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Abstract
Background: To make inferences about brain structures or activity across multiple individuals, one
first needs to determine the structural correspondences across their image data. We have recently
developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels
to cortical structures and activity in human brain MRI data. Label assignment is based on structural
correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set
of labels manually assigned to a single brain image. In the present work, we study the influence of
using variable numbers of individual atlases to nonlinearly label human brain image data.

Methods: Each brain image voxel of each of 20 human subjects is assigned a label by each of the
remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence
rating based on the number of atlases that assigned that label. The automatically assigned labels for
each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent
approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a
database of atlases), Mindboggle labels a subject by each atlas in a database independently.

Results: When Mindboggle labels a human subject's brain image with at least four atlases, the
resulting label agreement with coregistered manual labels is significantly higher than when only a
single atlas is used. Different numbers of atlases provide significantly higher label agreements for
individual brain regions.

Conclusion: Increasing the number of reference brains used to automatically label a human
subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle
software can provide confidence measures for labels based on probabilistic assignment of labels and
could be applied to large databases of brain images.

Background
When comparing structures or functions across brains, it
is common to label the gross anatomy of brain image data

and to compare the structures or functions that lie within
anatomically labeled regions. Since brains differ in their
anatomy [1-10], it would seem reasonable to refer to the
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anatomy of many brains when labeling an individual sub-
ject's brain image. Atlases are manually labeled brains
used as references. Using every atlas from a group of
atlases independent of each other was found to give labe-
ling results superior to those obtained by selecting the
closest matching single atlas from the group, the average
atlas, or an individual atlas, for the case of confocal micro-
scopy images of bee brains [11]. However, labeling a sub-
ject's brain image with many different brains presents
unreasonable demands on human labelers, who may not
be consistent in their label assignments [12-15]. Fully
automated labeling would facilitate large-scale labeling
efforts while adding efficiency and consistency.

Image registration software (reviewed in [16-18]) may be
used to coregister subject and atlas brain images, thereby
labeling the subject images with superimposed atlas
labels. There exist many different nonlinear image regis-
tration and feature-matching approaches to this problem
[19-62]. Mindboggle software (see below) offers certain
advantages over most of these approaches: it does not
make the same assumptions about preserving topography
from brain to brain, is relatively fast, and it performed
well in comparison tests with standard image registration
software packages (AIR, SPM2, ANIMAL, and linear regis-
tration with FLIRT) and in artificial lesion tests [63].

Having an automated registration or feature-matching
program and a database of atlases introduces the problem
of how to reconcile the multiple atlas label sets when labe-
ling a single subject's brain. Labels could be assigned
based on the selection or construction of similar or repre-
sentative anatomy from these atlases. It is becoming more
common to label subject brain image data with a single,
composite atlas representing some average of multiple
brain atlases (an average brain atlas) or retaining informa-
tion about the differences between the atlases or between
the atlases and the subject brain image (a probabilistic
brain atlas).

Average brain atlases attempt to assign to each voxel (vol-
ume element) a representative value associated with
image intensity or anatomical label. An intensity-based
average brain atlas is the voxelwise mean intensity across
individual brain images after linear [64-66] or nonlinear
[67] coregistration. Additionally or alternatively, an aver-
age brain atlas may represent average sulcus shapes and
positions computed in the original brain image space
[8,68,69] or in an alternative space such as on a sphere
[70]. An example of a label-based average brain atlas was
constructed by Hammers, et. al. [71], where the majority
label was computed for each voxel across 20 manually
labeled brains after nonlinear registration to the MNI152
[64] template using SPM99 [27]. The use of an average
atlas presupposes that there is such a thing as a represent-

ative brain and does not usually account for variability
across brains.

