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Abstract

Understanding theevolutionary relationshipsbetweenorganisms is vital for their in-depthstudy.Gene-basedmethodsareoftenused

to infer such relationships,whicharenotwithoutdrawbacks.Onecannowattempt touse genome-scale information,becauseof the

ever increasing number of genomes available. This opportunity also presents a challenge in terms of computational efficiency. Two

fundamentally different methods are often employed for sequence comparisons, namely alignment-based and alignment-free

methods. Alignment-free methods rely on the genome signature concept and provide a computationally efficient way that is also

applicable to nonhomologous sequences. The genome signature contains evolutionary signal as it is more similar for closely related

organisms than for distantly related ones. We used genome-scale sequence information to infer taxonomic distances between

organisms without additional information such as gene annotations. We propose a method to improve genome tree inference by

learning specific distance metrics over the genome signature for groups of organisms with similar phylogenetic, genomic, or eco-

logical properties. Specifically, our method learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the

learning process. By applying this method to more than a thousand prokaryotic genomes, we showed that, indeed, better distance

metricscouldbe learnedformostof the18groupsoforganismstestedhere.Onceagroup-specificmetric isavailable, it canbeusedto

estimate the taxonomic distances for other sequenced organisms from the group. This study also presents a large scale comparison

between 10 methods—9 alignment-free and 1 alignment-based.

Key words: sequence comparison, alignment, alignment-free, genome signature, taxonomy, genome tree, distance metric

learning.

Introduction

We here address the problem of inferring distances between

whole genome (genic + nongenic) sequences to recover their

evolutionary relationships in the form of a tree that we will

refer to as the genome tree. The evolutionary relationships

between different organisms, and hence their genomes, are

typically represented in the form of a phylogenetic tree.

Phylogenies are often inferred from individual gene se-

quences, such as the highly conserved small subunit ribosomal

RNA (Woese and Fox 1977) or from a set of conserved ortho-

logous genes (Ciccarelli et al. 2006; Wu and Eisen 2008).

Phylogenies inferred from different genes or gene sets often

disagree with each other and only show a plausible evolution-

ary history for the genes used which is not necessarily the

evolutionary history of the analyzed taxa (Hasegawa and

Hashimoto 1993; Karlin and Cardon 1994). Furthermore, to

apply gene-based methods, one must first identify ortholo-

gous genes from different organisms, which can be difficult

due to evolutionary processes such as gene loss, duplication,

and horizontal transfer (Doolittle 1999). With the availability of

a large number of completely sequenced genomes whole-

genome based methods were proposed to alleviate the short-

comings of gene based methods which have attracted much

attention in recent years. Various properties of the genome

such as gene content, gene order, whole genome sequence

similarity, and nucleotide composition biases have been used

to measure distances between genomes (see Coenye et al.

2005; Delsuc et al. 2005; Snel et al. 2005 for recent reviews).

In this work, we focused on the analysis of sequence-based

methods for which no additional information, such as gene

annotations, is required.
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Two fundamentally different methods are commonly

employed for sequence comparison; alignment-based and

alignment-free. Alignment methods, such as the basic local

alignment search tool (BLAST) (Altschul et al. 1990), are used

to identify orthologs from different taxa based on sequence

similarity, which subsequently can be analyzed with standard

phylogenetic inference methods to infer their evolutionary re-

lationships. There are two major shortcomings of alignment-

based methods: 1) alignment methods cannot be applied to

sequences that are not well-conserved across taxa and thus

have no orthologs and 2) they are computationally expensive.

Alignment-free methods are therefore employed to address

these shortcomings; however, they tend to be less accurate

than alignment-based methods in some settings (Vinga and

Almeida 2003; Höhl and Ragan 2007; Reinert et al. 2009).

Alignment-free methods utilize the “genome signature,” the

evolutionary signal that is contained in the oligonucleotide

composition of microbial genomes (Blaisdell 1986; Karlin

and Burge 1995). However, the signal strength varies for dif-

ferent groups of genomes (Mrazek 2009). An important prop-

erty of the genome signature is that it allows comparison

between nonhomologous sequences. For a given species or

higher-level clade, it allows an accurate distinction for

1,000 bp or longer segments, with longer segments encoding

a stronger signal (Deschavanne et al. 1999; Sandberg et al.

2001; Jernigan and Baran 2002; McHardy and Rigoutsos

2007; Patil et al. 2011). As more whole genome sequences

are deposited in public databases, in comparison with align-

ment-based approaches computationally less expensive align-

ment-free methods become increasingly attractive for the

analysis of large-scale data sets (Höhl et al. 2006; Yang and

Zhang 2008). Some limitations of the genome signature have

been pointed out, such as a lower correlation with phyloge-

netic distance, especially for distantly related genomes

(Mrazek 2009), as well as the clustering of distantly related

genomes with similar GC-content (Coenye and Vandamme

2003; Pride et al. 2003; van Passel et al. 2006; Takahashi et al.

2009).

In alignment-free sequence comparison, most research has

focused on the identification of the appropriate length for

oligonucleotides (Karlin and Burge 1995; Karlin et al. 1997;

Kirzhner et al. 2002; Pride et al. 2003; Wu et al. 2005; Mrazek

2009; Sims et al. 2009; Takahashi et al. 2009), normalization

procedures (Hao and Qi 2003; Xu and Hao 2009), and differ-

ent distance functions (Wu et al. 1997; Kirzhner et al. 2002;

Höhl et al. 2006). The genome signature is inherently redun-

dant due to the reverse complementarily of the DNA strands.

Under the influence of selection, all oligonucleotides might

not be equally important in taxonomic distance calculation,

in case they evolve at different rates. These issues have not

been given enough attention. Based on the hypothesis that a

group of genomes with similar phylogenetic, genomic or eco-

logical attributes might have specific oligonucleotide weights

that reflect their importance in distance calculation, we

propose a novel method that aims at improving genome sig-

nature-based inference of genome trees. Thus, our goal is to

enhance the signal for a group by learning group-specific

oligonucleotide weights. We propose a supervised distance

metric learning method that exploits the structure of a

known reference taxonomy to guide the learning process

(see Materials and Methods). We use the taxonomy as refer-

ence for calculation of phenetic distances, rather than a phy-

logeny (such as one inferred from the 16S rRNA gene), due to

its “polyphasic” nature that takes genotypic and phenotypic

aspects into account (Vandamme et al. 1996) and not to bias

our analysis toward possible shortcomings of gene-based

methods. However, we verified that phenetic distance

strongly correlates with phylogenetic distance (see Materials

and Methods).

