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ABSTRACT How microbial metabolism is translated into cellular reproduction under
energy-limited settings below the seafloor over long timescales is poorly under-
stood. Here, we show that microbial abundance increases an order of magnitude
over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North
Atlantic Ocean. This increase in biomass correlated with an increased number of
transcribed protein-encoding genes that included those involved in cytokinesis,
demonstrating that active microbial reproduction outpaces cell death in these an-
cient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing
all show that the actively reproducing community was dominated by the candidate
phylum “Candidatus Atribacteria,” which exhibited patterns of gene expression con-
sistent with fermentative, and potentially acetogenic, metabolism. “Ca. Atribacteria”
dominated throughout the 8 million-year-old cored sequence, despite the detection
limit for gene expression being reached in 5 million-year-old sediments. The sub-
seafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial mi-
crocompartment that has potential to assist in secondary fermentation by recycling
aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD�.
Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP
synthesis were also detected from the subseafloor “Ca. Atribacteria,” as well as the
Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic func-
tion. The correlation of this metabolism with cytokinesis gene expression and a net
increase in biomass over the million-year-old sampled interval indicates that the “Ca.
Atribacteria” can perform the necessary catabolic and anabolic functions necessary
for cellular reproduction, even under energy limitation in millions-of-years-old anoxic
sediments.

IMPORTANCE The deep subseafloor sedimentary biosphere is one of the largest
ecosystems on Earth, where microbes subsist under energy-limited conditions over
long timescales. It remains poorly understood how mechanisms of microbial metab-
olism promote increased fitness in these settings. We discovered that the candidate
bacterial phylum “Candidatus Atribacteria” dominated a deep-sea subseafloor ecosys-
tem, where it exhibited increased transcription of genes associated with acetogenic
fermentation and reproduction in million-year-old sediment. We attribute its im-
proved fitness after burial in the seabed to its capabilities to derive energy from in-
creasingly oxidized metabolites via a bacterial microcompartment and utilize a po-
tentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic
requirements for growth. Our findings show that “Ca. Atribacteria” can perform all
the necessary catabolic and anabolic functions necessary for cellular reproduction,
even under energy limitation in anoxic sediments that are millions of years old.
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Marine sediments contain a ubiquitous “deep biosphere” (1) extending at least as
far as 2,500 m below the seafloor (mbsf) (2), which consists of active and dormant

cells (3–5) with measurable impacts on subseafloor biogeochemical processes (6). At
abyssal water depths in the deep sea, the subseafloor communities generally are less
sampled (7) than those in continental shelf sediments that have higher activities and
rates of microbial sulfate reduction (8–10). At abyssal depths under the oligotrophic
ocean gyres, the sedimentation rates are low, ranging from 1 to 5 m of sediment
deposited per million years (11, 12). These abyssal subseafloor communities have
extremely low metabolic activity (13) and live near the energy limit to life (6, 14). As a
result of this, the deep biosphere of marine sediment is generally characterized by net
death, and it remains poorly understood to what extent microbial activity is translated
into cellular reproduction in the deep subseafloor (15, 16).

Many subseafloor microbes exhibit viability, since they actively take up carbon and
nitrogen in incubation experiments (4, 17), indicating potential for microbial growth in
energy-limited anoxic subseafloor sediments. Microbial activities can also be stimulated
at redox interfaces deep below the seafloor over geological timescales (3, 18). However,
the capacity of microbes to reproduce in abyssal subseafloor ecosystems close to the
energy limit to life (6, 14) is particularly unconstrained, given the extreme scarcity of
organic substrates in these settings (19). There is reason to suspect that cellular
reproduction in the abyssal subseafloor is minimal, since microbial biomass tends to
decrease an order of magnitude over the top 10 m of sediment in all abyssal locations
yet sampled, reaching the detection limit for life at relatively shallow subseafloor
depths of ca. 15 mbsf (12). This follows the global trend whereby subseafloor microbes
tend to die faster than they grow (1), particularly in the top 10 m of marine sediment.

Here, we report an exception to this global trend in anoxic deep-sea clay recovered
from an abyssal water depth of �5,500 m in the North Atlantic, characterized by an
ultraslow sedimentation rate of ca. 3 m per million years. In contrast to oxic abyssal red
clay where microbial abundance decreases several orders of magnitude over the top 10
mbsf (12, 20), we show here that microbial abundance in the anoxic abyssal clay
increases an order of magnitude from the seafloor down to 15 mbsf (spanning ca. 5
million years). We then proceeded to use metatranscriptomics to further investigate the
anaerobic metabolic mechanisms that explain this net growth in the size of the
subseafloor microbial ecosystem over multimillion-year timescales.

RESULTS AND DISCUSSION
Sediment biogeochemistry. We obtained deep-sea clay sediment from a 5,515-m

water depth in the ultraoligotrophic open ocean of the North Atlantic. This coring site
(KN223-15) is characterized by a mean sedimentation rate of ca. 3 m per million years
(11). Samples ranged from 0.1 to 30 m below seafloor (mbsf). Given the mean
sedimentation rate, the deepest sample has an approximate age of 9 to 10 million
years. Oxygen and nitrate penetration into the sediment is restricted to the top
millimeter of sediment, as they were detectable in the bottom water but below
detection in the uppermost portion of the core at 0.02 and 0.03 mbsf, respectively (see
Fig. S1 in the supplemental material). The abyssal sediments of the North Atlantic are
typically oxic red clay that tend to have O2 penetrating many meters into the seafloor
(11, 21), but the subseafloor microbial ecosystem sampled here is unique in the sense
that the sediments are anoxic despite having ultraslow sedimentation rates. Moreover,
while the sediment of our abyssal subseafloor core displays sulfate (SO4

2�) concentra-
tions of approximately 29 mM at 0.02 mbsf and is fully anoxic downward, the rates of
anaerobic microbial SO4

