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This article presents a comprehensive survey of literature on the compressed sensing

(CS) of neurophysiology signals. CS is a promising technique to achieve high-fidelity,

low-rate, and hardware-efficient neural signal compression tasks for wireless streaming

of massively parallel neural recording channels in next-generation neural interface

technologies. The main objective is to provide a timely retrospective on applying the

CS theory to the extracellular brain signals in the past decade. We will present a

comprehensive review on the CS-based neural recording system architecture, the CS

encoder hardware exploration and implementation, the sparse representation of neural

signals, and the signal reconstruction algorithms. Deep learning-based CS methods

are also discussed and compared with the traditional CS-based approaches. We will

also extend our discussion to cover the technical challenges and prospects in this

emerging field.

Keywords: compressed sensing, electrophysiology, wireless neural recording, sparse representation (coding),

sparse recovery

1. INTRODUCTION

Extracellular neural recording has been established for decades for monitoring the neuronal
ensemble activities with better temporal resolution (Hubel, 1957; Buzsáki, 2004; Stevenson and
Kording, 2011). Compared with other neural activity monitoring approaches, extracellular neural
recording offers a broad recording spectrum of electrophysiology signals generated by the living
brains, which spans from the slow-varying local field potentials (LFPs) to the transient spiking
activities (action potentials [APs]) (Buzsáki et al., 2012). Both neural signal modalities carry
essential brain processing information and are crucial to the understanding of brain functions.
APs play a key role in neuron-to-neuron communication across the entire nervous system and
have been widely studied for their functional representation in neural coding, while LFPs reflect
the highly dynamic information flows beyond the reach of observing spiking activities from a few
neurons, and have been studied for motor decoding in brain–machine interfaces (Andersen et al.,
2004), sleep states (Vyazovskiy et al., 2011), sensory processing (Haslinger et al., 2006) as well as
higher cognitive processes such as attention, memory, and perception.

To improve the yield of isolated neurons and the spatial coverage of field potentials from
extracellular recordings, novel large-scale neural recording technologies with flexible, densely
packed microelectrode tips (a few µm in diameter) are highly desired (Berényi et al., 2014;
Hong and Lieber, 2019). Such needs motivate the engineering endeavors to create novel large-
scale neurotechnologies to meet the scientific and clinical queries for investigating the brain-
wide cortical dynamics. Recently, neurotechnologies have emerged with unprecedented recording
densities toward cellular resolution, distributed brain regions, and depth structures (Jun et al.,
2017; Allen et al., 2019; Musk and Neuralink, 2019; Stringer et al., 2019), which hold tremendous
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potentials for neuroscientific discoveries. Neuronal population
activities can therefore be recorded from diverse brain
regions with a high temporal resolution, leading to a better
understanding of the functionality of the neural circuits, the
information flow, the network connections across different brain
regions, and the relationship to the behaviors.

The steep recording density increase leads to the “Big Neural
Data Challenge.” With tens of kilohertz sampling frequency
and more than 10-bit analog-to-digital conversion resolution,
several hundreds of megabits per second digitized neural data
are generated in real time when incorporating the emerging high-
density neural recording probes. The drastically increased neural
data pose serious challenges for data processing, storage, and
transmission tasks, all of which are of particular relevance to
bandwidth-scarce and resource-constrained headstage designs.
In general, cable electronics are used to stream an overwhelming
amount of neural data online. The power consumption of
the data link technologies (Lopez et al., 2017; Intan, 2021)
can be non-trivial, and the tethered wire configuration could
significantly restrain the envisioned frontier neuroscience
research paradigms in many realistic and naturalistic settings.
A parallel effort in the community is to augment wireless
acquisition capabilities into the neurophysiology experiments,
which is of great interest to neuroscientists and brain–machine
interface technologists, as chronic brain recording of behaving
animals could be achieved in an untethered fashion (Schwarz
et al., 2014; Yin et al., 2014; Capogrosso et al., 2016; Zhou et al.,
2019; Testard et al., 2021). Novel experimental paradigms can be
defined to test hypotheses on the brain functions associated with
space coding, foraging, social interaction, and cognitive behaviors
for both small (e.g., rodents), large (e.g., swine, non-human
primates), and flying animal (e.g., bats) subjects. Bi-directional
wireless neural interface devices will also be crucial to the
rehabilitation and prostheses for human subjects. Nevertheless,
the low data bandwidth and high energy consumption make it
challenging to employ the wireless communication components
during an electrophysiology study (Larson and Nurmikko, 2016;
Nurmikko, 2020).