The aim of our method is to identify a diagonal positive

semi-definite matrix (supplementary text, Supplementary

Material online) parameterizing Mahalanobis distance metric

such that it maximizes the Spearman’s rank correlation coef-

ficient between the resulting distances and the phenetic dis-

tances within the reference taxonomy. This distance metric

learning problem is posed as a regularized optimization prob-

lem (see Materials and Methods). We identified 18 groups

based on phylogenetic, genomic, or ecological factors.

Contrary to other genome tree inference methods, our aim

is to improve performance for a group of genomes defined by

a common factor, such as genome-wide GC-content or hab-

itat, and not to reconstruct the entire tree of life. When the

species composition or ecological characteristics of the organ-

isms at hand is approximately known, one can learn a group-

specific distance metric using other available reference data.

Once a specific distance metric has been learned, it can be

employed for the analysis of novel genome sequences from

the same group.

Various methods have been proposed for the evolutionary

comparisons of entire genomes or large genome segments,

including alignment-free methods (Burge et al. 1992; Karlin

and Cardon 1994; Kirzhner et al. 2002; Pride et al. 2003; Qi

et al. 2004; Sims et al. 2009; Takahashi et al. 2009; Li et al.

2010) and the alignment-based methods, such as the genome

blast distance phylogeny (GBDP) (Henz et al. 2005). A direct

comparison between genome tree inference methods is lack-

ing, especially with the alignment-based method GBDP.

Therefore, in addition to proposing a new method, we also

present a large-scale numerical comparison of the perfor-

mance of 10 genome tree inference methods, including 9

alignment-free methods and 1 alignment-based method.

Materials and Methods

Following the notation used in (Mrazek 2009), each genome

signature is denoted by a pattern lknm, where lk denotes an

oligonucleotide of length k and nm is the oligonucleotide

length m used for normalization. Thus, for example, the
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tetranucleotide signature normalized using base frequencies is

denoted as l4n1. The notation is optionally followed by the

alphabet used (e.g., “ry”), if an alphabet other than nucleo-

tide was used.

We used 1,076 complete microbial genome sequences

available from NCBI in April 2010 for this study. This corre-

sponds to 578,350 pairs of taxa to compare in terms of their

taxonomic and genomic distances. To compute pairwise

distances between species, nine alignment-free methods for

computing pairwise genome distances were tested; the

Euclidean distance based on the l4n1 genome signature, the

Euclidean distance based on the l4n1 signature after dimen-

sionality reduction with principal component analysis (PCA),

the Euclidean distance based on the l6n1 signature, CVTree

with the l6n5,4 signature (Hao and Qi 2003), the composi-

tional spectrum based on the l10r2 signature and n¼200

(Kirzhner et al. 2002) and the feature frequency profile

based on the RY alphabet with l¼10 (Sims et al. 2009). In

addition, we also evaluated the GBDP method based on

BLAST alignments (Henz et al. 2005), for which we aligned

all pairs of genomes. Pairwise alignments between nucleotide

sequences were generated using the “bl2seq” program (ver-

sion 2.2.18) with default parameters.

The genomes were subsequently classified into 18 groups

according to the following five factors: Phylum membership

(4 groups), genomic GC-content (3 groups), habitat (5 groups),

temperature range (3 groups), and oxygen requirement

(3 groups). For each of these factors, the groups were exclusive

(supplementary table S1, Supplementary Material online).

Genomes, Taxonomy, and Ecological Information

Genome sequences were obtained from GenBank (http://

www.ncbi.nlm.nih.gov/genome, last accessed July 29,

2013). The taxonomy from the NCBI taxonomy database

(http://www.ncbi.nlm.nih.gov/Taxonomy/, last accessed July

29, 2013) and the ecological information was obtained

from the NCBI “lproks” service (http://www.ncbi.nlm.nih.

gov/genomes/lproks.cgi, last accessed July 29, 2013) (Sayers

et al. 2009).

Genome Signature

The dinucleotide genome signature (Josse et al. 1961) was

extensively studied by Karlin and colleagues (Karlin and

Burge 1995; Karlin et al. 1997). It is defined as relative abun-

dance of dinucleotides over long stretches of DNA, typically

50 kb covering the whole genome. The dinucleotide signature

tends to be preserved throughout the genome and to be more

similar among closely related organisms than among distantly

related organisms. The genome signature concept was subse-

quently extended to incorporate longer oligonucleotides

(Pride et al. 2003) and different normalization strategies.

The genome signature represents a sequence as a point in a

multidimensional metric space. The dimensionality of the

space is defined by the size of the alphabet and the length

of oligonucleotides. In our case, the alphabet comprises four

nucleotides (A, T, G, and C) and the oligonucleotide length

considered is four, which gives rise to a 44 dimensional space.

The vector representation of sequences allows application of

distance metric functions to these points to uncover their

interrelationships.

The elements of a tetranucleotide signature vector normal-

ized based on mononucleotide frequencies for a genome G

are defined as:

�l4n1
abcdjG ¼

f ðabcdÞ

f ðaÞf ðbÞf ðcÞf ðdÞ
: ð1Þ

Here, f denotes the frequency of an oligonucleotide. Thus,

a tetranucleotide signature contains 256 elements (44), each

corresponding to a possible tetranucleotide. To take the

double stranded nature of the DNA into account, we aver-

aged the values of the elements and their corresponding re-

verse complements (rev_comp).

��
l4n1
abcdjG ¼

�l4n1
abcdjG+�l4n1

rev compðabcdÞjG

2
: ð2Þ

The hexanucleotide signature l6n1 was calculated in a similar

fashion.

Phenetic Distances between Pairs of Taxa in the
Reference Taxonomy

As our target variable, or reference distance, we used the phe-

netic distance between taxa in the NCBI taxonomy. The phe-

netic distance between a pair of taxa was defined as the

maximum number of edges in the path between one of the

taxa in the pair and their lowest common ancestor. Seven

major taxonomic ranks; species, genus, family, order, class,

phylum, and superkingdom, were used to calculate the phe-

netic distances. Note that the number of edges to the lowest

common ancestor can differ in the NCBI Taxonomy for two

taxa at a given rank, due to missing internal nodes on the path

from these taxa to their lowest common ancestor. The matrix

containing pairwise phenetic distances will be denoted as DTAX.

To compare the phenetic distances with phylogenetic dis-

tances, aligned 16S rRNA gene sequences were obtained from

the greengenes database (DeSantis et al. 2006) (http://green

genes.lbl.gov, last accessed July 29, 2013). When multiple

genes were available for an organism only the first was

chosen. In total, genes for 887 organisms were identified.