2� reduction over the top 10 m of sampled sediment are low
(�3.8 � 10�4 mol SO4

2� m3 yr�1) and below detection underneath, resulting in pore
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water SO4
2� remaining �20 mM throughout the core (Fig. 1A). This profile is very

similar to profiles observed previously in anoxic sediments from other oligotrophic
regions, such as the Eastern Equatorial Pacific, where sediments are anoxic but com-
munity metabolic activity is too slow to consume all of the available SO4

2� (6, 22).
Abundance and diversity of the microbial communities. The density of 16S rRNA

gene copies per gram of wet sediment exhibits a subsurface peak in abundance,
increasing 1 order of magnitude (2.5 � 105 to 2.3 � 106 copies) from 0.2 to 3.5 mbsf
and remaining �106 between 3 and 10 mbsf. Thereafter, microbial 16S rRNA gene
abundances decrease gradually to a minimum of 9.9 � 104 copies at 17 mbsf (Fig. 1B).
In the uppermost sediment samples (0.1 to 0.4 mbsf), Actinobacteria, Planctomycetes,
Deltaproteobacteria, and Gammaproteobacteria dominate the community (Fig. 1C).
Below this depth, starting at 0.5 mbsf, the relative abundance of “Candidatus Atribac-
teria” rapidly increased from �5% to �40% (Fig. 1B and C) in all four biological
replicates sampled (see Fig. S2 and S3). The “Ca. Atribacteria” is only represented by 3
operational taxonomic units (OTUs), with one single OTU accounting for up to 40% of
the whole community throughout the record (Fig. 2A and B), which was consistent
across three to four biological replicates (Fig. S2). This dominant OTU (Fig. 2A) was most
closely affiliated with unpublished 16S rRNA gene sequences from deep subseafloor
sediments from the Nankai Trough (23) and a potential gas hydrate region of southwest
Taiwan subseafloor sediments (Fig. 2B).

According to a protocol for quantitative normalization of barcoded 16S gene
sequence data (24), we normalized group-specific 16S rRNA gene abundances by
dividing the total number of 16S rRNA gene copies determined via quantitative PCR
(qPCR) by their affiliated 16S rRNA gene relative abundances (fractional percentage of

FIG 1 Biogeochemistry, microbial diversity, and abundance in the anoxic sediment of North Atlantic site KN223-15. (A) Profiles of mean
net SO4

2� reduction rates and dissolved SO4
2� concentrations. (B) Quantitative PCR (qPCR) of 16S rRNA (black dots) and dsrB (orange stars)

genes, and the summed qPCR-normalized abundance of 16S rRNA gene OTUs affiliated with “Ca. Atribacteria” (blue), Chloroflexi (green),
and Deltaproteobacteria (light orange). Error bars correspond to standard deviations (2 �) based on four biological replicates. (C) Diversity
of 16S rRNA genes based on three to four biological replicates. (D) Number of ORFs attributed to “Ca. Atribacteria” in the metatran-
scriptomes as a function of depth. Light blue circles are the number of ORFs detected in individual metatranscriptome replicates, and the
larger dark blue circles are the total number of unique ORFs detected when summing across all replicates. The top two samples in panels
B and C (0.1 to 0.3 mbsf) were recovered by gravity coring, the deeper samples (0.5 to 29 mbsf) were recovered via long-piston coring.
Note in panels B and C that an increase in abundance of “Ca. Atribacteria” in the upper 1 mbsf coincides with their higher level of gene
expression in panel D.

Subsurface Microbes Reproducing over Millions of Years ®

September/October 2020 Volume 11 Issue 5 e01937-20 mbio.asm.org 3

https://mbio.asm.org


total sequences per sample). This showed that “Ca. Atribacteria” dominates the com-
munity (Fig. 1B), which is attributed to a single 16S OTU (Fig. 2). We considered the
potential influence of multiple copies of 16S rRNA genes (25) on the result and searched
for all “Ca. Atribacteria” genomes in the JGI database sequenced to date, which
revealed that all sequenced genomes from this group have only one 16S rRNA gene
copy, whereas Deltaproteobacteria and Chloroflexi have a median of two 16S rRNA gene
copies (up to four) per genome (25). Thus, despite having an average lower 16S rRNA
gene copy number than Chloroflexi and Deltaproteobacteria, “Ca. Atribacteria” relative
abundance was high in our 16S rRNA gene sequence data set, even suggesting that our
data actually underestimate the abundance of “Ca. Atribacteria.” These profiles show
exponential net increases of “Ca. Atribacteria” and Chloroflexi within the upper 10 m of
sediment, whereas those of Deltaproteobacteria increase at 0.4 mbsf but recede rapidly

FIG 2 Relative abundance and phylogenetic analyses of the most abundant OTU (“Ca. Atribacteria”) and its phylogenomic protein
markers. (A) The histogram shows the relative abundance of the most abundant OTU (“Ca. Atribacteria”), error bars are standard deviations
from 3 to 4 biological replicates (see Fig. S2 in the supplemental material). (B) Phylogenetic analysis of 16S rRNA genes (V4 hypervariable
region) showing the affiliation of all three “Ca. Atribacteria” OTUs to the JS1 clade. (C) Phylogenetic tree based on 31 concatenated protein
markers identified with AMPHORA2 (33). The monophyletic clade including our samples in the tree has �95% similarity to the sister clade
with taxa from the Atlantic Ocean, Ross Sea, and North Pacific methane hydrate subseafloor sediment.
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over time from 104 to 103 copies or less, reaching our limit of detection (102 gene
copies g�1 [wet weight] sediment) at the bottom of the core. The vertical profile of the
beta subunit of the dissimilatory sulfate reductase (dsrB) gene runs parallel to that of
Deltaproteobacteria 16S rRNA genes, which points to Deltaproteobacteria as the main
sulfate-reducing bacteria (SRB) in this anoxic sediment. This inference is supported by
the abrupt 10-fold drop in dsrB and Deltaproteobacteria 16S rRNA gene sequences at 10
mbsf (Fig. 1B), the same depth at which net SO4

2� reduction decreases to below
detection levels (Fig. 1A). The abundance of SRB is lower than in organic-rich shelf
sediments (26, 27), which may be related to the relatively low sedimentation rate at our
sampling location, since SO4

2� reduction rates are correlated with the square of the
sedimentation rate (9). The relative slowness of SO4

2� reduction at our sampling
location is readily evident in the profile of dissolved SO4

2� concentrations, which
remained �20 mM throughout the core (Fig. 1A).