Probabilistic brain atlases, on the other hand, do provide
additional statistical information across the population
used to construct the atlas [62,72-82]. This information
may be related to the variance of landmark positions [73],
probability of anatomical labels [44,79,83,84], probabil-
ity of tissue classes [80], or multiple anatomical dimen-
sions, for example characteristics of surface geometry and
Bayesian priors associated with neighborhood relations
between labels [62], and the multi-dimensional atlases
under development by Mazziotta and Zilles and their col-
leagues [72,77,78,81]. An abstract representation of a
database of manually labeled brains can also serve as a
probabilistic atlas; for example, expert neural networks
trained on a learning database of such brains [48] or
graphs relating parametric surfaces [36]. However, there
are only two examples known by the authors in which a
complete cortical atlas is constructed from multiple label
sets where each label set was assigned manually [62,71],
rather than by automating the labeling of many brains
without independent validation of the labeling tech-
nique. As with average brain atlases, probabilistic atlases
have primarily been used as templates to which a subject
brain is transformed and compared. This comparison pre-
supposes that the single transform will account for differ-
ences between the subject brain image and each of the
multiple brain images that were used to construct the
atlas.

Mindboggle flowchartFigure 1
Mindboggle flowchart.
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In this paper, we have chosen to extend the use of an indi-
vidual atlas to multiple atlases in a recently introduced,
fully automated, feature-based nonlinear labeling method
called Mindboggle (freely downloadable, open source
Matlab code) [63,85]. Rather than use a single (average or
probabilistic) atlas, Mindboggle employs each atlas in a
database independently to label the cortical voxels of a
subject brain image, and for each voxel chooses the major-
ity label assigned by the different atlases. We explore the
effects of using two different labeling schemes and varia-
ble numbers of atlases on labeling accuracy and on the
numbers of labels assigned per voxel.

Methods
Image acquisition
We used two sets of T1-weighted MRI data from a total of
20 young, healthy adult subjects. The first group of 10
subjects was scanned at the MGH/MIT/HMS Athinoula A.
Martinos Center for Biomedical Imaging using a 3T Sie-
mens scanner and standard head coil (TE: 2.9 ms, TR: 6.6
ms, flip angle: 8°). The in-plane resolution was approxi-
mately 1 × 1 mm, the slice thickness was 1.33 mm, and
the dimensions and field of view were 256 × 256 voxels.
These subjects consist of four men and six women
between the ages of 22 and 29 years old (µ = 25.3). All are
right-handed. The data were bias-corrected, affine-regis-

tered to the MNI152 template [64], and segmented using
SPM2 software [27].

The second group of 10 subjects was scanned at Columbia
University on a 1.5T GE scanner (TE: 5 ms, TR: 34 ms, flip
angle: 45°). Slice thickness was 1.5-mm axial, in-plane
resolution was 0.86 mm. Images were resliced coronally
to a slice thickness of 3 mm, rotated into cardinal orienta-
tion, then segmented and parcellated using Cardviews
software from MGH. These subjects consist of five men
and five women between the ages of 26 and 41 years old
(µ = 32.7).

Image processing before applying Mindboggle algorithm
Mindboggle calls on third-party software to perform three
preliminary steps on a subject brain image: (1) cropping
non-brain matter, (2) linear coregistration with the
MNI152 template [64], and (3) segmentation into gray
matter, white matter, and cerebrospinal fluid. For this
study, these steps were performed by (1) BET [90], (2)
FLIRT [91] set to correlation ratios, 12-parameter affine
transforms and trilinear interpolation, and (3) SPM2 [27]
for the first group of 10 brains and FAST [92] for the sec-
ond group of 10 brains.

Mindboggle algorithm
Mindboggle is a freely downloadable, open source soft-
ware package written in Matlab (version 6, release 13,
with the Image Processing Toolbox, The Mathworks Inc.,
USA) and has been tested on different models of desktop
and laptop computers running different distributions of
Linux, as well as MacOSX and Windows. The general sys-
tem requirements are the basic requirements of the Mat-
lab environment. The system used to conduct the
following tests consists of a 2.2 GHz Pentium IV processor
running Redhat Linux 9.0 on a PC with 1 GB memory.
Mindboggle was selected as the nonlinear method
because it was created by one of the authors (AK) and per-
formed favorably in comparisons with the popular non-
linear methods AIR, ANIMAL, and SPM2 [63].

Mindboggle's general strategy is to fill a subject's cortical
gray matter mask with atlas labels, based on correspond-
ences found between structures in a subject image and in
one or more atlases (see Figure 1). Details of the original
algorithm may be read in [63], and consist of the follow-
ing five steps performed on a subject's brain image data:

If we divide the voxels into groups, by the number of dif-
ferent labels per voxel, as in Figure 10, we may see that
there is an inverse relationship between the number of
different labels and the label agreement with manual
labels. Therefore, the number of labels per voxel provides
a rough confidence measure for the majority label
assigned to each voxel.