Pairwise distances between the aligned genes were calculated

with the “dist.seqs” function emulating the DNADIST distance

in the Mothur package (Schloss et al. 2009). The phenetic

distances showed a strong correlation with the phylogenetic

distances (Pearson’s R¼ 0.84 and Spearman’s r¼ 0.81,

P¼0.001 based on 999 permutations). This suggests that

our results should be valid if 16S rRNA distances were used

as reference instead of phenetic distances.
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Comparing Trees Based on Cophenetic Correlation

The correlation between two tree path metrics has been used

to compare tree topologies (Pazos and Valencia 2001;

Kuramae et al. 2007). We here used a similar approach to

search for a distance metric which best approximates the phe-

netic distances between pairs of taxa in a given reference tree.

As we were interested in the topology of the trees and not

branch lengths, we used Spearman’s rank correlation coeffi-

cient to quantify the agreement between the phenetic dis-

tances in the reference topology and pairwise distances

between genome sequences. Although commonly used, Pear-

son correlation between distance matrices does not always

imply better topology recovery (Lapointe and Legendre

1992). Spearman’s rank correlation is furthermore more ap-

propriate when outliers are present and there is a nonlinear

relationship between the variables. As we are calculating cor-

relation between two symmetric matrices, they are first vector-

ized using either the upper or lower half triangle. Spearman’s �

is calculated on the ranks of elements xi and yi in the vectorized

distance matrices according to the following equation:

�ðx, yÞ ¼

P
i

ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ðxi � �xÞ2
P

i

ðyi � �yÞ2
r : ð3Þ

The correlation between a data-derived matrix of pairwise

distances and a phenetic distance matrix is also known as the

cophenetic correlation coefficient (CPCC) (Sokal and Rohlf

1962). The CPCC has been used for assessing how well tree

topologies inferred with different hierarchical clustering meth-

ods agree with a matrix of pairwise distances inferred from the

data. Here, we use it to evaluate how well different data-de-

rived distance metrics agree with phenetic distances between

pairs of taxa in reference taxonomy. Although typically

Pearson correlation is used to calculate CPCC, the use of

rank based correlation has been proposed before (Johnson

1967; Mrazek 2009).

Topological Distance between Trees

As the cophenetic correlation might not directly correspond to

topological similarity (Farris 1969), we also calculated topolog-

ical distances between trees. The topological distances be-

tween trees were calculated using the normalized quartet

distance, as implemented in the program “QDist” (Nielsen

et al. 2011) version 2.0, downloaded from http://birc.au.dk/

software/qdist/.

Note that an increase in congruence between tree topolo-

gies results in an increase in the CPCC and a decrease in the

quartet distance. The cophenetic correlation was used also as

the optimization criterion (discussed later).

Distance Metric Learning

The Euclidean distance metric is often used to calculate dis-

similarities for data that can be represented as points in a

multidimensional metric space. However, it may not be ideal

to infer taxonomic distance between pairs of genome signa-

tures. This is particularly true when some of the variables are

more important than others or when some dimensions are

correlated and/or have different scales, for instance, some dif-

ferent genomic features could be subject to different evolu-

tionary constraints and evolve at different rates. In such cases,

a more suitable distance metric than the Euclidean metric can

be learned from data. Originally, distance metric learning was

proposed for clustering applications where side information

such as similarity and dissimilarity constraints is available

(Xing et al. 2002). The information available in our case is

the phenetic distances between pairs of taxa in the reference

taxonomy.

Distance metric learning can be viewed as a transformation

of the input space into another (possibly lower dimensional)

space, in which the Euclidean distance between the points

represent as accurately as possible the target relationships

(Jain et al. 2012). Practically, this can be achieved by using

the Mahalanobis distance function. The Mahalanobis distance

is a distance metric, parameterized by a positive semi-definite

matrix M 2 <p�p. The Mahalanobis distance between two

vectors x, y 2 <p is defined as;

Mahalðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞTMðx� yÞ

q
: ð4Þ

We propose learning a diagonal matrix M with nonnega-

tive entries that maximizes the performance criterion; that is

the Spearman’s correlation coefficient between the resulting

n� (n�1)/2 pairwise Mahalanobis distances for n analyzed

genome signatures with the corresponding target phenetic

distances. The entries in the target distance matrix, DTAX,

were defined as described earlier. The diagonal elements of

the matrix M represent the relative weights for the corre-

sponding oligonucleotides. The Euclidean distance is a special

case of the Mahalanobis distance, when it is parameterized by

an identity matrix. The Mahalanobis distance corresponds to a

weighted Euclidean distance, when it is parameterized with a

diagonal matrix. We will denote a function that returns all

pairwise Mahalanobis distances between a set of vectors S

given a parameterizing matrix M as DMahal.

Even though a learned metric works well for a given set

of signatures (training data), it might not provide improve-

ment for novel signatures (test data). Such over-fitting is not

desirable and hence we pose the learning problem as a reg-

ularized optimization problem with the following objective

function;

min
M
ð1� �ðDMahalðS, MÞ, DTAXÞÞ+l

Pp
i¼1

Mii

p
ð5Þ

s:t: 0 �Mii � 1 i 2 1::: p :
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Here, p is the number of oligonucleotides and S is a

matrix with each row representing a genome signature,

while first term in the objective function maximizes correla-

tion, the second term is a regularizer that controls complex-

ity of the solutions in terms of the L1-norm of the diagonal

entries of M. Thus, higher values of l (l� 0) will lead to

sparse diagonal entries. As only the relative contributions of

the oligonucleotides and not their absolute magnitudes are

important, the diagonal entries of M were constrained to

values within the interval [0, 1], to allow comparisons be-

tween solutions for different experiments. The parameter l
was varied in the grid {0, 0.1, 1, 10}. For each value in the

grid, a 3-fold cross-validation procedure was performed on

randomly partitioned training data as follows; three metrics

were learned separately by excluding each of the three par-

titions and the generalization performance was assessed

with the Spearman’s correlation between the target dis-

tances and the distances with the learned metric on the

excluded partition. The resulting three correlations for

each l value were averaged to get an estimate of the gen-

eralization performance. The value with the highest gener-

alization performance was chosen to learn a metric on the

complete training data. The aim of the regularizer here is

obtaining generalizable solutions and not to enforce sparse

solutions. Thus, if a less sparse solution yields a higher gen-

eralization performance (as estimated by cross-validation)

than a more sparse solution, then the less sparse solution

is selected. Note that although it is possible to formulate the

optimization problem we describe here with a weight vector

instead of the matrix M, the more general formulation clari-

fies that this method is easily adaptable for learning a full

matrix.