Metagenomic analysis. Metagenomes from five depths were sequenced at an
average depth of 8.4 million reads (� 2.5 million) (see Table S3). Because the DNA was
amplified by multiple displacement amplification (MDA), we only considered presence/
absence of genes and did not interpret the relative abundance of genes in the
MDA-amplified metagenomes to be indicative of taxon abundance. De novo “binning”-
based methods for creating metagenome-assembled genomes (MAGs) are useful for
discovering new taxa when distantly related genomes in databases preclude similarity-
based searches (28–31). Because of the ultralow DNA concentrations extractable from
these abyssal clay sediments, we were only able to obtain metagenomic data after
amplifying the extracted DNA using multiple displacement amplification (MDA). Our
attempts at de novo binning of the MDA products revealed a selective amplification of
short fragments that precluded binning and completion of high-quality MAGs (see
Table S2). Specifically, manual curation of MaxBin results using Anvi’o (32) produced 12
bins at relatively low levels of genome completeness (17% to 44%) that were able to
be assigned to “Ca. Atribacteria” (see Fig. S4). Thus, in order to increase the annotation
of putative functions of open reading frames (ORFs) in metagenomes from the “Ca.
Atribacteria” that could not be assembled into bins, we also applied a bioinformatics
pipeline, whereby ORFs harbored by de novo assembled contigs were searched for
similarity against a large aggregated genome database of predicted proteins from all
atribacterial MAGs and single-cell genomes (SAGs) sequenced to date, including all
published data from subsurface metagenomics studies (see Materials and Methods). We
then extracted all the ORFs having a predicted protein from a “Ca. Atribacteria” genome
as a top BLASTp hit and ran a phylogenomic analysis based on 31 phylogenomic
markers using AMPHORA (33). This phylogenomic analysis demonstrates that our
previously published method (34, 35) recovers ORFs with high similarity (�95% amino
acid similarity) to predicted proteins in previously sequenced “Ca. Atribacteria” ge-
nomes (Fig. 2C). The phylogenomic analysis shows that the atribacterial ORFs from all
sampled depths form a monophyletic clade sister to those from deep-sea sediments of
the Atlantic Ocean, Ross Sea, and Pacific Ocean methane hydrates within the JS1 clade
(Fig. 2C). This high level of similarity to existing “Ca. Atribacteria” genomes enabled
similarity-based assignment of “Ca. Atribacteria” ORFs in our samples (see Fig. S5). As
further evidence of this, the median similarity of ORFs to their top hit in the database
in all metatranscriptome and metagenome data sets of �60% indicates that the ORFs
in our samples had relatively high similarity to existing predicted proteins in the
database (see Fig. S6).

We confirmed the accuracy of this previously published approach (34, 35) by an in
silico test for true- and false-positive annotations based on 151 randomly selected
peptide fragments extracted from “Ca. Atribacteria” predicted proteomes as well as
other bacterial and archaeal genomes (see Fig. S7). In this analysis, 50 randomly
selected predicted proteins were randomly cut into peptide fragments ranging from 20
to 140 amino acid residues in length in order to replicate partial ORFs typically
recovered in metagenomes. The random peptide fragments were then searched
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against the large aggregate database (34, 35) for their top hits with BLASTp. This in silico
test showed that 100% of all randomly cut peptide fragments from atribacteria were
true positives; they had the same atribacterial genome as a top BLASTp hit. This shows
that our use of a similarity-based approach for ORF annotations (34–36) is adequate for
assigning ORFs harbored by de novo assembled contigs to groups at high taxonomic
levels, including those derived from the candidate phylum Atribacteria.

Gene expression analysis. Metatranscriptomes from eight depths were produced
in biological replicates (two to seven replicates per depth) (Fig. 1D) and sequenced at
an average depth of 4.0 million reads (�1.5 million) with 91,199 contigs across all
samples sequenced (Table S3). Similar to that for the 16S rRNA gene abundances, there
was a subsurface peak in the number of unique expressed ORFs assigned to “Ca.
Atribacteria” that increases exponentially between 3.5 and 10 mbsf, which was consis-
tent across multiple replicate metatranscriptomes from each depth, and at 16 m, our
RNA limit of detection was reached (Fig. 1D). We defined this depth as our RNA
detection limit, because the number of unique ORFs assigned to “Ca. Atribacteria” was
no longer detectable and, below this depth, the only ORFs annotated were those
assigned to groups of known contaminants from molecular kits, including those from
human skin and soil (37). Many of these same groups are common laboratory contam-
inants found in dust samples from our lab in 16S rRNA gene surveys (38) and include
Pseudomonas, Rhizobium, Acinetobacter, and Staphylococcus. Presumably, the detection
limit was reached because a smaller amount of extracted RNA from the in situ active
community becomes overprinted by background “noise” from contaminating DNA (or
RNA) derived from the kits, aerosols, or other laboratory contaminants.

There was a statistically significant correlation (r values � 0.59 and 0.61, P val-
ues � 0.016 and 0.014) between the abundance of atribacterial 16S rRNA genes and
expressed ORFs (see Table S1). The number of expressed ORFs correlated with 16S rRNA
gene quantities, which was consistent for the entire data set (total bacteria) and when
comparing the number of ORFs expressed per group to the qPCR normalized abun-
dance of the same taxonomic group for the four groups with the highest numbers of
detected ORFs in the metatranscriptomes (atribacteria, Deltaproteobacteria, Chloroflexi,
and Archaea) (Fig. 3A).