Piece construction in MindboggleFigure 2
Piece construction in Mindboggle. Shown on the left, 
from top to bottom, are the five steps Mindboggle takes to 
construct pieces from a subject brain image. Darker pixels 
(non-white matter) of a (1) segmented horizontal slice are 
(2) thinned to a skeleton which is (3) split into left and right 
hemispheres. (4) Contiguous pixels of the skeleton slice are 
grouped into 2-D pieces, and (5) these 2-D pieces are used 
to construct 3-D pieces, shown in cross-section (bottom) 
and in 3-D (right figure, showing the left side of the brain 
with the frontal pole facing left).
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(1) extract cerebral cortical sulci,

(2) prepare hundreds of pieces from image-processed ver-
sions of these sulci,

(3) match each piece from an atlas with a combination of
pieces from the subject,

(4) translate local atlas label boundaries according to the
difference in position between each match, and

(5) warp the atlas label volume to the transformed bound-
aries and propagate these labels to fill a subject mask.
Mindboggle optionally resets planar boundaries for fron-
tal and temporal poles as well as the occipital lobes, if the
atlas itself is labeled using these planar boundaries.

Mindboggle extracts cerebral cortical sulci in the follow-
ing manner (see Note 1 in Appendix). First, Mindboggle
crops exposed brain surface by eroding the segmented cor-
tex three voxels deep. Mindboggle also crops subcortex
and cerebellum with a mask constructed from a union of
two of the Montreal Neurological Institute's atlases: the
single-subject atlas [93] and the MNI152 template [64].
All registration and labeling by Mindboggle is performed

in MNI152 space (resolution of 1 × 1 × 1 mm and dimen-
sions of 181 × 217 × 181 voxels).

Sulcus pieces are constructed as follows (see Figure 2). The
segmented gray matter with cerebrospinal fluid is thinned
to a pixel-wide skeleton for each slice (Matlab's
bwmorph.m function). All of the skeletonized slices are
stacked to create a 3-D skeleton. This skeleton is split by
an interhemispheric plane formed by warping a vertical
plane to the medial slab of the skeleton using a modified
Self-Organizing Map algorithm (see Note 2 in Appendix).
The skeleton is then broken up into pieces as follows.
Starting from the top slice of the skeleton, each set of con-
nected pixels is considered a separate piece. Each pixel in
the slice below is assigned membership to the nearest
piece in the above slice. The latter operation is repeated
from top to bottom, as well as from bottom to top, result-
ing in two independent sets of candidate pieces, with each
pixel having two assignments, one for each set. A single set
of pieces is obtained by identifying the unique set of pairs
of assignments. The 3-D pieces are then fragmented using
a k-means algorithm and regrouped together if they share
extensive borders. This last regrouping step is conducted
so that compact structures with a low surface-to-volume
ratio such as a ball do not get broken up in arbitrary ways

Manual labelsFigure 3
Manual labels. Manual labels for a single subject (left side, frontal pole facing left), drawn from the first subject pool (modified 
Cardviews labels). After these labels are registered to the common (MNI152) space, they are processed to construct one of 
the atlases for labeling with Mindboggle. This figure is an isosurface representation constructed with a Gaussian filter of radius 
three voxels. Missing data in vertical strips are due to incompletely labeled coronal sections.
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by the k-means algorithm. "Extensive borders" is defined
as a ratio of border to surface voxels equal to at least one-
tenth, where a border voxel has at least one other piece in
its immediate neighborhood of six voxels, and a surface
voxel has fewer than six occupied voxels in its neighbor-
hood.