We used the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) (Hansen et al. 2003) as the optimization

procedure. Any other global optimization procedure can be

used. As this optimization problem is nonlinear and noncon-

vex, gradient-based optimization techniques are not appropri-

ate. The python code for CMA-ES was obtained from the

website http://www.lri.fr/~hansen/cmaes_inmatlab.html. The

tolerance for solution improvement was set to 1e�3 and

the number of iterations was set to 500 during cross-valida-

tion and 1,000 for learning the metric with a selected l. Only

the diagonal of the covariance matrix was adapted to reduce

the computational complexity. The population size for CMA-

ES was set to 20 and the step-size to 0.5.

Distance Metrics

The distance metrics used for comparison are described later.

The metrics were chosen to reflect the diversity of the popular

metrics found in the literature, in terms of oligonucleotide

lengths, normalization strategies and distance metrics. In the

following p denotes the length of the genome signature

vectors.

Group Specific

The group-specific distance between two signatures of ge-

nomes from a group is given by the following:

Specificðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1

xi � yi

� �2
Mii

vuut ; ð6Þ

where M is a diagonal matrix learned by maximizing the esti-

mated generalization performance with training data from

the same group (as x and y). For simplicity, the group-specific

distance metrics will be referred to as specific distance metrics.

Random Learned

The random distance between two signatures calculated for a

pair of genomes from a group is given by the following

equation:

Randðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1

xi � yi

� �2
Mii

vuut ; ð7Þ

where M is a diagonal matrix learned by maximizing estimated

generalization performance using randomly selected training

data. For simplicity, this metric will be referred to as the

random metric.

Euclidean

The Euclidean distance between two signatures is defined as

Euclðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1

xi � yi

� �2
vuut : ð8Þ

This distance was used with the l4n1 and l6n1 signatures.

Euclidean PCA

This distance was calculated similarly to the Euclidean dis-

tance, but in a lower dimensional space after application of

PCA to retain either the principal components explaining at

least one original variable, that is the principal components

with eigenvalue� 1 or three principal components, whichever

is larger. This distance metric was used with the l4n1

signature.

Delta

The delta distance (Mrazek 2009) between two signatures is

defined as following:

Deltaðx, yÞ ¼
1

p

Xp

i¼1

xi � yi

�� ��: ð9Þ

The delta distance between two genomes G1 and G2 was

calculated using all pairs of nonoverlapping 50 kb segments. If

n1 and n2 are number of nonoverlapping segments X and Y in
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genomes G1 and G2, respectively, then the delta distance

between the genomes was calculated as follows:

Delta 50kbðG1, G2Þ ¼
1

n1n2

Xn1

i¼1

Xn2

j¼1

DeltaðXi , YjÞ: ð10Þ

This distance was used with the l4n1 signature.

CVTree

The CVTree signature was calculated using oligonucleotides of

length 6 normalized by its constituent 4- and 5-mers (Gao

et al. 2007), that is the l6n5,4 signature. The sequences

were appended with their reverse complement for calculating

this signature. The expected frequency of a hexanucleotide

abcdef was calculated as;

f0ðabcdef Þ ¼
f ðabcdeÞf ðbcdef Þ

f ðbcdeÞ
�
ðL� k+1ÞðL� k+3Þ

ðL� k+2Þ2
:

Then, the normalized elements of the signature vector were

calculated as follows:

�ðabcdef Þ ¼
f ðabcdef Þ � f0ðabcdef Þ

f 0ðabcdef Þ
if f0 6¼ 0

�ðabcdef Þ ¼ 0 if f0 ¼ 0

The distances between the resulting vectors was calculated

using the cosine similarity as follows;

CVTreeðx, yÞ ¼
1� cosineðx, yÞ

2
: ð11Þ

Compositional Spectrum

Compositional spectrum (CompSpec) distances over the DNA

alphabet {A, T, C, G} were calculated using the parameter

settings as in (Kirzhner et al. 2007). We first generated 200

random words of length 10 and then counted their imperfect

occurrences of up to 2 mismatches (l10r2 signature) over the

complete genomes. The distances between the resulting 200

dimensional vectors were calculated using Spearman’s rank

correlation coefficient � as follows:

CompSpecðx, yÞ ¼ 1� �ðx, yÞ ð12Þ

Feature Frequency Profile

The feature profile frequency (FFP) distances were calculated

using the program ffp version 3.19, downloaded from http://

ffp-phylogeny.sourceforge.net/. The default settings of two-

letter RY alphabet was used with the lengths of l-mers set of

10 (l10ry signature). The distance between the normalized

feature frequency profile vectors x and y were calculated

using the Jensen-Shannon divergence as follows:

FFPðx, yÞ ¼
1

2
KL x, zð Þ+

1

2
KLðy, zÞ: ð13Þ

Here, zi ¼ xi+yi

� �
=2 and KL is the Kullback–Liebler

divergence.

Genome BLAST

The whole-genome BLAST distances between two genomes

were calculated with alignments inferred with the bl2seq pro-

gram of the NCBI BLAST executables (version 2.2.18) with

default parameters. The resulting tabular report was then

parsed using BioRuby (version 1.4.1) and the high scoring

pairs were converted into a similarity score using the greedy

version of the GBDP algorithm without trimming (Henz et al.

2005). Because of computational restrictions, we used only

one directional alignment instead of averaging over both

directions.

GBDPðG1, G2Þ ¼ � log
G1matchj j+ G2matchj j

2�minð G1j j, G2j jÞ
ð14Þ

Measures of Group Phylogenetic Structure

We calculated two metrics of group phylogenetic structure.

The metrics; net relatedness index (NRI) and nearest taxon

index (NTI) correspondingly quantify the distribution of the

taxa relative to a phylogeny (Webb et al. 2002). Although

both NRI and NTI increase with increasing clustering, they

become negative with increasing dispersal of taxa. Clustering

at the terminal nodes causes more increase in NTI relative to

NRI. We calculated both measures with respect to the refer-

ence taxonomy for each of the 18 groups using 999 random-

izations. The corresponding methods were implemented in

the R statistical environment (version 2.11.1, http://www.

r-project.org/) (see supplementary text [Supplementary Mate-

rial online] for details).

Other Methods

The distances were subsequently used to construct ultrametric

trees, which were inferred using the Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) algorithm imple-

mented in the “phangorn” package for the R statistical envi-

ronment. The resulting tree topologies were compared with

the reference tree topology based on the quartet distance.

PCA was performed in R (version 2.11.1) with the “princomp”

function. These data were centered and scaled to unit vari-

ance before performing PCA.