To ease the challenge, high-fidelity on-chip and on-device
neural signal compression schemes (Chae et al., 2008; Gagnon-
Turcotte et al., 2016; Wu et al., 2017, 2018; Xu et al., 2018)
become essential to relax the bandwidth and energy constraints
by reducing the amount of data to be wirelessly transmitted at the
system level. For the scope of neural signal compression, several
promising approaches have been proposed in the past decades,
such as on-chip spike detection and sorting (Lewicki, 1998;
Gibson et al., 2011), sparse coding (Kamboh et al., 2007; Gagnon-
Turcotte et al., 2016), feature extraction (Wu et al., 2017), and
adaptive quantization (Martinez et al., 2018). Moreover, the on-
chip hardware overhead for data compression and excessive
power consumption cannot be neglected.

Compressed sensing (CS, or compressive sensing) is an
emerging signal processing technique for sub-Nyquist sampling
and the reconstruction of sparse signals (Donoho, 2006; Candes,
2008). The signal acquisition process of CS is achieved through
random/incoherent sampling, while the signal recovery can be
achieved using algorithms like convex relaxation or greedy

algorithms (Tropp and Gilbert, 2007; van den Berg and
Friedlander, 2007; Grant et al., 2008; Zhang, 2009). By its notion,
CS performs signal acquisition and compression simultaneously.
CS aims to break the Nyquist–Shannon sampling limits, stating
that the minimal sampling rate should be at least twice of the
signal bandwidth (Oppenheim, 1999). Built upon the assumption
of signal sparsity, CS can lead to a much-lowered sampling
frequency compared to the Nyquist rate. Since its inception,
CS has been widely investigated in many application domains
that are sampling speed limited, such as high-speed analog-
to-digital converter (ADCs), radio-frequency receivers (Chen
et al., 2010; Mishali and Eldar, 2011; Yoo et al., 2012), and
magnetic-resonance-imaging (MRI) (Lustig et al., 2008). For
emerging wearable and implantable biomedical signal processing
applications with limited hardware, power, and data bandwidth,
CS has also been demonstrated beneficial for data compression
tasks (Chen et al., 2012; Zhao et al., 2018), for its efficient, low-
complexity encoder design, while the signal reconstruction can
be accomplished offline.

In the past decade, CS has also been actively studied for
neural signal compression tasks (Charbiwala et al., 2011; Schmale
et al., 2013; Zhang et al., 2015; Sun et al., 2017; Zhao et al.,
2018, 2019). CS has several encouraging features that suit neural
recording applications. Nevertheless, there are many associated
challenges as the neural signals have unique signal characteristics
compared to other biomedical signal modalities. This paper aims
to provide the audiences a comprehensive review of the past and
the current status of CS-based neural recording systems. There
are several reviews and surveys on the CS theories and their broad
application domains (Craven et al., 2014; Jaspan et al., 2015;
Gurve et al., 2020). Nevertheless, there is no review dedicated
to the application of CS to the extracellular neural recording
scenarios, which will be the primary focus of this paper.

The remainder of this paper is organized as follows. Section 2
covers the background of CS and summarizes the performance
metrics that are used throughout the paper. Section 3 reviews the
literature on the compressed sensing of the extracellular neural
signals. Section 4 reviews deep learning (DL) based CS for neural
signals. Section 5 discusses the future challenges and section 6
concludes the paper.

2. BACKGROUND

In this section, we first describe the fundamental theories of
CS, including the sensing procedure, the sparsity priors, and
the reconstruction algorithms. We then show typical CS-based
neural recording system architectures. Finally, we present several
quality evaluation criteria for neural signals.

2.1. Compressed Sensing
Compressed sensing is an emerging low-rate sampling scheme
for the signals known to be sparse or compressible on some basis.
The basic CS framework (Donoho, 2006), also called the single
measurement vector (SMV) model, can be expressed as

y = 8x+ e, (1)
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where x ∈ R
n is a single-channel signal, 8 ∈ R

m×n is the
sensing matrix, e ∈ R

m is the measurement noise, and y ∈ R
m

is the compressed measurement vector. Usually, Equation (1) is
underdetermined, i.e., m < n, and the ratio n/m is called the
compression ratio (CR).

2.1.1. RIP
To ensure accuracy and robustness for signal recovery using the
convex ℓ1-norm method, the sensing matrix 8 should satisfy
the restricted isometric property (RIP) (Candes, 2008) defined as
follows:

(1− δk)‖x‖2 ≤ ‖8x‖2 ≤ (1+ δk)‖x‖2, (2)

where δk, the isometry constant of 8, must be smaller than 1.
The smaller the value of δk, the higher the probability of an
exact reconstruction.