Evidence for subseafloor reproduction. The steadily increasing abundance of “Ca.
Atribacteria” over time (since sediment deposition) is apparently due to cells under-
going cytokinesis, as the 16S rRNA gene abundances correlated with the transcription
of genes encoding proteins involved in cell division and cell shape determination such
as FtsAEKQWZ, MreBC, and RodA (Fig. 3B) (39, 40). The expressed genes encoding the Fts
proteins form the “divisome” (41), which includes the FtsZ ring, a cytokinetic protein
ring that localizes at the cell division site prior to cytokinesis in dividing bacterial cells
and pumps the replicated chromosome into the daughter cell (42). These genes are
expressed during cellular division in “Ca. Atribacteria,” indicating the exponential
growth phase (43). Thus, while we do not report measurements of biomass turnover
such as amino acid racemization (44, 45) or stable isotope probing (4, 17), the steadily
increasing microbial biomass of “Ca. Atribacteria” with increasing sediment depth
together with the detected correlation between their abundance and transcriptional
activity (Fig. 3A) and the transcription of ORFs encoding FtsZ ring proteins (Fig. 3B)
strongly suggest that the higher abundances of “Ca. Atribacteria” between 0.5 and 10
mbsf are due to actively dividing cells. In this zone of apparent increased reproduction,
the number of unique expressed ORFs correlated significantly with the number of 16S
rRNA gene copies from the dominant groups (Fig. 1 and 3). The most parsimonious
explanation for this is that more expressed ORFs from atribacteria are detected at these
depths because there are higher numbers of metabolically active atribacteria produc-
ing mRNA transcripts.

The sediment ages in this interval span several million years; thus, this higher
number of metabolically active microbes originated from “Ca. Atribacteria” that slowly
reproduced through binary fission and cytokinesis over multimillion-year timescales.
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Because genes involved in the formation of the divisome, FstZ ring, and cytokinesis
were only expressed at depths where the highest 16S rRNA gene copies were found
(Fig. 4B), the higher number of 16S rRNA gene copies at those depths is likely due to
higher numbers of actively reproducing atribacterial cells. Active cells have higher
numbers of ribosomes and thus higher copies of 16S rRNA per cell (46), but our qPCR
assay targeted DNA (the bacterial chromosome), not RNA (expressed genes), thus
discarding active rRNA synthesis as a confounding factor in our bacterial abundance
estimations. Since “Ca. Atribacteria” has only one 16S rRNA gene copy, it is possible to
conclude that the observed 10-fold increase in atribacterial 16S rRNA gene copy
numbers over the top 10 mbsf requires chromosomal (genome) replication. In bacteria,
genome replication occurs in actively dividing cells prior to cytokinesis and binary
fission (46), assuming steady-state microbial input in sediment over millions of years.
The only alternative explanation to our observations would require an increase in 16S
rRNA copy number in the chromosome of “Ca. Atribacteria” over the top 10 mbsf
followed by its subsequent decrease in the same chromosome below 10 mbsf. Such an
incredibly high rate of genome evolution affecting the highly conserved 16S gene and
then acting in a reversible way after 10 mbsf is inconceivable, especially considering
this gene evolves at a rate of 1% every 100 million years (47) and our deepest sampled
depth is roughly 10 million years old. Thus, the most likely explanation is that the
detection of more 16S rRNA gene copies from the dominant OTU of “Ca. Atribacteria”
(Fig. 2A) is due to more cells, each containing one chromosome with one copy of the
16S rRNA gene. The correlation of these 16S rRNA genes with higher numbers of
expressed genes from “Ca. Atribacteria” over the top 15 mbsf (Fig. 1D and 3) can be
attributed to a single clade (Fig. 2) that has been slowly reproducing and increasing in
abundance over millions of years.

Predicted metabolism for “Ca. Atribacteria.” Our finding that “Ca. Atribacteria”
expressed the highest number of protein-encoding genes among all other groups
(Fig. 3) is furthermore consistent with their high levels of gene transcription in deep
subseafloor sediments of the Baltic Sea (48). Below 15 mbsf, the microbial ecosystem
transitions to net death, since microbial abundances decrease by 2 orders of magni-

FIG 3 Group-specific transcriptional activity correlates with abundance. (A) Abundance of 16S rRNA genes (x axis)
normalized to total bacteria (white), “Ca. Atribacteria” (blue), Chloroflexi (green), Deltaproteobacteria (light orange),
and Archaea (red) 16S rRNA sequences plotted against their respective number of ORFs assigned to the same
groups in the metatranscriptomes (y axis). Error bars represent standard deviations across biological replicates (in
the case of three or more) or ranges (in the case of two replicates). (B) Abundance of 16S rRNA genes normalized
to “Ca. Atribacteria” (blue) and Chloroflexi (green) plotted against their respective number of ORFs in the transcripts
assigned to cell division (FtsAEKQWZ, MreBC, and RodA), showing that cell division is only detectable at 16S rRNA
gene densities of �105 copies.
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tude, RNA levels decline to below detection, and the net SO4
2� reduction rate is below

our detection limit (Fig. 1). However, “Ca. Atribacteria” remains the dominant group
throughout the core, even below 10 mbsf. Its continued dominance is consistent with
its abundance in other deep subseafloor settings (49–52) and the findings that domi-
nant taxa in the subseafloor community do not necessarily require cellular reproduction
to outcompete other taxa but can reach higher relative abundances from lower
mortality than their competitors over long timescales (53, 54). This is supported by the
lack of expression of ORFs by atribacteria harboring cellular division proteins below 10
mbsf, where atribacterial 16S rRNA gene abundances are �105 copies per g (Fig. 3B).

