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Abstract: Analysis of volatile organic compound (VOC) emissions using electronic-nose (e-nose)
devices has shown promise for early detection of white-nose syndrome (WNS) in bats. Tricolored
bats, Perimyotis subflavus, from three separate sampling groups defined by environmental conditions,
levels of physical activity, and WNS-disease status were captured temporarily for collection of VOC
emissions to determine relationships between these combinations of factors and physiological states,
Pseudogymnoascus destructans (Pd)-infection status, and metabolic conditions. Physiologically active
(non-torpid) healthy individuals were captured outside of caves in Arkansas and Louisiana. In
addition, healthy and WNS-diseased torpid bats were sampled within caves in Arkansas. Whole-
body VOC emissions from bats were collected using portable air-collection and sampling-chamber
devices in tandem. Electronic aroma-detection data using three-dimensional Principal Component
Analysis provided strong evidence that the three groups of bats had significantly different e-nose
aroma signatures, indicative of different VOC profiles. This was confirmed by differences in peak
numbers, peak areas, and tentative chemical identities indicated by chromatograms from dual-
column GC-analyses. The numbers and quantities of VOCs present in whole-body emissions from
physiologically active healthy field bats were significantly greater than those of torpid healthy and
diseased cave bats. Specific VOCs were identified as chemical biomarkers of healthy and diseased
states, environmental conditions (outside and inside of caves), and levels of physiological activity.
These results suggest that GC/E-nose dual-technologies based on VOC-detection and analyses of
physiological states, provide noninvasive alternative means for early assessments of Pd-infection,
WNS-disease status, and other physiological states.

Keywords: chiroptera; white-nose syndrome; disease biomarkers; early disease detection; electronic
nose; healthy biomarkers; metabolomics; volatile organic compounds; VOCs

1. Introduction

White-nose syndrome (WNS), a necrotrophic fungal disease found primarily in cave-
dwelling Nearctic bats, has reduced bat populations in some eastern regions of North
America by as much as 99% [1–3]. WNS is caused by a keratinophilic fungal pathogen,
Pseudogymnoascus destructans (Pd), that develops epidermal and deep, subcutaneous skin
infections in at least twelve insectivorous bat species [4,5]. The disease was first discovered
in North American bat populations in 2006 (within New York caves) and is believed to have
originated from Europe where bats have likely coexisted with P. destructans for millenia [6,7].
Skin-infections by P. destructans result in characteristic epidermal erosions that develop
into necrotic flecks, filled with fungal hyphae on the muzzles, ears, and wings. Major
Pd damage to wing tissues is most significant because it interferes with gas exchange,
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adjustment of blood flow, maintenance of body temperature, initiation of hibernation, and
reduces flight capabilities [4]. In severe cases, necrotic areas coalesce to form larger dark
necrotic zones or wing patches that may fall away in advanced stages, leaving vacant
holes in the wing. White mycelium of the fungus may eventually aggregate to cover most
of the bat skin surface area and appear as white plumes [8]. WNS systemically disrupts
the normal physiology of hibernating bats, leading to adverse physiological cascades,
including chronic respiratory acidosis, frequent fat-depleting arousals causing starvation
and dehydration, Immune Reconstitution Inflammatory Syndrome (IRIS) during conscious
periods of euthermia (following hibernation), and ultimately death [9–13].

The precipitous decline in tricolored bat (Perimyotis subflavus) populations in North
America, due to the widespread devastating effects of WNS since 2016, has resulted in this
species being nearly extirpated from several U.S. states. Cheng et al. [5] estimated the scope
of threat of WNS to P. subflavus was extreme and indicated that 59% of the geographical
range of this species was affected, based on the IUCN range map, and 93% of the population
declined in its range within seven years after WNS was first detected. The high vulnerability
of P. subflavus to population declines has been attributed to low reproductive rates, high
susceptibility, relatively small size, and low tolerance to Pd infections at relatively low
inoculum loads compared with larger bats. Consequently, this species is currently rated
as a vulnerable species, but is being considered for endangered species status by the
International Union for the Conservation of Nature (IUCN) [14].