Finding similar pieces in an atlas helps to determine how
to transform atlas label boundaries, and therefore how to
distribute atlas labels in the subject brain. Matching each
piece from an atlas with a combination of (up to three)
similar pieces from the subject is performed by minimiz-
ing a cost function. The cost function consists of a sum of
normalized quantities derived from differences in: mean
position, number of voxels, number of subvolumes, and
non-overlap. Differences in mean position and number of
voxels are measures of the differences in location and size
between the atlas and subject pieces. The number of sub-
volumes for a given piece is the number of 5 × 5 × 5-voxel
boxes dividing the image volume that contain the piece.
This measure is useful for distinguishing between pieces
that have different spatial distributions, such as between a
tight ball and an extensive sheet. Non-overlap of two
pieces, P1 and P2, is equal to the fraction of subvolumes
of P1 that do not overlap P2 added to the fraction of sub-
volumes of P2 that do not overlap P1. This measure is use-
ful for distinguishing between differently shaped pieces
that may otherwise be similar according to the other three
measures.

Atlas label boundaries are locally translated according to
the difference in position between nearby atlas and

matching subject pieces. The translation is the difference
of the mean of the local boundary from the mean of the
subject piece(s), plus the difference between the mean of
the atlas piece from the mean of the local boundary (after
scaling by the ratio of the atlas and subject piece bounding
boxes).

The atlas label volume is then warped to the transformed
atlas label boundaries as follows (see Note 3 in Appen-
dix). The atlas label that was closest to each original
boundary point moves to the transformed boundary
point, carrying along its neighboring labels as a function
of their distance from the point (according to a Gaussian
distribution function). After warping, each unlabeled
voxel within the segmented gray matter mask is assigned
the majority label in its 5 × 5 × 5-voxel neighborhood; this
last step is repeated several times.

Evaluation
We evaluated labels assigned by Mindboggle to a brain
image (in MNI152 space) by comparing them with the
manual labels for that brain (linearly registered to
MNI152 space). The manual labels used for evaluation
were also used to construct Mindboggle atlases. They were
assigned by a single human labeler to each of the 20 sub-
ject brains (before linear registration to the MNI152
space), according to one of two different parcellation
schemes. The first group of 10 subjects was labeled by
Jason Tourville according to a scheme that is a modified
version of Cardviews (see below) and implemented in a
software tool developed by Satrajit Ghosh at the Depart-
ment of Cognitive and Neural Systems, Boston University

Spatial distribution of the number of labels per voxelFigure 4
Spatial distribution of the number of labels per voxel. The isosurface representations of this subject are colored to 
indicate the number of different labels assigned to each voxel by the different atlases (for example, gray indicates one label, 
when all atlases agree). From left to right, each brain has been labeled by Mindboggle using an increasing number of atlases (2, 
all 9 from the same subject group, and all 19 from both subject groups). As one would expect, increasing the number of atlases 
inceases the average number of different labels assigned to each voxel. Missing data in vertical strips are a result of incom-
pletely labeled coronal sections, as in Figure 1. The data for all subjects and for every number of atlases are graphed in Figure 3.
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[94]. The second group of 10 subjects was labeled by Olga
Kambalov according to the Cardviews parcellation
scheme, created at the Center for Morphometric Analysis,
Massachusetts General Hospital, and implemented in
Cardviews software [12]. The labeler for each group of
subjects is an expert in Cardviews.

For both parcellation schemes, 74 cortical labels were
selected from the original 96 labels and merged to give 36
labels (18 per hemisphere): superior, middle, and inferior
frontal and temporal gyrii, frontal and temporal poles,
pre- and postcentral gyrii, superior and inferior parietal
lobules, occipital lobe, fusiform, lingual/parahippocam-
pal, and orbital (frontal) gyrii, insula, and cingulate gyrus.
The anatomical divisions are coarser than those of Card-
views primarily because regions divided by planes in the
Cardviews approach are combined.

Figure 3 presents an isosurface representation of a single
manually labeled subject brain. To determine whether
increasing the number of atlases would improve the accu-
racy of Mindboggle labeling, we compared the manual
label for each voxel of a subject image with the majority of
all Mindboggle labels for that voxel, for an increasing
number of atlases used to assign labels. When determin-
ing the majority label, ties were broken by random selec-
tion. Each subject is automatically labeled by a random
selection of atlases for each number of atlases. For com-
parisons up to nine atlases, the atlases were randomly
selected from within the same subject pool; for compari-
sons up to 19 atlases, atlases were randomly selected from
either subject pool.