FIG 4 Metabolic potential and transcriptional activity of “Ca. Atribacteria” and its microcompartment. (A) Presence (colored) or absence
(white) of ORFs assigned to “Ca. Atribacteria” encoding predicted proteins in metagenomes (circles) and metatranscriptomes (squares).
(B) Bubble plots showing the coverage values (percent total reads) of expressed genes identified for “Ca. Atribacteria” at eight different
depths. The numbering of the groups in panel A corresponds to the same numbering in panel B. DERA, 2-deoxy-D-ribose 5-phosphate
aldolase. (C) Sequences of gene synteny related to the BMC present in the cell of “Ca. Atribacteria.” These three syntenies provide evidence
for metabolic use of aldehydes and alcohols via dehydrogenases with biosynthesis of acetyl-coenzyme A (acetyl-CoA) and regeneration
of NAD�.
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Similar to what has been predicted from genomic studies (55–58), the gene transcrip-
tion data strongly indicate that the “Ca. Atribacteria” dominating throughout the core
actively utilizes a sugar-based acetogenic metabolism (Fig. 4A). This is also consistent
with gene transcription from “Ca. Atribacteria” in deep subseafloor Baltic Sea sediments
that showed active utilization of trehalose (48).

The Wood-Ljungdahl pathway (WLP) has been found to be a widespread and
potentially important metabolic pathway in subsurface microbial life (57, 59, 60). The
WLP can be used catabolically to achieve redox balance and regenerate NAD� and
oxidized ferredoxin to thereby increase anaerobic metabolic efficiency (61). In aceto-
genic bacteria, this is coupled to the Rnf complex at the membrane that utilizes either
ferredoxin or NAD� as the terminal electron acceptor, driving a Na� ion gradient and
ATP synthesis (Fig. 5) (62). Several lines of evidence in our gene transcription data
indicate that “Ca. Atribacteria” utilizes a similar metabolism.

Specifically, “Ca. Atribacteria” expressed transcripts encoding ORFs with similarity to
proteins involved in sugar fermentation and the WLP (Fig. 4B). Genes encoding
enzymes of the WLP were all present (Fig. 4A) and differently expressed by “Ca.
Atribacteria” as were those encoding proteins involved in glycolysis, fermentation, and
electron bifurcation (Fig. 4B). Transcription of ORFs by “Ca. Atribacteria” with similarity
to enzymes known to be involved in electron bifurcation that results in production of
molecular hydrogen included the beta subunit of the heterodisulfide reductase, for-
mate hydrogen lyase (63), gamma subunit of the NiFe hydrogenase (64), and subunit
alpha of the reversible formate dehydrogenase (65). The formate hydrogen lyase
complex combines NiFe hydrogenase and soluble formate dehydrogenase to couple

FIG 5 Potential “Ca. Atribacteria” physiology based on metagenomes and transcriptomes. The figure is based on the known interlinking
of energy metabolism pathways for (homo)acetogenic bacteria (61) and BMC metabolic functions (57), as well as the function of the FstZ
ring and divisome (41). Colored dots correspond to the successive enzymatic steps (as listed in Fig. 4), e.g., fermentation corresponds to
glycolysis (11 dots) and lactate fermentation (3 dots). Actively expressed genes encoding the divisome complex (i.e., FtsAEKQWZ) are
indicated at the top right. nPPP, nonoxidative pentose phosphate pathway; SLP, substrate-level phosphorylation; DERA, 2-deoxy-D-ribose
5-phosphate aldolase; ALDH, aldehyde dehydrogenase; ADH, alcohol dehydrogenase; FBEB, flavin-based electron bifurcation; FHL, formate
hydrogen lyase; WLP, Wood-Ljungdahl pathway.
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formate and/or CO-dependent hydrogen production to the generation of the Na�

motive force to generate ATP. This enzymatic complex allows growth on formate
disproportionation (66), during which two electrons are passed to hydrogenase and
two protons are neutralized (67). The gene expression data indicate that the “Ca.
Atribacteria” produces the chemiosmotic Na� gradient using the Rnf complex for ATP
synthesis (61). Atribacterial ORFs encoding the Rnf complex were expressed at the
majority of depths (Fig. 4B), indicating this is indeed an important mechanism of
anaerobic ATP synthesis.

We also detected active transcription of genes encoding pyruvate-formate lyase,
acetate kinase, and formate dehydrogenase, which is reversible (65); therefore, the WLP
could be used for either catabolic or anabolic purposes (Fig. 5). However, the expres-
sion of an H4F:B12 methyltransferase from “Ca. Atribacteria” is a direct indication that
the WLP is functioning as an acetogenic pathway as opposed to one for methanogen-
esis, because acetogens use 5-methyltetrahydrofolate:corrinoid (H4F:B12) methyltrans-
ferase, whereas methanogens use tetrahydromethanopterin methyltransferase in the
last step of methyl synthesis prior to acetyl synthesis (68). Expression of the H4F:B12

methyltransferase from “Ca. Atribacteria” was relatively high in the deeper samples at
8.2 and 9.7 mbsf (Fig. 4B), where the steadily increasing abundance of 16S rRNA genes
with depth reached their peak values (Fig. 1B).

“Ca. Atribacteria” expression of transporter-encoding genes for multiple types of
sugar (i.e., hexose, hexulose, pentose, pentulose, and ribose) and glycosidases (Fig. 4B)
indicates a potential preference for sugar-based substrates. Sugars are in anoxic
sediments as an energy substrate from bacterial necromass (e.g., ribose-containing
nucleic acids DNA and RNA) and could be used as a fermentation substrate (69). The
only detectable gene expression from “Ca. Atribacteria” observed at a 15.9-m depth
indicates sugar transport, peptidases, fructose biphosphate, and phosphogluconate
aldolase activities (Fig. 4B), again pointing that utilization of necromass (sugars and
peptides from dead cells) is an important activity for long-term survival.