2.1.2. Incoherent Sampling
In practice, it is difficult to verify the RIP property, while an
alternative approach is to quantify the coherence between the
sensing matrix and the sparse dictionary (Candes et al., 2011).
The coherence µ between the sensing matrix and the dictionary
measures the correlation between any two columns of 8 and 9 .
Ideally, the coherence will be small, i.e., the two matrices are
incoherent, as the value for µ is proportional to the number of
the required measurements,

µ(8,9) =
√
N · max

1≤k,j≤N

∣∣〈8k,9j〉
∣∣ . (3)

2.1.3. Synthesis Prior
Since the CS system (1) is underdetermined, the signal x

cannot be uniquely recovered from the sensing matrix 8 and
measurements y. However, if x has a synthesis sparse prior (SSP)
(Bruckstein et al., 2009), i.e.,

x = 9θ , (4)

where 9 ∈ R
n×n is a pre-defined dictionary, and the signal’s

representation θ ∈ R
n is assumed to be s-sparse, i.e.,

‖θ‖0 , |supp(θ)| = s≪ n, (5)

or is well approximated by an s-sparse vector, then it is possible
to estimate x via

x̂ = 9 θ̂ with θ̂ = argmin
θ

‖y− 89θ‖22 + λf (θ), (6)

where f (·) is a regularization function, and λ is a regularization
parameter. A widely used penalty is the ℓ1-norm penalty, namely
f (θ) = ‖θ‖1 (Becker et al., 2011).

Motivated by many applications such as EEG/MEG source
localization and DOA (direction of arrival) estimation, where
multi-channel signals are measured simultaneously, the SMV
model (1) has been extended to the multiple measurement vector
(MMV) model in Cotter et al. (2005), given by

Y = 8X+ E, (7)

where X ∈ R
n×l is an l-channel signal, 8 ∈ R

m×n is the sensing
matrix, E ∈ R

m×l is the measurement noise, and Y ∈ R
m×l is the

compressed data. An essential assumption in the MMV model
is that the support (i.e., indexes of nonzero entries) of every
column in X is identical. Therefore, X is simultaneous sparse
(also referred to as row-sparse), i.e., a few rows of X are nonzero
rows. Similar to (6), the estimate of X is given by

X̂ = 92̂ with 2̂ = argmin
2

‖Y− 892‖2F + λg(2), (8)

where ‖ · ‖F denotes the Frobenius norm (ℓ2-norm of all the
elements) of the matrix and g(·) is a regularization function
encouraging the simultaneous sparsity. One popular penalty
is the ℓ2,1-norm penalty (Ding et al., 2006), namely g(2) =∑n

i=1 ‖2i,·‖2. In (8), 2 is assumed to be row-sparse.

2.1.4. Analysis Prior
While the signal reconstruction with SSP has been extensively
studied, constructing an appropriate sparse dictionary remains
challenging when using CS for neural signal compression.
The neural signal segments are non-sparse on widely used
dictionaries such as discrete Fourier transform (DFT) basis and
discrete cosine transform (DCT) basis. Signal reconstruction
using these dictionaries will severely reduce the accuracy.
Moreover, the non-stationary behaviors of neural signals pose
practical issues over the synthesis model-based methods, and the
joint sparsity assumption is valid for only a minor portion of
the MMV model. To overcome this limitation, an analysis sparse
prior (ASP) that takes an analysis point of view has been proposed
by Elad et al. (2007). For a signal of interest, ASP assumes that the
analysis coefficient vector

z = �x (9)

is expected to be sparse, where � ∈ R
d×n denotes a redundant

analysis operator (d ≥ n), and ρ = d/n is the redundant ratio.
Note that for an invertible square dictionary, SSP and ASP are
the same with 9 = �

−1 (Elad et al., 2007). While ASP seems
similar to the synthesis counterpart, it is very different when
dealing with a redundant operator d > n (Nam et al., 2013). With
ASP, the optimization problem for SMV signal recovery can be
formulated as

x̂ = argmin
x

‖y− 8x‖22 + λf (�x). (10)

Similarly, the optimization problem for MMV signal recovery is
given by

X̂ = argmin
X

‖Y− 8X‖2F + λg(�X). (11)

The regularization functions f (·) and g(·) are defined in (6)
and (8). The successful recovery of the original signals from
the compressed measurements using (10) and (11) has been
theoretically guaranteed under the restricted isometry property
adapted to the dictionary (D-RIP) and restricted orthogonal
projection property (ROPP) (Candes et al., 2011; Nam et al., 2013;
Peleg and Elad, 2013).
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FIGURE 1 | Compressed sensing based neural recording architecture and signal processing flow.

