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Abstract: Development of a novel antioxidant-delivery vehicle exerting biosafety has been attracting
a great deal of interest. In this study, a vehicle comprising a natural composite consisting of vitamin
E (α-tocopherol; Toc) and cyclodextrin (CD) additives was developed, directed toward aqua-related
biological applications. Not only β-CD, but also γ-CD, tended to form a water-insoluble aggregate
with Toc in aqueous media. The aggregated vehicle, in particular the γ-CD-added system, showed
a remarkable sustained effect because of slow dynamics. Furthermore, a prominent cytoprotective
effect by the γ-CD–Toc vehicle under the oxidative stress condition was confirmed. Thus, the novel
vitamin E vehicle motif using γ-CD as a stabilizer was proposed, widening the usability of Toc for
biological applications.
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1. Introduction

Vitamin Es are representative lipophilic antioxidants, consisting of a chromanol head
and a phytyl tail [1–9]. It is well-known that the molecules play a crucial role in the
treatment of free radicals-induced diseases, so-called oxidation-induced diseases, including
cardiovascular diseases [2], neurodegenerative diseases [3,4], as well as inflammatory
diseases [5,6]. In the treatment, vitamin E can interfere with one or more propagation steps
of the lipid peroxidation process and thus minimize oxidative stress.

The low solubility and dispersibility of vitamin E in water media have been typically
shown [1,7–9]. To address the issue, the exploration of innovative formulation technology
has been eagerly investigated. An attractive techniques is the use of dispersible substrates
in water media, which increase bioavailability, and enable targeted delivery of antioxidants,
as well as temporally controlled release at the site of action [7]; prolonged and sustained
drug release were desired to release the targeted delivery of the antioxidants. Biocompatible
polymers, such as chitosan and casein, have been reported as substrates which encapsulate
vitamin E and enhance its bioavailability [7,10]. On the other hand, in this study, natural
cyclodextrins (CDs), which are water-soluble, were used as a substrate to develop a novel
“water-insoluble” vitamin E vehicle in water media.

CD is a cyclic oligosaccharide that consists of glucose residues linked by an α-1,4
glycosidic bond [11–14]. α-CD, β-CD, and γ-CD are the representative natural CDs that
consist of six, seven, or eight glucose residues, respectively, and are used in various medical
applications (Figure 1). CDs can form inclusion complexes with various hydrophobic
guest molecules using a hydrophobic internal cavity, thereby typically affording additional
properties, such as solubility, stability, and availability [11–14]. Regarding CD–vitamin E
systems, encapsulation has been successfully applied in the development of assay tech-
niques to measure the antioxidant activity of different compounds in the presence of wa-
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ter [15–17]. In addition, several fascinating antioxidant activities of vitamin E (α-Tocopherol;
Toc; Figure 1) complexed with CDs in water/organic solvent mixed systems, including
cream preparations (oil-in-water emulsions) [18,19], propylene glycol/water mixtures [18],
low-density polyethylene films [20], chloroform/methanol mixtures [21], methanol/water
(1:1) mixtures [22] and methanol [23,24] have been reported. In some of these cases, the
controlled release of Toc to the lipid phase and an organic solvent or from a polymer film
has been described [20–24]. However, these studies used an organic solvent, and, to the
best of our knowledge, no sustained release of the radical scavenging function of Toc has
been reported for CD–Toc complex systems in water media in the absence of an organic
solvent, which is needed for biological applications.
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Co. Ltd. (Tokyo, Japan). 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium 
salt) (ABTS) (> 98%, MW: 548.67) was purchased from TCI Co. Ltd. (Tokyo, Japan). 

Figure 1. Molecular structures of (blue) a vitamin E (α-Tocopherol; Toc), a water-soluble artifi-
cial Toc analogue, 2,2,5,7,8-pentamethyl-6-chromanol (PMC), and (pink) natural cyclodextrin (CD)
compounds used in this study.

Recently, we have studied the solubility enhancement of Toc by CDs [25]. As a result,
it was found that 2,6-di-O-methylated β-CD (2,6-DMCD) greatly enhanced the solubility
of Toc, whereas the natural CDs, such as β-CD and γ-CD, which are also water-soluble
CDs, formed opaque systems by mixing with Toc. From the preliminary study, we deemed
that the dispersion systems can be used as antioxidant-delivery vehicles in biological
applications. Both components, Toc and CD, have been used as food ingredients and
pharmaceutical excipients [12], and therefore, the exertion of biosafety could be expected.