Fermentation products and other oxidized organic substrates (i.e., alcohols, ketones,
aldehydes, and carboxylic acids) become toxic if they accumulate in the cell (70, 71).
The gene expression from “Ca. Atribacteria” shows a metabolic potential for aldehydes
to be reoxidized in secondary fermentations via a bacterial microcompartment (BMC),
regenerating additional reduced ferredoxin and NADH in the process (72, 73). We
obtained three contigs from “Ca. Atribacteria” with ORFs encoding BMC shell proteins
syntenous with Rnf, aldehyde dehydrogenase, and 2-deoxy-D-ribose 5-phosphate al-
dolase (DERA) (Fig. 4C), similar to the already reported genome assembled from “Ca.
Atribacteria” (57). These genes were coexpressed at multiple depths (Fig. 4B), suggest-
ing that the BMC and Rnf-based establishment of the Na� ion gradient for ATP
production are connected (Fig. 5). Collectively, these findings indicate that “Ca. Atrib-
acteria” may use a BMC to recycle toxic intermediates produced during secondary
fermentations for additional energy (Fig. 4 and 5). The ability to use a BMC to sustain
secondary fermentations, in addition to primary fermentation of sugars (Fig. 4 and 5),
may optimize energy conservation (e.g., increase ATP yields per mole substrate oxi-
dized) under the extreme energy-limiting subseafloor conditions. Similar to our results,
a dominance of “Ca. Atribacteria” in organic lean sediments has been observed
previously during the IODP expedition 313 to the New Jersey shelf (27). However, we
acknowledge that biases inherent to all methods for determining the abundance of
Bacteria and Archaea make quantitative comparisons difficult (5) and thus interpret the
qPCR data showing a relatively lower abundance of Archaea (Fig. 1B) with caution.

Although fermenters and acetogens are often outcompeted by SRB in organic-rich
subseafloor sediments, the poor fitness of SRB in the sampled environment (Fig. 1B and
C), compared to that of “Ca. Atribacteria,” may be related to the relatively low SO4

2�

reduction rates (Fig. 1A) and relatively low rates of organic matter burial at our sampled
site (11, 19). In contrast, Chloroflexi related to Dehalococcoidia, which are predicted
(homo)acetogens with metabolic potential to degrade complex organic compounds
(59, 60), are relatively abundant in these deep-sea anoxic clays (Fig. 1B and C) and

Vuillemin et al. ®

September/October 2020 Volume 11 Issue 5 e01937-20 mbio.asm.org 10

https://mbio.asm.org


transcribe genes involved in cell division (Fig. 3B). Our results lead us to speculate that
organic-lean, anoxic abyssal subseafloor sediment thus represents a niche that favors
the reproduction of Chloroflexi and “Ca. Atribacteria” over that of other microbes,
including SRB. Moreover, in culture experiments from the first cultivated representative
of the atribacteria, the presence of an H2-consuming methanogenic partner increased
the growth rate of atribacteria by more than 100-fold (43). Based on this experimental
result, we speculate that the relatively high abundance of the atribacteria in our
sampled ancient anoxic sediment could be attributed to an as-of-yet-unidentified
syntrophic or semisyntrophic partner organism, from the Chloroflexi, for example,
Dehalococcoidia (74, 75).

Our data show that reproduction can occur in the subseafloor over multimillion-year
timescales. Although RNA from the “Ca. Atribacteria” was no longer detectable below
16 mbsf, metagenomes and 16S sequencing show that they subsist and remain the
dominant group down to at least 29 mbsf. The extractable DNA with our protocol does
not target extracellular DNA (20); thus, the DNA in these deeper sediments likely does
not derive from “dead” DNA preserved from once-living cells. Therefore, we assume
that “Ca. Atribacteria” remains viable, and potentially active, in the deeper sediments
but at cell abundances and transcriptional activities that are too low for our current
RNA-based methods. Thus, the survival of the “Ca. Atribacteria,” associated with gene
expression at relatively low levels, supports the hypothesis that reduced metabolic
activity is a fitness advantage (16) in the energy-starved subseafloor.

MATERIALS AND METHODS
Sampling. All samples were taken by cruise KN223 of the R/V Knorr in the North Atlantic, from 26

October to 3 December 2014 (Woods Hole, MA, to Woods Hole, MA). At site KN223-15 (33°29.0=N,
54°10.0=W; water depth, 5,515 m), successively longer sediment cores were retrieved using a multicorer
(	0.4 m), gravity corer (	3 m), and the Woods Hole Oceanographic Institution (WHOI) piston-coring
device (	28 m). Additional details of sampling are published (11). Dissolved oxygen concentrations in
the core sections (see Fig. S1 in the supplemental material) were measured with optical O2 sensors as
described previously (76). Concentrations of dissolved SO4

2� were measured as published previously (6),
and SO4

2� reduction rates were calculated as previously described (14). Sediment subcores were
retrieved on the ship aseptically using end-cut sterile syringes and kept frozen at �80°C until extraction
in the home laboratory.

DNA extraction, quantitative PCR, and 16S rRNA gene libraries. For each sampled depth, we
performed four biological replicates of DNA extraction. Total DNA was extracted from 0.7 g of sediment
as previously described (20). DNA templates were diluted 10 times in ultrapure PCR water (Roche) and
used in qPCR amplifications with updated 16S rRNA gene primer pair 515F (5=-GTG YCA GCM GCC GCG
GTA A-3=) and 806R (5=-GGA CTA CNV GGG TWT CTA AT-3=) to increase our coverage of Archaea and
marine clades (77) and run as previously described (38). All qPCRs were set up in 20-�l volumes with 4
�l of DNA template, 20 �l SsoAdvanced SYBR green Supermix (Bio-Rad), 4.8 �l nuclease-free H2O (Roche),
0.4 �l primers (10 �M; biomers.net), and 0.4 �l MgCl2 and carried out on a CFX-Connect qPCR machine
for gene quantification. For 16S rRNA genes, we ran 40 PCR cycles of two steps corresponding to
denaturation at 95°C for 15 s and annealing and extension at 55°C for 30 s. To measure the abundance
of dsrB genes, we used a previously described assay (78) with the primer pair dsrB4-R (5=-GTG TAG CAG
TTA CCG CA-3=) and dsrB2060F (5=-CAA CAT CGT YCA YAC CCA GGG-3=). All qPCRs were set up in 20-�l
volumes with 4 �l of DNA template and performed as previously described (79). Gel purified amplicons
of the 16S rRNA, dsrB, and mcrA genes were quantified in triplicates using QuantiT dsDNA reagent (Life
Technologies) and used as a standard. An EpMotion 5070 automated liquid handler (Eppendorf) was
used to set up all qPCRs and prepare the standard curve dilution series spanning from 107 to 101 gene
copies. Reaction efficiency values in all qPCR assays were between 90% and 110% with R2 values of
�0.95% for the standards.