The primary evaluation measure we employ is percent
label agreement between atlas labels and manual labels
assigned to a subject's segmented gray matter mask, with
each gray matter voxel having one manual and one auto-
mated (Mindboggle) label. The agreement between atlas
label set Ai and manual label set Mi is defined as the vol-
ume of intersection divided by the volume of the manu-
ally labeled region, computed in voxels and summed over
a set of multiple labeled regions each with index i, where
|.| indicates number of voxels:

Our type I error, a measure of how many incorrect labels
are found in a given manually labeled region, is simply
equal to one minus the label agreement for that region.
We define a type II error for a given manually labeled
region as the number of automatically labeled voxels out-
side the region that have been assigned that region's label,

divided by the total number of automatically labeled vox-
els with that label. This is equal to one minus the fraction
of voxels automatically assigned a given label that lies
within the corresponding region:

These error measures assume that the manual labels are
correct, and they can range from zero to one; a value of
zero is achieved when automated and manual labels per-
fectly overlap for each label.

Label agreement
M A

M
i i i

i i
= ∑

∑
| |

| |

∩

Type II error
M A

A
i i i

i i
= − ∑

∑
1

| |

| |

∩

Quantity of voxels with a given number of labels per voxelFigure 5
Quantity of voxels with a given number of labels per 
voxel. This is a graph of all the subject data labeled with an 
increasing number of atlases, from which the single subject in 
Figure 2 was drawn. The total quantity of labeled subject 
voxels, representing the total volume of labeled gray matter, 
was around 700,000 voxels on average. Remaining data for 
voxels with five or more atlas labels were not included for 
clarity.
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Another evaluation measure we employ is percent label
accord [12], the intersection between two similarly
labeled regions divided by the mean volume of the two
regions:

The above voxel-based measures ignore misregistration
within a labeled region. Any conclusions based on them
must therefore be restricted to the labeled volumes and
may not be applicable to finer resolutions.

Results and discussion
We found there to be greater disagreement between
atlases as the number of atlases increases, as one would
expect. This is clearly demonstrated in Figures 4 and 5. Fig-
ure 4 displays the anatomical distribution of the number
of different labels assigned by the atlases to each voxel.
Figure 5 plots the total number of voxels with a given
number of different labels per voxel. Both figures present
their data as a function of the number of atlases. If we
compare Figure 4 with Figure 3 (it is the same subject), the
disagreements are clustered about anatomical boundaries,
with the highest numbers of labels per voxel at the bound-
aries between multiple anatomical regions, as one would
expect.

Figure 6A demonstrates the variability in labeling errors
when different single atlases are used to label one subject.
Figure 6B demonstrates the effect of the use of multiple
atlases on labeling errors for the same subject. Figure 6B

Percent label accord
M A

M A
i i i

i i i
=

+
∑

∑
| |

(| | | |)/

∩
2

Percent label agreement by subject poolFigure 7
Percent label agreement by subject pool. The two sub-
ject groups are manually labeled with slightly different parcel-
lation schemes. Each member from the first group of 10 
subjects (green) was labeled with one atlas from the same 
group, then two, three, up to nine atlases, with each atlas 
selected at random from the remaining unselected atlases. 
The same procedure was repeated for each member from 
the second group of 10 subjects (magenta). As may be seen 
here, the percent label agreements obtained by Mindboggle 
are clearly separable between the two groups. Therefore, 
Mindboggle is sensitive to variance in the subject population, 
and to the parcellation scheme used to manually label the 
atlases.

Labeling errorsFigure 6
Labeling errors. Fig. 4A demonstrates the variability in the spatial distribution of labeling errors for a single atlas labeling a 
subject, across all atlases. Blue indicates voxels where at least one atlas disagrees with the subject's manual labels (union). 
Green indicates voxels where every atlas disagrees with the subject's manual labels (intersection). Fig. 4B demonstrates the 
effect of the use of multiple atlases on labeling errors. Red voxels are those whose manually assigned label disagrees with the 
majority of the labels assigned by Mindboggle using multiple atlases. If we look from left to right, we see that increasing the 
number of atlases reduces labeling errors. Atlas selection and isosurface representation match the conditions of Figure 2.
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indicates that increasing the number of atlases reduces
labeling errors in Mindboggle. Figure 7 demonstrates that
the two subject populations, manually labeled with
slightly different parcellation schemes, give clearly separa-
ble labeling results, and that the label agreement between
manual labels and (voxelwise majority) Mindboggle
labels remains distinct between the two subject groups
even as the number of atlases increases. Each member
from the first group of 10 subjects was labeled with one
atlas from the same group, then two, three, up to nine
atlases, with each atlas selected at random from the
remaining unselected atlases. The same procedure was
repeated for each member from the second group of 10
subjects. For each member of the combined subject popu-
lation, one to 19 atlases are selected at random from
either subject group.