Herein, we describe the effects of natural CDs on dispersibility with Toc in water
media. The unique preparation conditions, in particular for γ-CD–Toc systems, were
investigated in detail. Furthermore, the radical scavenging ability in water systems was
evaluated, together with an assessment of the cytoprotective effect on cells under oxidative
stress using a lipid oxidation inducer. These studies were performed in the absence of an
organic solvent. Throughout the study, 2,2,5,7,8-pentamethyl-6-chromanol (PMC, Figure 1)
was used for investigating the interaction of the chromanol head with CD and as a reference
for the radical scavenging test. As a result, a novel vehicle consisting of γ-CD and Toc with
potential for biological applications is proposed.

2. Materials and Methods
2.1. Materials

Toc (MW: 430.71), and PMC (MW: 220.31) were purchased from Fujifilm Wako Pure
Chemical Industries, Ltd. (Osaka, Japan). α-CD, β-CD, and γ-CD were obtained from TCI
Co. Ltd. (Tokyo, Japan). 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium
salt) (ABTS) (>98%, MW: 548.67) was purchased from TCI Co. Ltd. (Tokyo, Japan).
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2.2. Cell Culture and Treatment of Cell with Chemicals

The African green monkey kidney cell line COS-7 (JCRB9127) was cultured in Dul-
becco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum (GE Health-
care Life Sciences, Tokyo, Japan), penicillin (Nacalai Tesque, Kyoto, Japan), streptomycin
(Nacalai Tesque), and amphotericin B (GE Healthcare Life Sciences, Tokyo, Japan). Cells
were seeded into wells of 96-well or 24-well plates at a concentration of approximately
0.3 cells/mL, in 100 or 500 µL per well, respectively, and plates were incubated for 24 h
at 37 ◦C in an atmosphere containing 5% CO2. Cells were then cultured in the presence
or absence of γ-CD (60 µM) or γ-CD (60 µM)-Toc (10 µM) for 30 min under identical
incubation conditions, before exposure to 0, 50, 100, or 200 µM tert-butyl hydroperoxide
(TBHP) (an inducer of lipid peroxidation; B2633, Sigma-Aldrich, Tokyo, Japan) [26]. Cells
were cultured under identical incubation conditions for a further 18 h.

2.3. Preparation and Characterization of CD and Toc Mixtures
2.3.1. Preparation of Sample I

To prepare the CD-Toc mixture system, an excess amount of Toc or the Toc analogue
PMC was added to 4 mL of an aqueous CD solution at different concentrations. Stir-
ring at ambient atmosphere was conducted for 16 h. It was found that some amount of
added Toc adhered to the Teflon magnetic bar or the glass wall during stirring (Figure S1,
Supplementary Materials), and thus not all the Toc could be successfully dispersed in water.
Since the nonstabilized Toc by CD tended to contact with solid surfaces, the homogeneous
dispersion was obtained by several moving operations to other glass containers containing
magnetic bar to afford dispersion I.

2.3.2. Preparation of Sample II

II-1:4: CD-Toc dispersion systems were prepared using the CD-Toc mixing solids [25,27].
Briefly, Toc (0.23 mmol) in 5 mL EtOH and CDs (0.93 mmol; 4 times of Toc) in 10 mL pure
water were mixed, and solid inclusion complexes were obtained by co-precipitation under
stirring at 8000 rpm for 3 min using an ultra-dispenser (LK-22, Yamato Scientific Co.
Ltd., Tokyo, Japan). Then, the solvent was evaporated under reduced pressure at high
temperature. Here, the highest temperature of the water bath was 45 ◦C and the sample was
always protected from light. Each solid sample was stored under an N2 gas atmosphere in
the dark. The dispersion was prepared by the addition of water and subsequent mixing
with vortex and ultrasonication within 1 min, respectively.

II-1:2: Toc (0.46 mmol) in 5 mL EtOH and CDs (0.93 mmol; 2 times of Toc) in 10 mL
pure water were also used for the preparation of dispersion II-1:2 to demonstrate the
effectiveness of the γ-CD-added system.

2.3.3. Determination of Toc Concentration

The Toc concentration of each sample was determined spectrophotometrically at
291 nm using a V-650 spectrophotometer, JASCO Corp. (Tokyo, Japan) [22–25]. To prepare
the dissolved samples for spectrophotometric analysis, DMSO was used for dissolution
and dilution.