2.2. CS-Based Neural Recording System
Architecture
Figure 1 illustrates the CS-based neural recording system
architecture and the signal processing flow. The aggregated
extracellular neural signals are first picked up by the micro-
machined neural probes. The recorded signals from brain
structures contain broadband components up to tens of kilohertz,
while the signals of general interest lie in two distinct frequency
bands, i.e., the local field potentials located in the low-frequency
band (below 500 Hz) and the action potentials in the high-
frequency band (a few kilohertz). However, full-spectrum neural
signals are not sparse on commonly used bases, and the
sampling and compression of raw neural signals using CS
would severely degrade the reconstruction performance. One
widely used method to improve the neural signal reconstruction
performance is to filter the full-spectrum signals into APs and
LFPs for the separate compression tasks. Two types of neural
recording architectures exist, as depicted in Figure 1. In the Full-
Spectrum type, the broad-band neural signals are acquired and
conditioned via analog front-end (AFE; e.g., neural amplifiers)
with appropriate signal amplitude and bandwidth, and then
digitized via Nyquist-rate ADCs. Digital band-pass filters (BPF)
and low-pass filters (LPF) are employed and CS will then
be applied on the filtered AP and LFP band signals. In the
Band-Specific type, the neural signals are first filtered in the
analog domain and then digitized. CS will be applied after
the digitization. When applying CS to AP signals, CS is often
combined with spike detection approach (Zhang et al., 2015;
Liu et al., 2016; Sun et al., 2017; Wu et al., 2018; Zhao et al.,
2018, 2019) for further compression. For AP signals, the neural
spike events are detected and aligned temporally to their absolute
peaks. The aligned segments (e.g., a segment of 64 samples)
containing the spikes are then compressed via the CS technique.
For LFP signals, CS can be directly applied to the time-series LFP
data (e.g., with a segment of 256/512 samples).

2.3. Quality Evaluation Criterion
To evaluate the performance of CS recovery, the most widely
used metric is the signal to noise and distortion ratio (SNDR),
which quantifies the error between the original neural signal x
and the reconstructed signal x̂:

SNDR = 20 log
‖x‖2

‖x− x̂‖2
. (12)

SNDR is often used to evaluate the segment-to-segment error.
For LFP reconstruction, SNDR can also be used to evaluate the
spectral feature reconstruction capability across widely adopted
frequency bands including δ and θ (1–8 Hz), α (8–12 Hz),
β (12–30 Hz), γ and high-γ bands (30–70, 70–150 Hz),
respectively. The other two widely used metrics are to evaluate
the reconstruction accuracy in the frequency domain. The first
metric is the average absolute error of spectral power (ǫSP),
defined as

ǫSP = 1

#Seg

#Seg∑

i=1

∣∣SPrec(i)− SPori(i)
∣∣ , (13)

where #Seg is the total number of LFP segments, SPori(i) is the
ground-truth of spectral power in the ith segment calculated
from the original LFPs, and SPrec(i) is the spectral power
calculated from the recovered LFPs. The second metric is the
average absolute error percentage of spectral power (ǫPSP),
defined as:

ǫPSP = 1

#Seg

#Seg∑

i=1

∣∣SPrec(i)− SPori(i)
∣∣

SPori(i)
, (14)

Besides the aforementioned metrics, classification accuracy (CA)
is also widely used to evaluate the spike sorting performance of
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neural action potentials. The CA was defined as:

CA = #correctly classified APs

#total APs
× 100%. (15)

To compute CA for a given method, all APs were compressed
and reconstructed, then principal component analysis (PCA) was
used to extract features from reconstructed APs. Finally, the first
three principal components of each AP were used by clustering
algorithms such as superparamagnetic clustering (SPC) (Quiroga
et al., 2004), and the classification results were compared with the
ground truth labels.

3. COMPRESSED SENSING OF
EXTRACELLULAR NEURAL SIGNALS

In this section, we review the application of CS to extracellular
neural signal compression. We first introduce the CS encoding
part, which includes the sensing matrix design and hardware
architecture. We then describe the sparse representations of both
APs and LFPs. Table 1 summarizes the reviewed literature on
the compressed sensing of neural signals in a chronological
order, with implementation details on CS encoding and
decoding processes.

3.1. CS Encoding: Sensing Matrices and
Hardware Architecture
One unique advantage of CS is that the sensing matrices
can be efficiently constructed and implemented in hardware.
In practice, sensing matrices with binary entries have been
widely investigated with algorithmic performance guarantees and
efficient hardware implementation for both analog and digital
CS encoders.

Gangopadhyay et al. (2011) presented an analog-domain CS
front-end for sub-Nyquist sampling sparse brain signals like
electroencephalogram (EEG) and electrocorticogram (ECoG).
A one-bit switched-capacitor multiplying digital-to-analog
(MDAC)/summation circuit was proposed for CS acquisition,
which adopts a Bernoulli random matrix as the sensing matrix.
Shoaran et al. (2014) introduced an area- and power-efficient
multichannel analog CS encoder architecture for iEEG/ECoG
signals for seizure prediction. This work exploits the spatial
sparsity of the signals recorded from an ECoG electrode
array. The benefits of employing a multichannel CS scheme
were validated analytically and experimentally in a 0.18 µm
CMOS process. The results of simulations and subsequent
reconstructions show the possibility of recovering fourfold
compressed intracranial EEG signals with an SNDR up to 21.8
dB while consuming 10.5 µW of power within an effective area
of 250× 250 µm per channel.

