chain 

with loops (λ/g = 3, right) and for the main chain with cut and removed loops and further 

confined to the original monomer volume density φ ≈ 0.3 (left).
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FIG. 5. 
Behavior of the contact probability curves in the full theory with ideal loops and calibrated 

Ne(λ/g). A: Change of spacer size, g, while loop size is fixed, λ = 100kb. B: Change of loop 

size, λ, while spacer size is fixed, g = 100kb. Loop density increases from red to blue color. 

C: Diagram of slopes at the peak and at the dip for various theoretical and experimental 

curves. Experiment: Hi-C (gray), Micro-C (black); Theory: λ = 100 (red), λ = 200 (green); 

φ = 0.1 (crosses), φ = 0.2 (circles), φ = 0.3 (stars); the dots get less transparent with increase 

of the loop density. D: Fit of computed experimental Micro-C log-derivative (data from [32]) 
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by the theory with λ = 180kb, λ/g = 2 and volume density φ = 0.2. The resulting value of the 

entanglement length is Ne ≈ 700, i.e. at the scale of ≈ 8 loops the main chain is unentangled.
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FIG. 6. 
Chromosomes organization with (left) and without (right) cohesin loops. At large scales 

s > Ne the chains are crumpled, and at smaller scales s < Ne they remain ideal. Dilution of 

entanglements due to loops leads to increase Ne ≈ 1 − 2Mb, compared to the loops-free case 

when Ne drops to Ne ≈ 50 − 70kb.
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