2.3.4. Characterization of Solid Used for the Preparation of II

The analysis of the compositions in the solid samples, used for the preparation of II,
was performed by NMR spectroscopy using a JEOL ECA 500 instrument (Tokyo, Japan).
The physicochemical properties of the solids were analyzed by Fourier transform infrared
(FTIR) using a Nicolet iS50+iN10 (Thermo Fisher Scientific Inc., WI, USA). To obtain novel
insight into the physical properties, emission quantum yields in solid states were evaluated
using a combination of an integrating sphere (Labsphere, Model 4P-GPS-030-SF, NH, USA),
a monochromated xenon light source, and a cooled CCD spectrometer.
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2.4. Radical Scavenging Ability Test in Water

For the radical scavenging test, an ABTS biradical was used similar to previous
works [25,28]. Namely, ABTS (117.8 mg) was dissolved in water (30.6 mL), and potassium
persulfate (28.2 mg) was then added to activate the ABTS radical. The solution was
stored overnight in the dark. The ABTS radical solution was diluted to the appropriate
concentration for spectroscopic measurement. An ABTS radical scavenging test was
performed by adding each CD dispersion to the aqueous ABTS solution. The absorption at
742 nm was measured. As a reference, an aqueous PMC solution in the absence of CD was
used. For the investigation on the dispersion systems, the baseline of the sample system
without ABTS was subtracted from the result for the tested sample with ABTS.

2.5. Assessment of Cell Viability and Morphology

Cell viability was assessed using a Cell Counting Kit-8 (CCK-8; Dojindo Laboratories,
Kumamoto, Japan), according to the manufacturer’s protocol. Briefly, CCK-8 reagent was
added to cells, which were then incubated for 2 h at 37 ◦C in an atmosphere containing 5%
CO2. Optical density at 450 nm was measured using a Food Mark microplate absorbance
reader (Bio-Lad, CA, USA). Cell morphology was assessed using a DM IL LED microscope
(Leica Microsystems, Wetzlar, Germany).

2.6. Statistical Analysis

All statistical analyses were conducted using Excel 2016. All data are presented as
the mean ± standard deviation (SD) of four independent experiments. Between-group
differences were compared using Student’s t-test. Differences were considered statistically
significant at * p < 0.05. Levels of statistical significance for each comparison are indicated
in each figure.

3. Results
3.1. Investigations on Dispersion Behaviours of CD and Toc Mixtures

When stirring a water-soluble CD solution at 10 mM concentration with a water-
insoluble vitamin E (Toc), an increase in turbidity was observed for each CD-added system,
especially for the β-CD system (Figure 2). The dispersion for the β-CD system contained
a large amount of Toc of about 2.6 mM, whereas the amounts of Toc stabilized by α-CD
and γ-CD were negligible under the condition. However, in the case of γ-CD, the turbidity
drastically increased with the initial concentration of γ-CD above 20 mM. The dispersions
prepared with γ-CD concentrations above 20 mM were stable even after the dilution to
10 mM (Figure 2, right), whereas the dilution of the dispersion of β-CD system destabilized
rapidly (i.e., the five times dilution of the β-CD system (10 mM) with a vortex mixing
afforded a distinct agglomeration within 10 min). The results indicated the high stability of
the dispersion formed in γ-CD-added systems.
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Noteworthy, when transparent solutions were obtained by the filtration of these
dispersions through a 0.2 µm nanopore membrane filter, the Toc contents in the β-CD-,
and γ-CD-added systems became trace. This indicates the formation of large aggregates
containing Toc for the β-CD- and γ-CD-added systems, which were insoluble in water.

Figure 3a shows the unique concentration dependence of γ-CD. The amount of Toc
suddenly increased above 20 mM γ-CD concentrations for I, suggesting that the con-
centration can be regarded as the critical aggregation concentration (CAC) to afford γ-
CD/Toc-dispersions. As far as we know, the observation of CAC for CD/Toc systems was
unprecedented. Furthermore, as shown in Figure 3b, the amount of contained Toc increased
as the increase of the amount of total Toc was added for the preparation. However, most of
the Toc remained in a phase-separated state for the preparation (Figure S1, Supplementary
Materials), and only one-thirtieth of the Toc could be used. A nonlinear increase was
observed in Figure 3b at the low Toc amount conditions, possibly owing to the adhesion
problem of Toc on the surfaces of magnet and/or glass, respectively.
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The dispersion states could be prepared using co-precipitated samples. A stable
dispersion was obtained for II-1:4 of the γ-CD-added system, whereas those of the α-CD-
added and β-CD-added systems were unstable (Figure S2). After stirring for 16 h, only trace
amounts of Toc were dispersed for α-CD-added and β-CD-added systems, but the ideal
amount of Toc still remained in the homogeneous dispersion for the γ-CD-added system
(Figure S2b). Noteworthy, the γ-CD-added system afforded high stability even for its II-1:2
sample with the high Toc ratio. The lower the concentration became, the aggregate with
smaller size tended to form (Figure S3). These results showed the concentration-dependent
aggregation behavior of γ-CD/Toc dispersion.