Chen et al. (2012) presented a comparative analysis between
the analog and digital implementations of CS encoder designs.
For biomedical signals that are not sampling frequency limited,
digital CS encoders are more advantageous compared to the
analog counterpart at the system level even when a Nyquist-rate
ADC is used before the CS encoding stage. Binary entry sensing
matrices like Bernoulli (±1) or random binary (0/1) matrices are

adopted for digital CS encoder implementations, which avoids
the hardware-demanding multipliers. As such, for the scope of
extracellular neural signals, the majority of CS encoding stages
are implemented in digital styles. A parallel CS encoder with
Bernoulli random matrix was presented by Zhang et al. (2014),
where a 25-channel CS encoder occupies 0.06 mm2 silicon area
in a 0.18 µm CMOS process and dissipates 270 nW power
consumption with a 20 kHz sampling frequency and a supply
voltage of 0.6 V. To further reduce the CS encoder hardware
toward high-density on-chip neural signal compression tasks,
the optimization of sensing matrices has been considered using
both deterministic and random sparse sensing matrices (Zhao
et al., 2016, 2018). A class of deterministic measurementmatrices,
namely a Quasi-Cyclic Array Code (QCAC) based matrix and
a class of random measurement matrices, termed (1,s)-sparse
random binary matrix [(1,s)-SRBM] were constructed. Both
types of matrices are highly sparse and constructed with binary
entries (0/1), which are exploited to realize both area- and energy-
efficient CS encoder VLSI architectures. Note that both types
of sensing matrices have sparse column features and can be
efficiently generated online, thereby considerably reducing the
needed amount of adders in traditional parallel CS encoder
designs (Chen et al., 2012).

3.2. CS Decoding: Sparse Representation
and Recovery for Neural Signals
To achieve successful CS recovery, the signal of interest should
satisfy the sparsity assumption. A major task of successful CS
recovery is the proper design of sparsifying dictionaries/bases.
Nevertheless, it is often challenging to find the proper sparse
representations of the real-world neural signals on the decoder
side. Moreover, there is no consensus and understanding of
which sparsifying dictionary will be suitable for neural signals
as they often exhibit non-sparse structures in most known
bases like wavelet, Gabor, or Fourier types (Charbiwala et al.,
2011; Gangopadhyay et al., 2011; Schmale et al., 2013; Shoaran
et al., 2014). Moreover, neural signals are non-stationary and
highly dynamic. In a multichannel neural recording setting,
spike events are temporally sparse and the firing rates can vary
significantly across different recording channels. Additionally,
spike shape variation is common during chronic in vivo
recording experiments, which might be caused by electrode
drifts, oxidation from electrode-electrolyte interaction, sparse-
firing neurons, or time-varying variations from the same
neuron. These facts further complicate the discoveries of
sparse representation of neural signals. In this section, we will
separately discuss the sparse representation of different types of
neural signals.

3.2.1. Sparse Representation and Recovery for APs
A large body of research has focused on the compression of AP
signals, which are the most informative biomarkers of interest for
distinguishing the firing events from different neurons via spike
sorting (Lewicki, 1998; Gibson et al., 2011). Bulach et al. (2012)
considered applying CS for the compression of running AP band
signals on both synthetic and recorded neural spike signals. Both
wavelet (level-6, db-8) and learned dictionaries are used for signal
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TABLE 1 | Comparison of compressed sensing (CS) methods for neural signals.