Previous research has investigated various aspects and means by which WNS affects
bats physiologically. However, a major gap in knowledge has been the lack of information
and methods for measuring changes in bat physiology associated with pathogenesis,
necessary for monitoring disease development noninvasively over time. One method for
gaining a deeper understanding of physiological effects of WNS on bats and monitoring
these physiological effects is through detecting and monitoring emissions of volatile organic
compounds (VOCs) from bats in different physiological states and levels of activity. The
presence or absence of specific VOCs and increases or decreases in concentrations of specific
VOC emissions reveal different physiological states of bats based on their state of health
and activity that change over time. Unique changes in VOC emissions from animals,
associated with pathogenesis of specific diseases, usually are due to disruptions in normal
host metabolic pathways [15,16]. Monitoring changes in VOC emissions, derived from
appropriate biological sample sources, is a useful means for detecting changes in host
physiological processes caused by disease which may otherwise be undetected at early
stages using traditional diagnostic methods. Detectable changes in VOCs may result from
host–pathogen interactions, inflammatory responses, or even direct tissue damage or injury.
Prior research has shown that altered VOC composition or concentrations (metabolomic
changes) are effective indicators of physiological disruption in animals; including evidence
of disease states such as sepsis, and physiological stresses associated with lung injury,
hemorrhagic shock, ketosis, starvation, and inflammation [17–21].

VOC-emission analysis has been used to determine the presence of disease states and
for diagnosis of a variety of domestic and wild animal diseases including tuberculosis,
caused by Mycobacterium bovis infections in cattle, white-tailed deer, and wild boar (Sus
scrofa) using exhaled breath and fecal samples [22–26]. The causal agent of paratuberculosis
in goats, M. avium subsp. paratuberculosis, has been successfully detected for diagnosis of
this disease by analysis of VOC emissions from exhaled breath and feces [27,28]. Infection
by Brucella abortus, causing brucellosis in bison, has been explored through analysis of
VOCs from exhaled breath, indicating potential feasibility for disease diagnosis [29]. Di-
agnosis of the transmissible spongiform encephalopathy Chronic Wasting Disease (CWD)
in white-tailed deer using feces-derived VOCs also has shown promise [30]. The success
in diagnosing disease-states in vertebrates through VOC analysis encourages wider appli-
cation, particularly as a non-invasive tool for wildlife disease monitoring, especially for
threatened or declining populations, including certain bat species.
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Electronic-nose (e-nose) devices, gas-sensing instruments capable of detecting specific
mixtures of VOCs in air samples by aroma signature patterns, also show potential for nonin-
vasive early detection of human diseases as well as WNS in bats [31]. Previous research has
demonstrated that the portable C-320 e-nose, containing a carbon black polymer composite
(CBPC) 32-sensor array, effectively distinguished between nine species of North American
bats based on analysis of bat-derived VOC-metabolite emissions [32]. Other e-nose instru-
ments, such as the Alpha MOS Heracles GC/E-nose with dual-technology VOC detection
and GC chemical-analysis, has provided a novel means for early detection of WNS in bats
prior to bats showing visible symptoms, reducing the need for tactile disturbance using
qPCR swabs which are less reliable for early WNS detections. Use of an e-nose in conjunc-
tion with supporting VOC analysis shows promise for taking advantage of early WNS
disease-detection capabilities to potentially provide swift, timely application of effective
treatments prior to the onset of devastating symptoms. Disease prognoses are significantly
improved by implementation of early, interventional disease-control treatments at early
stages of disease development [33].

Previous investigations involving VOC-associated research in connection with WNS
have been limited. The potential use of certain VOCs derived from microbes to fumigate
caves was investigated to help control the growth and conidial sporulation of P. destructans
to help reduce inoculum loads and Pd-infections [34–37]. Additional research indicated
that the metabolic VOC profile of P. destructans differed significantly from those of other
Pseudogymnoascus species [38]. However, very little research has focused on innate VOCs
present in healthy and diseased bats. Knowing the compositional differences of VOCs in
healthy vs. diseased bats will yield greater insight into specific physiological effects of
WNS on bats which result in measurable changes in VOC whole-body emissions.