3.2. Discussion on Correlations of Dispersibility and Inclusion Complex Formation of
CD/Toc Mixtures

With regard to the CD-Toc systems, previous investigations have shown the formation
of inclusion complexes for β-CD-Toc systems in the solid state [27]. On the other hand, the
poor complexation capacity was expected for α-CD because it does not complex with the
phytyl chain of Toc owing to its small pore size [29]. The excellent complexation ability
of 2,6-DMCD and the phytyl chain and chromanol ring was confirmed in the solution by
2D ROESY NMR [25]. Since the hole size order of CD was γ-CD > β-CD ≈ 2,6-DMCD > α-
CD [13], the hole size of γ-CD should be sufficient to complex with the phytyl chain
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and chromanol ring. In addition, in terms of the possibility of the complexation between
CD and chromanol head, we tried to obtain the information using PMC as a substituted
substrate without a phytyl chain. Hence, the solubility enhancement of PMC was studied
in the presence of CDs. The enhancement of the solubility was considered as a result of the
formation of an inclusion complex.

As shown in Figure S4 in the Supplementary Materials, both β-CD and γ-CD showed
the apparent solubility enhancement of PMC, whereas slight increases were observed for
α-CD-added systems in the concentration range from 0 to 60 mM of α-CD; Because of the
low solubility of β-CD in water [13], a narrow concentration range was investigated for
the β-CD-added system. It indicated that both β-CD and γ-CD can form the complex via
the interaction with a chromanol ring, whereas α-CD cannot form the complex. This fact
supported that both β-CD and γ-CD can form a complex with Toc via the interaction with
chromanol ring, whereas α-CD was assumed not to form a stable inclusion complex because
it cannot strongly interact with both the phytyl chain and the chromanol ring, respectively.
Considering it, a clear correlation was found. Namely, β-CD and γ-CD can form an
inclusion complex with Toc and stabilize the insoluble dispersion, whereas no distinct
dispersion was obtained for the α-CD-added system because of the low complexation
ability with Toc.

Noteworthy, as observed in some organic solutions [30], the high quantum yield of
fluorescent by Toc was observed for the solid mixture with γ-CD, whereas much lower
values were obtained for α-CD and β-CD-added mixtures (Figure S5, Supplementary
Materials). Because no fluorescence was observed in pure Toc matrix in bulk, we regarded
that γ-CD and Toc mixture showed strong affinity between each other and most of each
component must contribute to the formation of stable inclusion complex in the solid, thus
affording the stable quantitative mixture when dispersed. In the FTIR spectrum for the
γ-CD-added solid prior to dispersing, no apparent intense bands were confirmed at 2924
and 2867 cm−1 for asymmetrical methylene and symmetrical methyl stretching vibration
in the Toc molecules (Figure S6, Supplementary Materials). It has been proposed as one of
the evidence of the formation of inclusion complex for CD–Toc mixture [27].

From these results, it was considered that the characteristic dispersing behavior of the
CD–Toc systems resulted from the self-assembly of the inclusion complex formed between
CD and Toc.

3.3. ABTS Radical Scavenging Ability of the Toc and CD Mixtures

Next, a radical scavenging test was conducted in water. Each radical scavenging
ability (RSA) of Toc in mol was expressed as the scavenging ability of PMC in mol, which
was evaluated in the water system in the absence of both organic solvent and CD and used
as a reference (unity). It should be noted that the addition of CDs does not affect the RSA
of PMC at the concentrations used for the study. The representative results of the RSA test
are shown in Figure 4.

RSA was observed when Toc was contained in the sample. As shown in Figure 4a,
CD–Toc dispersions prepared from 10 mM β-CD and 30 mM γ-CD aq showed effective
RSA under diluted conditions. Noteworthy, while the 2,6-DMCD-added system showed no
sustained effect in the previous study [25], slight and large sustained effects were observed
for the β-CD-added and γ-CD-added systems, respectively. This means that the dispersed
Toc stabilized by β-CD and γ-CD, especially in the latter case, showed limited access owing
to the hindered molecular diffusion of the self-assembled aggregates. Similar behavior
was observed for sample II prepared using an inclusion solid consisting of γ-CD and Toc
(Figure S7, Supplementary Materials).
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Figure 4. Results of the ABTS radical scavenging test for sample I. (a) Time dependence measurement and (b) radical
scavenging ability (RSA) after 12 h and 30 min for the γ-cyclodextrin (CD)-added systems. The β-CD and γ-CD concen-
trations were diluted from 10 mM and 30 mM for the test, respectively, and the measurement was performed for the CD
concentrations below 0.8 mM.