For 16S rRNA gene library preparation, qPCR runs were performed with barcoded primer pair 515F
and 806R. All 16S rRNA gene amplicons were purified from 1.5% agarose gels using the QIAquick gel
extraction kit (Qiagen), quantified with the Qubit dsDNA HS assay kit (Thermo Fisher Scientific),
normalized to 1 nM solutions, and pooled (38). Library preparation was carried out according to the
MiniSeq System Denature and Dilute Libraries guide (Illumina). Sequencing was performed on all four
biological replicates (Fig. S2) on the Illumina MiniSeq platform at the Geo-Bio LMU Center. We used
USEARCH version 10.0.240 for MiniSeq read trimming and assembly, OTU picking, and 97% sequence
identity clustering (80), which we showed previously captures an accurate diversity represented within
mock communities sequenced on the same platform (38). OTU representative sequences were identified
by BLASTn searches against SILVA database version 132 (81). To identify contaminants, 16S rRNA genes
from extraction blanks and dust samples from the lab were also sequenced in triplicates (38). These 16S
rRNA gene sequences were used to identify any contaminating bacteria (e.g., Acinetobacter, Bacillus, and
Staphylococcus) and selectively curate the OTU table of our anoxic abyssal clay samples prior to
downstream analysis. The 30 most abundant OTUs were aligned with SINA online v.1.2.11 (82) and
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plotted in a maximum likelihood RAxML phylogenetic tree (83) (Fig. S3) against the SILVA 16S rRNA SSU
NR99 reference database version 132 (81) using ARB (84). Closest environmental sequences with nearly
full-length sequences (�1,400 bp) were selected as taxonomic references and used to calculate trees
implemented with the bacterial and archaeal filter and advanced bootstrap refinement selecting the best
tree among 300 replicates (84). Partial OTU sequences were added to the tree using the maximum
parsimony algorithm without allowing changes of tree topology (Fig. 2 and S3).

Metagenome libraries. Whole-genome amplifications were performed on DNA extracts at 10�
dilutions through a multiple displacement amplification (MDA) step of 6 to 7 h, using the REPLI-g Midi
kit (Qiagen) and according to the manufacturer’s instructions. Dilution of the extracted DNA was
necessary, because the MDA reaction was inhibited in undiluted DNA extracts (presumably from
coextracted inhibitory chemicals). We added SYBR green I (Invitrogen) at 1,000� concentration to
visualize the amplification in real time on the CFX-Connect qPCR machine with a fluorescence reading
taken every 10 min. Amplification was stopped after reaching the exponential increase by heating to
65°C for 3 min. Metagenomic libraries were prepared using the Nextera XT DNA Library Prep kit (Illumina),
quantified on an Agilent 2100 bioanalyzer system (Agilent Genomics), and normalized with the Select-
a-Size DNA Clean and Concentrator MagBead kit (Zymo Research) as previously described (20).

RNA extractions and metatranscriptome libraries. Total RNA extractions were obtained according
to a previously published protocol (85). In brief, RNA was extracted from 3 g of sediments using the
FastRNA Pro Soil-Direct kit (MP Biomedicals) according to the manufacturer’s instructions, with the
addition of 4 �l glycogen (0.1 g ml�1) to increase yield during precipitation of the RNA pellet and final
elution in 40 �l PCR-grade water (Roche). Extraction blanks (no RNA added) were processed alongside
to assess laboratory contamination, and sequencing of these contamination controls revealed common
laboratory contaminants found in dust samples from our lab in 16S rRNA gene surveys (38), including
Pseudomonas, Rhizobium, Acinetobacter, and Staphylococcus. RNA extracts were quantified using the
QuBit RNA HS assay kit (Thermo Fisher Scientific). DNase treatment, synthesis of cDNA, and library
construction were performed on the same day from 10 �l of RNA templates using the Trio RNA-Seq kit
protocol (NuGEN Technologies). Libraries were quantified as described above. All libraries were diluted
to 1 nM and pooled for further sequencing on the MiniSeq platform (Illumina).

Gene identification and normalization in metagenomes. The SqueezeMeta (86) metagenomic
analysis pipeline was used for downstream analysis of metagenomic reads in coassembly mode. For
adapter removing, trimming, and quality filtering, we used Trimmomatic set to the following: leading, 8;
trailing, 8; sliding window, 10:15; and minimum length, 30 (87). Contigs were assembled to minimum
length of 200 bp using Megahit assembler (88). ORFs for genes and rRNAs were called using Prodigal (89),
and rRNA genes were determined by barrnap (90). RDP classifier were used for the classification of 16S
rRNA genes (91). Diamond software (92) was deployed for taxonomic assignment of retrieved gene
homologies against the GenBank, eggNOG v. 4.5 (93), and KEGG (94) databases. Cutoff values for
assigning hits to specific taxa were performed at an E value of 1 � e�3, minimum amino acid similarity
of 40 for taxa and 30 for functional assignment, using SqueezeMeta with default settings. Reads were
mapped onto contigs and genes by using Bowtie2 (95). Coverage and transcripts per million (TPM) values
were calculated using SqueezeMeta. For binning, we used MaxBin 2.0 (96) and MetaBAT (97), and bins
generated by the two different algorithms were merged into one single data set using DAS Tool (98). Bin
completeness and contamination were checked using CheckM (99). Further analysis of metagenome-
assembled genomes (MAGs) based on results from SqueezeMeta was achieved using Anvi’o v. 6.2 (32)
and MAGs selected by DAS tool further refined manually based on hierarchical clustering of contigs. The
complete workflow using DAS Tool separates 14 bins whose taxonomic affiliations are uncertain. Manual
curation of these results points to “Candidatus Aerophobetes,” Chloroflexi, and “Ca. Atribacteria” as
potential bin affiliations (Table S2). In comparison, from the manual curation of MaxBin results, we
produced 31 bins (17% to 59%), among which, 12 bins are clearly assigned to “Ca. Atribacteria” with
different levels of genome completeness (Fig. S4).