Data Availability

The data used in this study and the learned metrics can be

obtained from http://algbio.cs.uni-duesseldorf.de/webapps/

wa-download/index.php.
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Results

Setup

The tetranucleotide signature corrected for bias in base fre-

quencies (l4n1), that is, normalized using the zero-order

Markov criterion, was chosen to learn the metrics, as it is

has been previously shown to contain a strong phylogenetic

signal (Pride et al. 2003; van Passel et al. 2006; Mrazek 2009).

The Euclidean distance for the l4n1 signature was used as the

baseline for comparison. We used two measures to quantify

the performance of the methods: The first is the CPCC (Sokal

and Rohlf 1962) using Spearman’s rank correlation, which is

also a part of the optimization function used to learn the

specific metrics (see Materials and Methods). We also calcu-

lated the normalized quartet distance (Nielsen et al. 2011)

(referred to as quartet distance hereafter) between two

trees built with UPGMA; one using the phenetic distances

and the other using the genome-based distances (see Materi-

als and Methods). We say that a metric performs better only if

it shows improvement on both measures; that is, a higher

CPCC and a lower quartet distance. We show results for 18

groups defined by five different attributes: taxonomy, geno-

mic GC-content, habitat, growth temperature, and oxygen

requirement (supplementary table S1, Supplementary Mate-

rial online).

For the proposed metric learning method to be of practical

value, it has to be able to learn a generalizable distance metric,

meaning a metric that works well on novel genomes not used

for learning, from a limited amount of data. Therefore, our

experimental setup consisted of randomly sampling genomes

of 30 species (one genome per species) from a group and then

learning a Mahalanobis metric from the corresponding l4n1

signatures, guided by the target phenetic distances, such that

the estimated generalization performance is maximized (see

Materials and Methods). A Mahalanobis metric learned using

signatures from one group is referred to as a group-specific

metric. The performance of a learned metric was quantified

on the test genomes, that is, the genomes from the same

group not used for learning the metric. For a set of test ge-

nomes, distances were then computed with the learned

metric and compared with the corresponding phenetic dis-

tances. At the same time, the performance of the other meth-

ods was also quantified on the test genomes by comparing

their distances with the phenetic distances. To quantify the

variability of the learned metrics, this procedure was repeated

30 times for each of the 18 groups by using different random

training samples. This resulted in 30 performance measure-

ments for the CPCC and quartet distances for each group and

each method, except for the Actinobacteria, for which only 28

metrics were learned. The statistical significance of an ob-

served improvement in the 30 repetitions was tested using a

one sided Wilcoxon rank sum test. Although for CPCC, the

alternative hypothesis was that a metric produces higher

CPCC values than the baseline metric, for the QD, the

alternative hypothesis was that a metric results in a lower

quartet distances than the baseline metric. For simplicity,

both tests will be referred to as Wilcoxon tests.

Furthermore, we used the Hotelling–Williams test to test

whether a learned metric resulted in a significantly different

CPCC from the baseline (Steiger 1980). Specifically, we tested

whether the CPCC of one metric was significantly different

from the CPCC of another metric (supplementary text, Sup-

plementary Material online).

Phylum

We begin by showing that the taxonomic signal of the l4n1

genome signature can be improved with specifically learned

metrics for phylogenetic groups at the phylum level. Four ex-

tensively sequenced phyla, the Proteobacteria, Firmicutes,

Actinobacteria, and Euryarchaeota, were chosen for this anal-

ysis (supplementary table S1, Supplementary Material online).

Our results show that better distance metrics, that is higher

cophenetic correlation and lower quartet distance on the test

genomes when compared with the baseline, could be learned

for the phylogenetic groups except for Euryarchaeota, where

the learned metrics did not show improvement over the

Euclidean metric (fig. 1; supplementary table S3, Supplemen-

tary Material online). The Proteobacteria metrics showed only

a marginal, but significant (P<0.05, Wilcoxon test) improve-

ment, which might be due to its diverse and nonmonophyletic

nature (Garrity 2005). A disagreement of the inferred tree

with the reference taxonomy was also observed with the

Proteobacterial CVTree based on translated protein products

(Li et al. 2010). The best performance improvement due to

specific metrics was observed for the phylum Actinobacteria,

where the average cophenetic correlation significantly in-

creased from 0.39 to 0.64 (P¼8.23e�10, Wilcoxon test),

whereas the average quartet distance decreased from 0.53

to 0.43 (P¼2.73e�13, Wilcoxon test). More than 25 (out of

the 30) learned metrics showed significantly different correla-

tion coefficients for the Proteobacteria, Firmicutes and

Actinobacteria (Hotelling–Williams test, P< 0.05) (supplemen-

tary fig. S1, Supplementary Material online). The other l4n1

based distances, the Euclidean distances after applying PCA

and the delta distances averaged over 50 kb segments, per-

formed either similar or only slightly better than the baseline.

The metrics learned from randomly sampled species over the

entire taxonomy performed worse than the baseline except

for a slight performance improvement for the Actinobacteria.

The phyla-specific metrics also performed better than the

l6n1 signature-based Euclidean distances. This shows the ad-

vantage of learning specific metrics in comparison with signa-

tures based on longer oligonucleotides. The Euclidean

distances based on the l4n1 and l6n1 signatures performed

similarly, except for the Actinobacteria, where the l6n1 signa-

ture performed better. CVTree with the l6n5,4 signature

showed overall better performance than the l6n1 Euclidean
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distances, the compositional spectrum and FFP distances per-

formed less well in comparison. Interestingly, all signature-

based distances with long oligonucleotides (Euclidean l6n1,

CVTree l6n5,4, CompSpec l10r2, and FFP l10ry) with lower

overall cophenetic correlation, except for FFP, performed

better for the Actinobacteria than the baseline (P<0.05,

Wilcoxon test). This might be due to the close relatedness of

the genomes in the phylum Actinobacteria and their charac-

teristically high GC-content, making longer oligonucleotides

more informative. For all groups except Firmicutes, the align-

ment-based method GBDP performed better than the align-

ment-free methods, however, this performance comes at a

considerable computational cost.

GC-Content

We performed similar experiments with the genomes divided

into three groups according to their genome-wide GC-

content (�30%, >30–�50%, and >50–�70%; supplemen-

tary table S1, Supplementary Material online). It has been pre-

viously noted that GC-content affects oligonucleotide-based

trees grouping similar GC-content genomes together irrespec-

tive of their phylogenetic relationships, while tetra- to octanu-

cleotide frequency based trees of genomes with similar

GC-content show high congruence with gene based trees

at genus and family level (Takahashi et al. 2009). Therefore,

we expected that improved distance metrics could be

learned for groups of genomes with similar GC-content. The

GC-specific metrics, we inferred improved in cophenetic

correlation over the baseline for all three GC-content groups.