References CS encoder CS decoder Dataset SNDR/CR

Gangopadhyay et al. (2011)
Analog Wavelet Physiobank NA

Bernoulli ℓ1-min ECoG, EEG 16x

Charbiwala et al. (2011)
NA Learned supports Private ≈ 20 dB

BPDN EEG 2x

Chen et al. (2012)
Digital NA Private ≈ 10 dB

Bernoulli/Binary ℓ1-min EEG 10x

Schmale et al. (2013)
NA DWT/DCT/DFT/WHT MT dataset ≈ 20 dB

NA Spikes, LFPs 2x

Zhou et al. (2013)
NA K-SVD Hippocampus ≈ 13.7 dB

Circulant and Toepliz IST Spikes 60x

Suo et al. (2014)
Digital Spike data Leicester ≈ 20 dB

Bernoulli IST Spikes 3x

Shoaran et al. (2014)
Analog Gabor Private ≈ 14 dB

Bernoulli ℓ1,2-min ECoG 16x

Zhang et al. (2014)
Digital K-SVD Leicester ≈ 13 dB

Bernoulli OMP Spikes ≈ 5x

Zhang et al. (2015)
Digital K-SVD Private ≈ 13 dB

Bernoulli OMP Spikes 16x

Zamani et al. (2016)
Digital BK-SVD Leicester ≈ 18 dB

Bernoulli BSBL Spikes 9.8x

Sun et al. (2017)
Digital Analysis prior Leicester ≈ 12 dB

Bernoulli ℓ1-min Spikes 8x

Zhao et al. (2018)
Digital K-SVD HC-1, CHB-MIT ≈ 12 dB

Sparse Binary ℓ1-min Spikes, EEG 4x

Zhao et al. (2019)
Digital DCT HC-1 ≈ 28/25 dB

Binary Binary weighted ℓ1-min Spikes, LFPs 2x

Sun et al. (2021a)
Digital Untrained DNN Leicester, Neuropixels ≈ 16 dB

Gaussian Spikes 5x

Sun et al. (2021b)
Digital ADMM PFC-2, Neuropixels ≈ 18 dB

Sparse Binary LFPs 32x

recovery. Nevertheless, the authors argued that CS is generally
not recommended for compressing AP band neural signals,
whereas CS is still applicable to the extracted and aligned spikes
for further data rate reduction. Schmale et al. (2013) studied
the common sparsity bases (Discrete Fourier/Cosine/Wavelet
and Walsh-Hadamard Transforms) for both APs and LFPs. The
authors argued that discrete cosine transform (DCT) turns out to
be best suited for both neural signal modalities.

Although there is a limited success on the compression rate
and the recovery performance using the known sparse basis
with standard CS recovery methods, a data-dependent sparse
basis is further investigated to improve the signal recovery
performance (Charbiwala et al., 2011; Suo et al., 2013, 2014;
Zhou et al., 2013; Zhang et al., 2014, 2015). Charbiwala et al.

(2011) investigates the compression of detected neural spikes,
where the authors assumed empirically that spikes from different
neurons are compressible in the wavelet domain (i.e., Daubechies
wavelet) and exhibit nearly identical sparsity supports. These
identical wavelet supports were learned over time to form
a union of supports for spike recovery. The reconstruction
algorithm is a combination of both BPDN (Chen and Donoho,
1994) (Basis Pursuit DeNoising) and modified BPDN (Lu and
Vaswani, 2010) to leverage the union of supports. A 20-dB spike
recovery SNDR and over 90% spike CA can be obtained for
a compression ratio of 2. Zhou et al. (2013) demonstrated a
sparsifying basis design via dictionary learning approach K-SVD
(Aharon et al., 2006) to construct an overcomplete dictionary
for the detected and aligned neural action potentials. Iterative
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shrinkage thresholding (IST) algorithm was adopted for signal
reconstruction. The learned sparsifying dictionary outperforms
the DWT-based one with a compression ratio of 5 for an SNDR
of 13.7 dB. Suo et al. (2014) introduced amulti-mode compressed
sensing system for implantable neural recordings. Exploiting the
self expressiveness, the authors proposed to use the spike data
directly as the sparsifying dictionary. This choice of sparsifying
dictionary shows comparable performance to the trained signal-
dependent dictionary without extra computation for dictionary
learning. Zhang et al. (2014) proposed a compact compressed
sensing system for implantable neural recording applications,
which also exploits K-SVD for sparse dictionary learning. The
signal recovery can be achieved with a coarse estimation of spike
shapes based on the learned sparse dictionary, and a fine detail
estimation using a wavelet dictionary. Band-limited, inter-spike
signals can be recovered via a standard CS recovery method using
DWT as sparsifying bases. In Zamani et al. (2016), the block
K-SVD (BK-SVD) algorithm was employed to train a block-
sparsifying dictionary for neural spikes, then the block sparse
Bayesian learning (BSBL) algorithm was adopted to reconstruct
the original spikes. The proposed method achieved an overall CR
of ∼11.6 and an SNDR that was up to 8 dB higher than that
obtained without spike detection.

Note that signal-dependent sparse representation for neural
signal compression cannot adapt to spike shape changes and
thereby suffer from reconstruction quality loss when neural
signals show varied sparsity supports over time. To accommodate
this issue, Zhang et al. (2015) presented a low-power, closed-
loop CS neural recording system, where a quality evaluation
(QE) block was augmented to provide closed-loop feedback
for reconstruction quality estimation and retraining. At the
decoder side, the authors argued to adopt measurement SNDRy

(20 log2
‖y‖2

‖y−ŷ‖2 ) as a quality estimation metric, where y is the

received measurement, and ŷ is the reconstructed measurement
obtained after the signal recovery (ŷ = 8x̂). A linear correlation
is observed between SNDRy and SNDRx. Therefore, when
SNDRy is lower than a threshold, a reduced recovery quality
is observed and re-training is needed to improve the signal
recovery. This quality estimation is performed on the decoder
side, thereby posing no extra cost over the on-chip encoder
resources.