Because the MDA step produced many short fragments that did not allow high-quality binning and
full genome completion, assigning a taxonomic affiliation to metagenomic and metatranscriptomic data
is challenging (100). For annotating putative functions of ORFs in metagenomes and metatranscriptomes
from particular “higher-level” taxonomic groups of microorganisms (34, 35), we also applied a bioinfor-
matics pipeline whereby protein-encoding ORFs were extracted from de novo assembled contigs using
FragGeneScan v. 1.30 (101) and functionally annotated against a large aggregated genome database (20,
34, 35) containing predicted proteins from all protist, fungal, bacterial, and archaeal genomes and MAGs
in the JGI and NCBI databases using DIAMOND version 0.9.24 (92). This database, which we refer to as
MetaProt, also contained all ORFs from all of the transcriptomes of microbial eukaryotes from the MMETS
project (102), and we removed any hits to photosynthetic eukaryotic algae as contaminants. This custom
MetaProt database that we used for this study is available as a single 32 GB amino acid fasta file on the
LMU Open Data website (https://data.ub.uni-muenchen.de/183/). Cutoff values for assigning hits to
specific taxa were performed at a minimum bit score of 50, minimum amino acid similarity of 60, and an
alignment length of 50 residues. All scripts and code used to produce the analysis have been posted on
GitHub (https://github.com/williamorsi/MetaProt-database), and we provide a link to the MetaProt on
the GitHub page as well as instructions within the scripts regarding how to conduct the workflows that
we used. This approach assigns ORFs to higher-level taxonomic groups (35). As is the case in all
metagenomic studies, the incomplete nature of genomes in databases, together with the lower repre-
sentation of sequenced genomes from candidate clades than from cultured ones, makes it likely that our
pipeline misses annotation of ORFs that are derived from as-yet-unsequenced atribacterial genomes. We
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acknowledge that some genes in databases annotated as being present in “Ca. Atribacteria” might have
been assigned to bins according to criteria that differ from study to study (Fig. S7).

Gene identification and normalization in metatranscriptomes. Paired-end reads were trimmed
and assembled into contigs using CLC Genomics Workbench 9.5.4 (Qiagen, Hilden, Germany), using a
word size of 20, bubble size of 50, and a minimum contig length of 300 nucleotides. Reads were then
mapped to the contigs using the following parameters (mismatch penalty, 3; insertion penalty, 3;
deletion penalty, 3; minimum alignment length, 50% of read length; minimum percent identity, 95%).
Coverage values were obtained from the number of reads mapped to a contig divided by its length (i.e.,
average coverage). Only contigs with an average coverage of �5 were selected for ORF searches and
downstream analysis (20, 34, 85). This protocol does not assemble rRNA; thus, results are only discussed
in terms of mRNA. We then performed even further stringency controls by removing any contig that had
less than 5� coverage, e.g., reads per kilobase mapped (RPKM). The final resulting data set of contigs was
then used for ORF searches and annotation against the MetaProt aggregate database, as described
above.

For the metatranscriptomes, normalization of the relative abundance of ORFs was based on the
number of unique ORFs assigned to a group (e.g., “Ca. Atribacteria”), a fractional percentage of total ORFs
detected. We normalized expression in this manner as opposed to more conventional procedures such
as RPKM because we found that the transcriptome sequencing (RNA-seq) kit we used has an amplifi-
cation step (SPIA amplification, Trio RNAseq Ovation kit; NuGen) that biases the relative abundance of
reads mapping to contigs when normalized using RPKM. For example, the RPKM value for the same ORF
across technical replicates was found to have very large (orders of magnitude) variability in RPKM. In
contrast, the total number of unique ORFs (e.g., presence/absence of an expressed ORF) assigned to
specific groups (e.g., “Ca. Atribacteria”) was highly consistent between technical replicates. We assume
that this technical variation in the RNA-seq data is associated with randomized SPIA amplification of
different transcripts and/or fluctuations in the number of mRNA molecules in technical replicate tubes
due to the highly labile nature of RNA during the extraction and library prep procedure. For this reason,
we normalized the relative abundance of ORFs assigned to a specific group based on presence/absence
of expressed ORFs, which was highly consistent between technical replicates despite the SPIA amplifi-
cation. If significantly higher numbers of unique ORFs are detected from a particular group than from
other groups, it can be attributed to relatively higher transcriptional activity.

COG categories were assigned by searching the ORFs against the COG database (103) using BLASTp.
Metagenomic raw reads and metatranscriptomic atribacterial contigs were mapped with high stringency
against a previously sequenced subseafloor MAG of “Ca. Atribacteria” that has relatively high complete-
ness (88%) as a reference (104), using Geneious 8.1.9. The average coverage after mapping against
GenBank reference no. NCRO00000000.1 to 0.700 (104) was 224 (�131), and 93% of ORFs in the reference
MAG were detected in our subseafloor metagenomes and metatranscriptomes. Consensus sequences
were exported and annotated using the online tool RAST v. 2.0 (105). Taxonomic assignment of
protein-encoding genes to “Ca. Atribacteria” clade JS1 was further confirmed in our metagenomes
(Fig. S6) by selecting and aligning 31 phylogenomic markers from the corresponding metagenomic ORFs
and 36 atribacterial reference genomes obtained from the NCBI database by using AMPHORA2 (33).
Statistical analyses of beta-diversity were performed using RStudio v. 3.3.3 with the Bioconductor
package (106).

Data availability. Data are publicly available through NCBI BioProject PRJNA590088. Metagenomes
and metatranscriptomes have accession numbers SAMN13317858 to SAMN13317880. The 16S data are
available in SRA BioSample accessions SAMN10929403 to SAMN10929517 and SAMN13324854 to
SAMN13324920. Additional data related to this paper may be requested from the authors.
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