Therefore, Mindboggle is sensitive to variance in the sub-
ject population and to the parcellation scheme used to
manually label the atlases, in particular to the vertical
planes that are used to define boundaries to large regions
(occipital lobe, frontal and temporal poles). These planes
are not positioned by the sulcus piece matching stage but
by an automated identification and matching of specific
anatomical landmarks. The definitions of these land-
marks may be different between parcellation schemes and

may not be as consistently or as accurately determined
manually or automatically in one scheme versus another.
Some of the differences between the results obtained by
the two subject groups (see Methods: Image Acquisition)
may be attributed to the broader sampling in the second
group of subjects (three races versus one, unknown vs.
right-handed, and much wider age range). We can expect
even greater deviations from brains that are very young,
very old, or inflicted with a pathological condition, some-
thing we are presently investigating.

Even with this dependence of absolute results on parcella-
tion scheme, we may determine whether there is a relative
improvement of results across all subjects as a function of
the number of atlases used to obtain the voxelwise major-
ity labels. From Table 1 and the accompanying graph in
Figure 8, we may see that increasing the number of atlases
asymptotically increases mean label agreement with man-
ual labels. A one-way ANOVA was performed to test if the
means are the same for the label agreements obtained by
the different numbers of atlases. A multiple comparison

Change in label agreement as a function of the number of atlasesFigure 8
Change in label agreement as a function of the 
number of atlases. Increasing the number of atlases results 
in an asymptotic increase in the mean label agreement 
between labels assigned manually and by Mindboggle. The 
error bars extend one standard deviation about the mean. 
Data from the first group of subjects alone are in green and 
from the second group alone are in magenta. Data from both 
groups, where one to 19 atlases are selected at random from 
either subject group, are in black. Table 1 contains the data 
used in this figure.

Comparison between label agreements obtained with differ-ent numbers of atlasesFigure 9
Comparison between label agreements obtained 
with different numbers of atlases. A one-way ANOVA 
was performed to test if the means are the same for the label 
agreements obtained by the different numbers of atlases. A 
multiple comparison test was then performed using Tukey's 
honestly significantly difference criterion to determine which 
pairs of means are significantly different. The graph displays 
the mean for each number of atlases with a 95% confidence 
interval around the mean, based on the Studentized range 
distribution. If intervals are disjoint, their means are consid-
ered significantly different. The label agreement obtained 
with a single atlas is in blue and any significantly different 
result is in red or green. Green results are significantly higher 
than gray results (using three atlases). Using at least four 
atlases resulted in significantly higher label agreements and 
lower type II errors than when using one atlas (p <<> 10-6), 
suggesting that Mindboggle should be used with at least four 
atlases to benefit from the multiple atlas approach.
Page 8 of 13
(page number not for citation purposes)



BMC Medical Imaging 2005, 5:7 http://www.biomedcentral.com/1471-2342/5/7
test was then performed using Tukey's honestly signifi-
cantly difference criterion to determine which pairs of
means are significantly different. We see from Figure 9
that simply increasing the number of atlases from one to
at least four results in a statistically significant increase in
label agreement (p <<> 10-6 for all comparisons), and fur-
ther increasing the number of atlases to at least nine (or at
least seven for the first set of subjects) results in a statisti-
cally significant increase in label agreement compared
with using three atlases. However, the increase in label
agreement from four to five or more atlases is not statisti-
cally significant for the mixed subject group.