Recently, a few online methods have been proposed for data-
independent CS recovery of neural signals, which can eliminate
the training and updating procedures required in the data-
dependent approaches. The analysis sparse model has been
employed for CS-based neural recording (Sun et al., 2017). The
analysis model was adopted to enforce sparsity of the neural
signals, overcoming the drawbacks of conventional synthesis
models and enhancing the recovery performance. A multi-
fractional-order difference matrix was constructed as the analysis
operator and a group weighting analysis ℓ1-minimization was
proposed for signal recovery. Experimental results on both the
synthetic and real datasets revealed that the proposed approach
outperforms data-dependent CS-based methods in terms of both
spike recovery quality and CA. The synthesis sparse model
has also been re-visited to enhance the CS reconstruction

performance (Zhao et al., 2019) by exploiting additional neural
signal structure priors, such as BPF pole and the corner frequency
information. A binary-weighted ℓ1-minimization algorithm was
proposed to enforce the block structure by adding extra penalties
to the sparse solvers when projections were made to high-
frequency atoms, and improved the recovery performance for
both AP and LFP signals, respectively.

3.2.2. Sparse Representation and Recovery for LFPs
Unlike AP signals, the compressed sensing of LFP signals only
started to be addressed recently. Schmale et al. (2013) conducted
a preliminary sparsity level study for the application of CS to the
joint-compression of both LFPs and APs. Four well-known linear
transformations (discrete Fourier/cosine/wavelet transform and
Walsh–Hadamard transform) have been investigated and
compared. Based on the sparsity analysis approach, the authors
argued that the discrete consine transform (DCT) turned out to
be best suited for both neural signal modalities. Nevertheless,
detailed CS performance has not been performed. Zhao et al.
(2019) introduced a coarse-grained approach for LFP signals,
where a high-γ corner frequency is used as the block boundary
for using a binary-weighted ℓ1-minimization algorithm. Based
on the analysis model, CS reconstruction performance for
LFPs was further improved by adopting the simultaneous
sparse prior (Sun et al., 2021b) for joint-sparse LFP signals.
The proposed method reinforces the sparsity with an optimal
continuous order difference matrix as the analysis operator. A
non-convex optimizer with an alternating direction method of
multipliers (ADMM)-based solver was proposed to recover LFPs
accurately and fast, which is promising for large-scale neural
recording systems.

3.3. Discussion
As illustrated in Table 1, Bernoulli and binary sensing matrices
are the dominant hardware implementation choices in most
previous reported literature. Another observation is that the
analog-domain CS encoder has limited applications to the
extracellular neural signals. This is in part caused by the
hardware implementation overhead as compared to the digital
implementation, and the lack of knowledge on the sparse
representation of complex neural signal modalities, including
full-spectrum, LFP-, and AP-band signals in the previous
literature. Note that the hardware cost of CS encoder is
proportional to the segment size n, therefore the current CS
encoder designs may not scale well toward large-scale neural
recording applications. In fact, it is still possible to apply the
analog CS encoding scheme after the analog filters, as long as the
proper sparse priors are used during the signal reconstruction.
Both synthesis (SSP) and analysis (ASP) sparse priors have been
studied to improve the neural signal reconstruction quality. Early
efforts have primarily focused on SSP and the corresponding
recovery algorithms with rigorous theoretical guarantees (e.g.,
ℓ1-minimization and OMP). The common drawback, however,
is the poor reconstruction performance caused by non-sparse
nature of the neural signals. As a result, learning sparse
representations for neural signals has been proposed to improve
reconstruction quality. However, this causes new issues regarding
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the model robustnes s and practical deployment. Recent efforts
on the analysis model and the spectral-sparse synthesis model
have provided high-quality and training-free CS schemes well
suited for both LFPs and APs. Finally, current CS methods for
AP compression is still limited. First, overlapping spikes are
precluded in the existing literature. It is also worth noting that
spike alignment after detection is pre-assumed when applying
CS to neural spike signals, which may cause additional hardware
overheads to ensure successful CS recovery.

4. DEEP LEARNING AS A FRAMEWORK TO
SOLVE INVERSE PROBLEMS IN CS

There are a number of efforts employing the DL methods for
CS-based neural signal compression tasks. Here, we provide
a brief overview on how deep neural networks (DNNs)
can be used to estimate x̂ for a given measurement y by
learning a statistical signal transformation. DL can leverage large
amounts of neural data to learn statistical transformations in
certain high-dimensional spaces to improve the conventional CS
algorithms and achieve superior results. The compression and
reconstruction of APs (Sun et al., 2016; Sun and Feng, 2017; Wu
et al., 2018) have been studied using DL. Nevertheless, there has
been little literature on the LFPs compression using DL.