There was also a decrease in the quartet distance for the ge-

nomes with 30% or less GC-content and for genomes with

GC-content between 50% and 70%. Most metrics for the

individual groups had significantly different correlation coeffi-

cients from the baseline method (P<0.05, Hotelling–Williams

test) (supplementary fig. S1, Supplementary Material online).

In general, while a strong signal was observed for all the align-

ment-free methods on the low GC-content group, a weaker

signal was observed on the moderate GC-content genomes

(supplementary table S3, Supplementary Material online). Of

the other alignment-free methods, only CVTree consistently

and significantly (P< 8.2e�6, Wilcoxon test) performed

better than the baseline. The compositional spectrum and

FFP methods performed well only on the genomes with GC-

content of 30% or less. GBDP performed better than the

baseline in all the groups and performed worse than the

learned l4n1 metrics on the�30% GC-content group (fig. 2).

Ecological Attributes

Next, we investigated whether specific metrics for ecological

groups show an improvement over the baseline. This is a chal-

lenging task as ecological groups might contain distantly re-

lated genomes, a scenario in which alignment-free methods

can face difficulties (Mrazek 2009). Three ecological factors

were chosen to define groups: habitat (5 groups), tempera-

ture range (3 groups), and oxygen requirement (3 groups;

supplementary table S1, Supplementary Material online).

FIG. 1.—Performance on the phylogenetic groups. Each bar shows a performance measure along with error bars showing SD.
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The habitat-specific l4n1 metrics showed an improvement

over the baseline both in terms of the CPCC and the quartet

distance for all five groups. Only the improvement of the quar-

tet distance for the host-associated metrics was not significant

(fig. 3; supplementary table S3, Supplementary Material

online). Although CVTree showed an increase in the CPCC

for all five habitat groups and an increased quartet distance

for the aquatic and specialized groups, FFP showed an im-

provement over the baseline only for the multiple habitat

genomes (P< 7.74e�15, Wilcoxon test).

In computation of the taxonomic distances and genome

trees for genomes from all three temperature range groups,

the learned l4n1 metrics performed better than the baseline

(P< 7e�3, Wilcoxon test), except for an increase in the quar-

tet distance for the mesophiles group. Interestingly, for the

mesophiles group 19 specific metrics did show a significant

change in correlation (supplementary fig. S1, Supplementary

Material online). CVTree performed well for all groups except

a decrease in the CPCC for hyperthermophiles, while FFP

showed improvement only for the hyperthermophiles group

(P< 1.3e�3, Wilcoxon test).

We also observed an improvement for the learned l4n1

metrics for all oxygen-requirement types (aerobe, anaerobe,

and facultative anaerobes) (P< 1.2e�6, Wilcoxon test),

except for a performance reduction in term of an increase in

the quartet distance for the facultative anaerobes. CVTree, as

before, showed improvement for the anerobes and facultative

groups (P< 3.15e�15, Wilcoxon test) and performed similarly

to GBDP for the genomes of the facultative anaerobes.

Although the Euclidean metric with the l4n1 signature after

performing PCA showed a marginal but significant improve-

ment for aerobes and anaerobes, the Delta50kb and

Euclidean metric with the l6n1 signature showed significant

improvements for the anaerobe and facultative anaerobe

groups, respectively. The other methods did not show a con-

sistent performance pattern.

Overall, for all 11 ecological groups 23 or more metrics

showed a significant change in the correlation coefficients

with the phenetic metric of the reference taxonomy in com-

parison with the baseline (P< 0.05, Hotelling–Williams test).

For three habitats—aquatic, host-associated, and special-

ized—as well as the mesophilic and aerobic groups, all 30

metrics differed significantly (supplementary fig. S1, Supple-

mentary Material online). GBDP performed best for all groups

defined by the three ecological attributes (P<1.46e�9,

Wilcoxon test).

Group-Specific Metrics Notably Improved Tree
Inference for Group Members

One could argue that a learned metric performs well for a

group by chance and not because it inferred specifics of evo-

lutionary rates for different tetranucleotides for the group. To

investigate this question, we learned 30 metrics from 30 ran-

domly selected species each (the “random metrics”) and com-

pared their performance with the performance of the 30

group-specific learned metrics for each of the 18 groups

FIG. 2.—Performance on the GC-content groups. Each bar shows a performance measure along with error bars showing SD.
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using the one-sided Wilcoxon rank sum test. We tested

whether the group-specific metrics had a higher CPCC and

lower quartet distance than the random metrics to the refer-

ence phenetic distances. Note that the random metrics

showed a significantly better performance than the baseline

metric for the Actinobacteria, GC content between 50% and

70%, aquatic and aerobic groups (P< 3.61e�2, Wilcoxon

test) (supplementary table S3, Supplementary Material online).

For all the groups, except the aquatic, mesophiles and

aerobes, the group-specific metrics performed significantly

better than the random metrics (P< 3.86e�2, Wilcoxon

test) (table 1). This implies that the group-specific metrics per-

form better than the ones learned on randomly sampled ge-

nomes and that group-specific aspects of tetranucleotide

usage allow an improved inference of the taxonomic relation-

ships for the respective organisms. The lack of improvement

for aquatic species, mesophiles, and aerobes might be in part

caused by abundance of these groups among the genomes

(supplementary table S1, Supplementary Material online). This

may have resulted in some of the learned metrics from ran-

domly selected species to partially represent specific properties

of these groups.

Dimensionality Reduction Resulted in Marginal
Improvement

Unsupervised dimensionality reduction techniques, such as

PCA, have been used for noise reduction and visualization

of genome signatures (Sandberg et al. 2001; Mrazek 2009).

PCA embeds the input space into a potentially lower dimen-

sional space defined by orthogonal basis vectors. We calcu-

lated cophenetic correlations and quartet distances for all the

groups individually using the original and PCA-transformed

l4n1 distances (table 2). The dimensionality of the reduced

space was selected to be the dimensions explaining at least

one original variable, that is, dimensions with eigenvalues of at

least one. Interestingly, approximately 20 dimensions (18–25)

were retained for all the groups, capturing 93–98% of vari-

ance. Although PCA resulted in a marginal nonsignificant im-

provement, it performed less well than the group-specific

metrics (figs. 1–3; supplementary figs. S2–S6, Supplementary

Material online). Similarly, when PCA was applied to the l6n1

signature with the Euclidean distance metric, a large reduction

in the dimensionality was observed (38–114 principal compo-

nents explaining 97.81–99.96% variance), with no significant

FIG. 3.—Performance on the ecological groups from three attributes. The bars show the performance measures and the error bars indicate SD.
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performance improvement (supplementary table S4, Supple-

mentary Material online).