One should not conclude based on these data that atlas
databases need only contain four or five atlases to be rep-
resentative. The standard deviations for our subject pool
were high enough to warrant further investigation into
sources of error. These sources include morphological dis-
similarities between subject subpopulations, different
parcellation schemes, and limitations of the Mindboggle
algorithm. Interestingly, Kittler et al. [86] found that the
classification performance of the voting rule applied to
face and voice biometric data also peaked at four to five
experts (atlases).

These results corroborate the conclusion of a study on
atlas selection strategies applied to confocal microscopy
images of bee brains, that labeling a brain image using
every one of a group of atlases gives results superior to
selecting an individual atlas [11]. However, when they
tested the individual atlas condition, they chose only a

single favorable atlas from a group of 20, whereas in the
present study we ran tests using each and every single indi-
vidual atlas from a group of 20.

The majority voting rule is probably not the optimal way
to decide on a voxel's label [86-89], especially if the
selected atlases deviate considerably from the subject
brain to be labeled. A missing or unusual structure in a
subject brain represented in only a minority of the atlases
would most likely result in an inappropriate label. Rather
than simply weighting the contribution of each of the
atlases equally, each atlas vote for each subject voxel could
be weighted by a function of the matching cost for the
structure containing that voxel, since Mindboggle's
matching cost function is intended to determine degree of
correspondence between structures across brains.

We further separated the results by labeled region, to com-
pare label agreement and type II errors between manual
and Mindboggle labels for each label. As may be seen in
Table 2, different numbers of atlases provide significantly
higher label agreements for specific brain regions. Cavi-
ness et al. [12] found the percent label accord between two
expert human labelers, the manual inter-rater reliability,
to be 80.23% (σ = 8.08%) averaged across all 96 labels in
four brains. Since we found, as did Caviness et al., a weak
correlation between percent accord and region size, we
should expect that a manual inter-rater reliability for our
parcellation's fewer and larger regions to be somewhat
higher than 80%. The problem with making a direct com-
parison between the same number and sizes of parcella-

Table 1: Percent label agreement as a function of the number of atlases

A All subjects σ II Group 1 σ II Group 2 σ II

1 74.39 (3.90) 0.20 79.05 (1.06) 0.17 73.55 (2.43) 0.21
2 73.75 (2.81) 0.21 78.38 (1.32) 0.18 72.68 (2.07) 0.21
3 76.54 (2.93) 0.19 80.19 (1.42) 0.17 75.30 (2.00) 0.20
4 77.73 (2.78) 0.18 80.95 (1.43) 0.16 76.31 (1.40) 0.19
5 77.88 (2.67) 0.18 81.98 (1.39) 0.15 77.24 (1.83) 0.19
6 78.30 (2.52) 0.18 81.58 (1.42) 0.16 77.45 (1.66) 0.18
7 78.56 (2.75) 0.18 82.09 (1.37) 0.15 77.76 (1.78) 0.18
8 78.67 (2.86) 0.18 82.21 (1.28) 0.15 77.87 (1.93) 0.18
9 79.18 (2.59) 0.17 82.50 (1.20) 0.15 78.15 (1.94) 0.18
10 78.91 (2.60) 0.17
11 79.25 (2.75) 0.17
12 79.47 (2.78) 0.17
13 79.47 (2.86) 0.17
14 79.41 (2.84) 0.17
15 79.41 (2.83) 0.17
16 79.48 (2.57) 0.17
17 79.59 (2.74) 0.17
18 79.61 (2.76) 0.17
19 79.62 (2.74) 0.17

Percent label agreements and type II errors (II) are given for each number of atlases (A) used to label subject group 1, group 2, and all subjects. The 
accompanying graph is in Figure 6. Standard deviations are in parentheses (for type II errors, σ equals 0.02 for all subjects and 0.01 for groups 1 and 
2).
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tion units is that Mindboggle relies solely on structural
features to define anatomical boundaries whereas the
Caviness approach also uses planes that extend far from
the structural features used to construct the planes. We are
presently evaluating Mindboggle on the entire set of 96
labels. The percent label accords obtained by Mindboggle
in this study range in value across the different labeled
regions, and average to 79.86% (a = 4.18%) for subject
group 1 and 76.23% (σ = 5.17%) for subject group 2 (9
atlases for each subject), with the highest accords (> 90%)
for the largest regions, the frontal and temporal poles and
occipital lobes, and the lowest accords (< 70%) for the
postcentral gyrii. The fact that the Mindboggle vs. manual
accuracy is comparable to the reported inter-rater reliabil-
ity is very encouraging.