In addition, when the reaction was complete, the RSA reached about unity (Figure 4b),
meaning that the Toc stabilized by CD showed a comparable radical scavenging effect to
that of the corresponding PMC system. This sustained and effective radical scavenging are
unique features for vehicles for biological applications, in which water-soluble PMC and
Trolox cannot be used.

3.4. Cytoprotective Activity of the γ-CD–Toc Complex in Cultured Cells

As described, unique properties of the γ-CD–Toc complex include its ability to self-
assemble, and a high and very slow RSA. Then, the cytoprotective impact of the γ-CD–Toc
complex on TBHP-induced oxidative stress-mediated cell damage [26] was investigated
in vitro.

Exposure of COS-7 cells to TBHP induced loss of viability in a dose-dependent manner
(Figure 5a) and resulted in altered cellular morphology (Figure 5b). Pretreatment with
γ-CD–Toc significantly ameliorated the cytotoxic effect of higher TBHP doses (100 and
200 µM), as demonstrated by improved cell viability and preserved cell morphology
(Figure 5). The γ-CD–Toc complex exhibited more potent cytoprotective activity than γ-CD
alone. These data suggest that the γ-CD–Toc complex enters COS-7 cells and scavenges
intracellular lipid radicals in a cytoprotective manner. Thus, this complex may provide
utility not only for molecular biological research, but also perhaps as a novel therapeutic
agent for clinical use in the context of oxidative stress-associated diseases.
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Figure 5. Cytoprotective impact of the γ-cyclodextrin (CD)-vitamin E (Toc) complex in the presence
of a cytotoxic oxidative stressor. (a) Viability of COS-7 cells cultured for 30 min in the presence or
absence of γ-CD or γ-CD-Toc before exposure to 0, 50, 100, or 200 µM tert-butyl hydroperoxide
(TBHP) for 18 h. Cell viability was measured using a Cell Counting Kit-8 (Dojindo Laboratories)
(* p < 0.05). (b) Phase-contrast photomicrographs of COS-7 cells cultured for 30 min in the presence or
absence of γ-CD or γ-CD-Toc before exposure to 0, 100, or 200 µM TBHP for 18 h. The red arrowhead
indicates a dead cell.

4. Conclusions

The formation of CD–Toc inclusion dispersion and the effects on the radical scavenging
and the cytoprotection were demonstrated. The mixture of γ-CD and Toc formed a highly
stable dispersion when the initial CD concentration was above 20 mM or when it was
prepared using inclusion complex solids obtained via the co-precipitation method. On the
other hand, the mixture of β-CD and Toc also formed a stable dispersion when the initial
CD concentration was 10 mM, but the system lost the dispersing state under dilution unlike
the dispersion formed in the γ-CD-added system, meaning that the dispersion formed in
the γ-CD-added system must be more stable and useful.
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Several studies including the phase solubility profile of CD–PMC systems and the
spectroscopic analysis on the solid consisting of CD and Toc indicated the correlations
between the characteristic dispersing behavior of the CD–Toc systems and the self-assembly
of inclusion complex formed between CD and Toc. Detail investigations on the formation
of mechanisms at the molecular level were required as future researches.

Noteworthy, most of the inclusion complexes were not solubilized, but the CD–Toc
self-assembly dispersion systems showed a radical scavenging effect comparable to that
of PMC. In particular, the γ-CD–Toc system exhibited a distinct packaging effect, and a
sustained effect was obtained. Moreover, the effectiveness of γ-CD–Toc inclusion assembly
was confirmed for the cytoprotective activity in vitro. These results showed unique fasci-
nating features of γ-CD–Toc inclusion assembly for novel antioxidant-delivery-vehicles for
biological applications, in which water-soluble analogues, PMC and Trolox, cannot be used.
The use as a therapeutic agent for clinical use in the context of oxidative stress-associated
diseases was expected.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
921/10/3/490/s1, Figure S1: A photograph showing adhered Toc on Teflon magnet bar, Figure
S2: Photographs and contained Toc concentrations of samples of II-1:4, Figure S3: Photographs
and schematic illustration of the concentration-dependent behavior of Sample II-1:2 of γ-CD/Toc
mixture, Figure S4: Phase solubility profile of CD/PMC mixtures, Figure S5: Fluorescent quantum
yield of Toc in the co-precipitated solids, Figure S6: FTIR spectrum of the co-precipitated γ-CD/Toc
solids, Figure S7: Time dependence measurement of ABTS radical scavenging test for II-1:4 of
γ-CD/Toc mixture.
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