Trends Across Groups

We investigated whether the genomic and taxonomic com-

position of the groups are relevant for the improvement ob-

tained by the specific metrics over the baseline. The aim of this

analysis was to get a better understanding of when applica-

tion of the proposed method might be most relevant. We

calculated nine statistics for the groups (number of genomes,

number of species, mean genome size, standard deviation

(SD) of genome sizes, mean GC-content, SD of GC-content,

NRI, and NTI) and correlated them with the change in the

mean cophenetic correlation of the specific metrics relative

to the baseline (table 3; supplementary table S2, Supplemen-

tary Material online) across the groups. A positive correlation

here means that an increase in the statistic corresponds to an

improvement in the CPCC on average and vice versa. The

Actinobacteria and Euryarchaeota groups were removed

from this analysis because they behaved like an outlier with

respect to change in the CPCC, above the 99th percentile and

below the 1st percentile, respectively.

The strongest and significant negative correlation

(Pearson’s R¼�0.54, P¼ 0.03) was with the phylogenetic

community measure NRI (Webb et al. 2002). NRI measures

the phylogenetic clustering of taxa and becomes negative

Table 1

P Values from the One-Sided Wilcoxon Rank Test, Testing the

Specificity of the Learned Metrics for the Respective Groups

Attribute Group CPCC QD

Phylum

Proteobacteria 0.0000 0.0001

Firmicutes 0.0000 0.0000

Actinobacteria 0.0000 0.0000

Euryarchaeota 0.0032 0.0029

GC-content

�30% 0.0000 0.0000

>30–�50% 0.0014 0.0000

>50–�70% 0.0000 0.0013

Habitat

Aquatic 0.5957 0.3762

Terrestrial 0.0000 0.0005

Multiple 0.0000 0.0057

Host-associated 0.0000 0.0386

Specialized 0.0001 0.0006

Temperature range

Hyperthermophilic 0.0000 0.0000

Thermophilic 0.0001 0.0000

Mesophilic 0.8850 0.6349

Oxygen requirement

Aerobic 0.0154 0.1150

Anaerobic 0.0030 0.0011

Facultative 0.0000 0.0000

NOTE.—While for the CPCC, the alternative hypothesis was that the group-
specific metrics produce higher CPCC values than randomly learned metrics, for
the QD, the alternative hypothesis was that the group-specific metrics result in
lower quartet distances than the randomly learned metrics. Significant results
(<0.05) are shown in bold.

Table 2

The CPCC and Quartet Distance before (CPCC and QD) and after (CPCC_PCA and QD_PCA) PCA based on the l4n1 Signature

Attribute Group CPCC CPCC_PCA QD QD_PCA Dimension Variance (%)

Phylum

Proteobacteria 0.42 0.43 0.45 0.43 21 94.46

Firmicutes 0.57 0.54 0.32 0.29 20 96.25

Actinobacteria 0.39 0.44 0.55 0.50 19 96.32

Euryarchaeota 0.46 0.45 0.47 0.43 20 97.20

GC-content

�30% 0.30 0.34 0.43 0.40 19 96.73

>30–�50% 0.36 0.34 0.51 0.51 25 94.27

>50–�70% 0.44 0.48 0.48 0.43 22 94.49

Habitat

Aquatic 0.39 0.38 0.51 0.51 24 94.78

Terrestrial 0.39 0.45 0.39 0.38 18 96.43

Multiple 0.37 0.36 0.46 0.45 21 95.17

Host-associated 0.17 0.18 0.51 0.51 21 94.65

Specialized 0.20 0.19 0.57 0.57 23 95.28

Temperature range

Hyperthermophilic 0.46 0.41 0.43 0.46 18 97.93

Thermophilic 0.19 0.24 0.59 0.58 22 96.03

Mesophilic 0.25 0.24 0.51 0.52 22 93.49

Oxygen requirement

Aerobic 0.34 0.34 0.56 0.56 22 94.65

Anaerobic 0.19 0.20 0.58 0.55 24 94.71

Facultative 0.46 0.47 0.30 0.35 23 95.32

Average 0.35 0.36 0.48 0.47 21.33 95.45

NOTE.—The dimension and variance columns show the number of dimensions and variance retained, respectively. No significant improvement was observed after
applying PCA either for the CPCC or the QD (P> 0.3, one-sided Wilcoxon rank sum test, see text for details).
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with their increasing dispersion; therefore this negative corre-

lation suggests that as the taxa become more clustered on the

taxonomy, the specific metrics provide less improvement. This

result was expected, as for closely related taxa the baseline

(the l4n1 signature with the Euclidean distance) is expected to

perform well (Mrazek 2009). A lower, but also negative cor-

relation was observed for the nearest taxa index (NTI) which

increases as taxa cluster at the terminal nodes (Webb et al.

2002).

The overall number of genomes in a group also showed a

significant negative correlation with the mean change of the

cophenetic correlation, suggesting that our method provides a

larger improvement in the CPCC for smaller groups For the

negative correlation with genome sizes we speculate that

larger genomes may exhibit a noisier genome signature, for

example due to presence of phages and plasmids (Suzuki et al.

2010), the specific metrics might provide an improvement by

learning appropriate weights for oligonucleotides, such that

the noise is reduced.

Interestingly, no significant correlation was observed with

either the mean or the SD of the GC-content for each group

(P> 0.8), suggesting that the improvement provided by the

specific metric does not depend on the group GC-content,

except for the Actinobacteria.

Group-Specific Metrics Generalized across Larger
Taxonomic Distances

To investigate the effect of the genome relatedness on learn-

ing group-specific metrics, we removed genomes of the same

species and order as the ones used for learning independently

for each group-specific metric and recomputed the perfor-

mance measures. These experiments were performed on

the 1,951 genomes obtained from NCBI GenBank in June

2012. We observed similar trends as before (supplementary

figs. S2–S6, Supplementary Material online), suggesting that

metric learning is advantageous even when closely related

genomes are not available. However, in many cases the per-

formance of all tested methods degraded after this removal,

indicating that signature-based methods perform better at

lower taxonomic distances.

Discussion

In this work, we proposed a method to learn taxonomic dis-

tance metrics from genome signatures and the corresponding

phenetic distances between them. Our aim was to improve

genome signature-based genome tree inference for groups of

genomes where the groups were defined by phylogenetic,

genomic, or ecological attributes. Our empirical analyses

showed that genome trees inferred from genome signature

can be improved by learning group-specific taxonomic dis-

tance metrics. As expected, metrics learned for different

phyla and GC-content groups showed significant improve-

ment in the quality of inferred genome trees (for three

groups out of four and two groups out of three, respectively).