For a single atlas to label a single subject, Mindboggle
presently takes less than 17 minutes after linear registra-
tion and gray matter segmentation on a 2.2 GHz Pentium
IV processor running Redhat Linux 9.0 on a PC with 1 GB
memory: 1.3 minutes to construct a sulcus skeleton, 2.5
minutes to divide the skeleton with an interhemispheric
plane, 3.4 minutes to construct and tally data on sulcus
pieces, 2.5 minutes to find matching pieces in the atlas
and to transform them from the atlas to the subject brain,

and the remaining 7 minutes to warp and propagate
labels through the gray matter mask. For each additional
atlas, matching, warping, and labeling takes under 10
minutes if performed sequentially. For example, labeling
a subject using five atlases would take 17 minutes if con-
ducted in parallel, or an hour if conducted sequentially.
The run time would reduce significantly not only by run-
ning Mindboggle for each atlas in parallel, but also by
implementing faster preprocessing algorithms and opti-
mized code rewritten in a lower-level language such as C
as opposed to Matlab.

We conclude that by using multiple atlases, the overall
label agreement between manual labels and the majority
labels assigned by these atlases significantly improves
when using a nonlinear procedure such as Mindboggle.

We are now in the process of applying this multiple atlas
extension of Mindboggle to anatomically label functional
activity data. Combining a confidence measure for ana-
tomical boundaries derived from multiple atlases with
statistical maps of functional activity data across subjects
should help to establish our level of confidence in
reported functional findings.

Label agreement for different numbers of atlases and labels per voxelFigure 10
Label agreement for different numbers of atlases and 
labels per voxel. The data of Figure 6 are broken up here 
into subsets of voxels according to the number of different 
atlas labels assigned to each voxel. Voxel populations with 
fewer label assignments (greater agreement between the 
atlases) have higher label agreements with manual labels. 
Therefore, the number of labels per voxel provides a rough 
confidence measure for each voxel's label. The error bars 
extend one standard deviation about the mean. Remaining 
data for voxels with five or more labels are not included for 
clarity.

Table 2: Regions whose label agreement improves with multiple 
atlases

Labels L R

frontal pole
sup. frontal
mid. frontal 11
inf. frontal
orbital 13 8
precentral 11
postcentral
sup. parietal 8 9
inf. parietal
temporal pole 4
sup. temporal 6 11
mid. temporal 17 12
inf. temporal 17 11
fusiform 7 11
lingual
occipital lobe
cingulate 9
insula 9 3

The effect of multiple atlases on label agreement varies by manually 
labeled region. Here we compare label agreements obtained by 
Mindboggle for each region by different numbers of atlases randomly 
selected from either of the two subject groups (up to 19 atlases for 
each of the 20 subjects). Numerical entries denote the minimum 
number of atlases that result in significantly higher label agreements 
than for single atlas data, by region (p <<> 0.0001 for all regions 
except inferior temporal gyms: p < 0.01 and right temporal pole: p < 
0.0002). For example, an entry of "9" means that significantly higher 
results were obtained using 9, 10, 11,... to 19 atlases versus using one 
atlas). The significance test is the same as that applied to the whole 
brain label agreement data.
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Appendix
Note 1
Since this study was conducted, Mindboggle no longer
crops any part of the brain's gray matter; sulci are instead
extracted by creating a mask by morphologically closing
white matter (using Matlab's imclose.m function). This
was visually determined to result in better sulcus extrac-
tion.

Note 2
Mindboggle now splits the skeleton much more quickly
and accurately with a surface constructed by selecting a
medial slab of the skeleton, flattening the slab into a
mean surface along the x-axis, and applying a median fil-
ter to the surface x values (Matlab's medfilt2.m).

Note 3
Mindboggle no longer warps the atlas label volume or fills
unlabeled regions by the majority label in its neighbor-
hood. Instead, it simply fills the transformed boundaries
with nearby labels according to a distance function (Mat-
lab's bwdist.m).
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