As a regression task, DL learns to solve the inverse
problems in CS through supervised learning (Hecht-Nielsen,
1992). After training, no additional hyperparameter tuning is
required. This stands in contrast to the traditional reconstruction
algorithms in CS, where hyperparameters (e.g., sparsity in
OMP and noise level in BPDN) need to be carefully hand-
tuned, often through an iterative process to achieve the optimal
convergence. By performing the desired transformation in a
single feedforward manner, DL outperforms traditional iterative
methods in terms of inference speed in general. Different types
of DL models have been studied. Considering that AP is a
time series signal, early works used fully connected (FC) layers
to compress and reconstruct AP. Sun et al. (2016) and Sun
and Feng (2017) presented a multilayer perceptron for CS,
in which a reconstruction network consisting of multiple FC
layers was optimized. Traditional CS used random sensing
matrices (whose entries were randomly drawn from Gaussian
or Bernoulli distributions), which are often sub-optimal. The
DL-based approach still retains the hardware benefits from the
linear sensing process of CS. In contrast, most DL-based CS
methods considered sensing matrix optimization during the
training process. To further increase the compression ratio,
various quantization approaches were adopted in DL-based CS
methods. Sun et al. (2016) and Sun and Feng (2017) jointly
optimized a binary sensing matrix and a reconstruction network
simultaneously, outperforming traditional sensing matrices
in terms of both recovery quality and computation time.
Moreover, a non-uniform multi-bit quantizer for compressed
measurements quantization was proposed, which outperformed
the uniform quantizers for wireless neural recording, especially
with low quantization bit-depth (Sun et al., 2016). In Sun and
Feng (2017), the entries of the sensing matrix were quantized

into one bit, thus reduced its storage requirement and boosted the
sensing process. More recently, the training-free deep generative
model has been successfully applied to AP compression and
outperformed model-based and data-driven methods (Sun et al.,
2021a).

The advantages of DL-based methods are the deep features
extracted from the neural data, thereby avoiding manual
designs of sparse dictionaries and yielding better reconstruction
performance. However, there is still a lack of comprehensive
understanding on the robustness and generalization capabilities
of DL-based approaches. Also, the network may need to be
retrained when recording and application scenarios are changed.

5. REMAINING CHALLENGES

Here we list the remaining challenges for CS-based wireless
neural recording systems:

Hardware Efficiency Toward Large-Scale Neural Recording:
Despite the initial success, the hardware cost of CS can still
be costly for high-density wireless neural recording devices.
Aggressive approaches on the construction of hardware-efficient
sensing matrices and circuit-level efforts to further minimize
the computational hardware and measurement storage elements
are required.

Sparse Representation for Raw Neural Signals: So far, CS
cannot be applied to raw neural signals. This mainly originates
from the fact that it lacks the knowledge of sparse representation
of raw neural signals (Pagin and Ortmanns, 2018), which
causes reduced signal reconstruction accuracy and eventually low
performance in spike detection and sorting accuracy. Current
CS approaches require the knowledge of spike location and only
perform well on spike segments. This also limits the analog CS
front-end designs for raw neural signals to reduce the sampling
rate. If such sparse representation exists, this could bring extra
opportunities for the CS-based neural signal compression tasks.

Overlapped Spikes and Misalignment: Neural recording
based on multielectrode technology measures the activities
from thousands of neurons simultaneously; it is, therefore,
highly likely to observe multiple spikes within the same spike
window, which is also referred to as the overlapping spikes.
Currently, overlapping spikes are excluded and there is limited
success for the signal reconstruction of overlapping spikes
using CS methods. If successful, state-of-the-art spikes sorting
approaches (e.g., KiloSort, Pachitariu et al., 2016) can therefore
be incorporated for accurate neural coding tasks. Moreover,
accurate on-chip spike alignment is difficult and can be hardware
demanding due to low signal-to-noise ratio, sampling jitter, and
noise effects (Gibson et al., 2011). Therefore, CS algorithms
should be robust in the presence of spike overlapping as well as
misalignment.

Real-Time Signal Reconstruction: The increasing number of
channels is an irreversible trend in neural recording applications,
which also brings huge computational burdens on the real-
time performance of CS reconstruction. Most multi-channel CS
algorithms exploit the intra- and inter-channel correlations to
improve the signal reconstruction speed (Sun et al., 2021b).
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Although the reconstruction efficiency is somewhat improved,
the overall reconstruction accuracy decreases compared with
the channel-by-channel reconstruction approach. Moreover, the
channel correlation assumption may not always hold valid.
Therefore, how to balance the reconstruction accuracy and
speed remains a major challenge for CS-based large-scale neural
recording applications.

6. CONCLUSION

This paper reviews the CS-based extracellular neural recording
systems reported in the research literature in the past decade.
CS has been widely considered to be a promising technique
and actively studied for neurophysiology signal compression
purposes. The key aspects of CS, i.e., the sensing matrix (both
analog and digital CS encoder design), the sparse representation
of neural signals (both APs and LFPs), and the corresponding

signal reconstruction algorithms, are covered. In particular, the
associated challenges are discussed in detail at different CS stages
for different neural signal modalities. Despite its current progress,
there remain several challenging topics needed to be resolved
toward practical CS-based neural recording systems in the future.
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