Working with the hypothesis that environmental selective

forces shape the nucleotide composition of genomes, that

is, that different niches drive the oligonucleotide composition

in different directions, we learned specific metrics for different

ecological groups. The ecological group-specific metrics

showed performance improvements for 8 out of 11 ecological

groups.

The performance improvement shown by specific metrics

for phylogenetic and GC-content groups of species was rela-

tively higher and generalized better for distant genomes than

for the ecological groups. Nevertheless, also for the ecological

groups, the learned metrics in most cases showed a perfor-

mance improvement. The ecological groups in particular

contain genomes of species only distantly related to each

other, where the alignment-free methods are known to be

less accurate. Of the other alignment-free methods evaluated

here only CVTree showed a consistent improvement over the

baseline. The better performance of CVTree compared with

the l6n1 signature might be due to a more appropriate

normalization.

An important property, in our opinion, of the CompSpec

metric is that it only covers a subset of the whole composi-

tional space. For instance, the employed parameters account

for 9,200 (200� [1 + 10C2]) words out of 1,048,576 (410) pos-

sible words amounting less than 1%. We speculate that the

information loss due to this low coverage is, at least partly,

responsible for lower performance we observed with the

CompSpec distances. Although multiple samples of 200

Table 3

Correlation of the Mean Change in the CPCC with Different Statistics across the Groups

Correlation Value No. of

Genomes

No. of

Species

Genome

Size (Mean)

Genome

Size (SD)

GC-Content

(Mean)

GC-Content

(SD)

NRI NTI

Pearson’s
R �0.54 �0.17 �0.34 �0.33 0.03 0.02 �0.54 �0.35

P value 0.03 0.52 0.19 0.22 0.92 0.95 0.03 0.19

Spearman’s
r �0.46 �0.13 �0.44 �0.44 0.06 0.03 �0.40 �0.26

P value 0.07 0.63 0.09 0.09 0.81 0.93 0.12 0.32

NOTE.—The Actinobacteria and Euryarchaeota groups were removed for this analysis, as they behaved like outliers (see text for details). Significant results (P< 0.05) are
shown in bold.
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words are used to build a number of trees, which are then

aggregated into a final tree using a consensus method

(Kirzhner et al. 2007), it is not straightforward to compare

the resulting distances and resulting trees in this way. There-

fore, we here used a single sample of 200 words was used in

this study. For the FFP metric, we also computed distances

between randomly sampled 50 kb continuous segments

from the genomes, to investigate whether different genome

sizes might be confounding the distance calculation. The re-

sults were similar (data not shown). We did not implement the

block-FFP and optimal range finding algorithms (Sims et al.

2009) and it will be interesting to see whether those may lead

to performance improvement. Furthermore, our experiments

showed that dimensionality reduction with PCA resulted only

in a marginal or no performance improvement.

Another observation from our analysis was that the BLAST

alignment-based genome dissimilarity metric (GBDP) was the

overall best performing method, both in terms of the cophe-

netic correlation and quartet distance. The good performance

of GBDP implies that the information necessary for tree infer-

ence can be uncovered using genome-wide alignments. The

comparatively lower performance of the alignment-free meth-

ods suggest that the distances calculated from the genome

signatures do not represent universal taxonomic relationships

with the same accuracy. The good performance of GBDP

might also partly be due to the use of an evolutionary

model in sequence alignments. At the same time, the lower

performance of alignment-free methods might result from a

loss of information, when encoding a longer sequence by

means of shorter oligonucleotides. Further research is

needed to pin point the advantages and shortcomings of

the different methods.

However, performing alignments is computationally expen-

sive and hence difficult to scale to a large number of genomes.

The group-specific metrics we introduced can be learned from

a small number of genomes, that is, 30 different species, and

knowledge of the target phenetic distances between them in

reference taxonomy. Therefore, to save computational cost, in

case a resolved taxonomy for a group of genomes is not avail-

able, one could first infer a partial taxonomy from a subset of

the genomes with an accurate method like GDBP and then

use the taxonomy to learn a signature based distance metric

that in turn could be applied to infer taxonomic distances for

the remaining genomes.

In summary, our findings suggest that different groups of

organisms have specific distance metrics over the genome

signature and that these can be uncovered by considering

their ecological, genomic or phylogenetic attributes. Our

new method performed significantly better than the baseline

technique for 13 out of 18 groups, indicating that group-

specific aspects define the genome signature and that

their consideration can improve the inference of taxonomic

relationships. The existence of ecology-specific metrics

strengthens the hypothesis that environmental factors affect

the oligonucleotide usage of genomes. We also stress the

need for more fine grained terms to describe specific environ-

ments and sample source information in public repositories, as

provided by the environmental ontology (Hirschman et al.

2008). With the rapid advance in sequencing technologies

large number of genome from microorganisms, even the

ones not cultivable with traditional sequencing methods, will

become available in the near future. Accurate and efficient

methods are necessary to analyze this large-scale data. Our

proposed method is a step towards this goal.

The analysis of the group-specific oligonucleotide weights

and whether they provide insights into any evolutionary char-

acteristics or adaptive evolution specific for the group will be

an important future research direction. In this work the group-

specific metrics were learned only from group-specific data,

therefore the learned oligonucleotide weights do not neces-

sarily contain discriminatory information. Furthermore, the

limited number of genomes (30) used for metric learning

and correlations between the oligonucleotide frequencies

can lead to divergent metrics for a group, where weights

can be distributed across different correlated oligonucleotides

to obtain the same result. This prevented the interpretation of

a biological or evolutionary meaning of the learned weights

with the method described here.

The current work was confined to learning linear distance

metrics. This can be extended to learning nonlinear distance

metrics in the future, which may lead to further performance

improvements. It will be also interesting to investigate

whether learning a full matrix instead of a diagonal matrix

for weighting oligonucleotides would be beneficial. We here

used the cophenetic correlation with Spearman’s rank corre-

lation coefficient as a proxy objective function for tree similar-

ity. Although the increase in the cophenetic correlation was

correlated with the decrease in the quartet distance (all groups

combined Pearson’s R¼ 0.46, P< 2.2e�16), further research

is necessary to identify other more suitable optimality criteria.

Furthermore, distance metric learning has the potential to be

extended to unsupervised binning of metagenome data

(McHardy and Rigoutsos 2007) to improve performance on

a particular ecological niche, for example, the marine environ-

ment and the human gut.

Supplementary Material

Supplementary text, tables S1–S4, and figures S1–S6 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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