Other potential applications of VOC-emission analysis, besides detecting disease
states, may include insights into defining normal physiological states of organisms at
different levels of physical activities and under different environmental conditions. For
example, VOC profiles of human skin cells differed based on culture conditions [39], and
VOC profiles of exhaled breath in humans are affected by exercise [40]. Torpor and hi-
bernation are important physiological states noted in heterothermic endotherms whereby
metabolic rate and body temperature are markedly reduced for short or prolonged periods
of time. Because bats are heterothermic endotherms, it is possible that their VOC profiles are
markedly different when in active and inactive states. Bats exhibit a wide suite of physio-
logical changes that occur as they transition from active to torpid states for hibernation [41].
Very little research has focused on determining VOC chemical biomarkers associated with
differing physiological states in bats. Most research in this area for small mammals has
focused on changes in internal metabolites of the thirteen-lined ground squirrel (Sper-
mophilus tridecemlineatus). For example, this species expressed differing concentrations of
glucose, lactate, alanine, succinate, β-hydroxybutyrate, glutamine, and betaine in the liver
based on the animal’s state of torpor or activity [42]. Another study identified 106 blood
plasma-derived metabolites that significantly differed in composition based on the state of
torpor in S. tridecemlineatus [43]. To our knowledge, no previous research has analyzed VOC
emissions in external air samples to identify volatile chemical biomarkers associated with
heterothermy or disease in any mammalian hibernator. Because WNS is most detrimental
to bats during hibernation [13,44,45], identification of chemical biomarkers and VOC e-nose
profiles for differentiating diseased hibernating bats from those of healthy hibernating and
healthy active bats is crucial for developing effective and measurable real-time indicators
for monitoring healthy vs. disease physiological states.

The analysis and identification of specific metabolites that could serve as poten-
tial chemical biomarkers for early detection of physiological disorders and disease has
been used extensively as a model approach in numerous biomedical and metabolomic
studies [46–48]. Metabolites identified as possible disease biomarkers include those de-
rived from the pathogen (for biotic diseases), including some unique virulence factors, and
metabolites that form due to pathogenesis that causes disruptions of normal metabolic
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pathways in the host. Metabolomic biomarkers are metabolites that are produced in higher
or lower quantities than levels normally found in healthy individuals, usually in association
with specific metabolic pathways [49]. The specificity of effects of pathogens on certain
metabolic pathways of a host is commonly a diagnostic characteristic of specific pathogen
groups [16]. Other metabolites useful as chemical biomarkers for detecting the presence
of disease include certain microbial metabolites, produced by abnormal gut microbes,
which displace or modify the healthy gut microbiome, due to disease processes such as in
microbial dysbiosis [50]. By extension, metabolite biomarkers also are useful, as a portion
of the total metabolome (entirety of metabolites produced by an organism), for detect-
ing different pathophysiological states (pathogenesis) within an organism or diversions
in physiological processes caused by changes in environmental conditions that induce
hormone-mediated cascadic modifications in many metabolic pathways (e.g., initiation of
torpor for hibernation) [51].

The aims of this study were to (1) determine differences in VOC composition of
whole-body emissions from tricolored bats in three categories, including (a) healthy, active
bats in summer; (b) healthy, torpid bats in winter, and (c) diseased, torpid bats affected
by WNS; (2) identify unique chemical VOC biomarkers indicative of specific types of
physiological activities and states; and (3) identify differences in overall VOC profiles of
these three sample groups based on electronic-nose PCA aroma-map comparisons. For
our working hypothesis, we predicted that all three groups of P. subflavus bats would
exhibit different VOC composition due to their differing physiological states and that we
would find specific VOC biomarkers associated with the WNS-disease state as well as other
biomarkers specifically associated with different levels of bat activity.

2. Materials and Methods
2.1. Bat Sampling Locations, Timing, and Procedures

Bats were hand-captured in February–March 2018 from two caves located in the Ozark-
St. Francis National Forest in Arkansas (names of caves withheld to reduce visitation traffic;
henceforth shall be referred to as “Cave A” and “Cave B”) during daylight hours while bats
were torpid. Cave A contained known populations of tricolored bats (Perimyotis subflavus)
exhibiting characteristic visible symptoms of WNS (epidermal erosions filled with fungal
mycelium on the muzzles, ears, and/or wings) while Cave B contained P. subflavus without
characteristic visible symptoms of WNS. Because the metabolite expression of WNS differs
based on infection status (i.e., visible fungal growth vs. early-stage Pd-infection), and that
WNS is typified by visible symptoms in late winter, we considered bats from Cave B to
be disease-free. We collected 24 cave air samples from P. subflavus of known sex from the
caves (Cave A: n = 9, N = 1F, N = 8M; Cave B: n = 15, N = 7F, N = 8M).

Additional bat air samples were collected in January–March of 2017 and 2018 in the
Ozark-St. Francis National Forest and on local private properties (specific locations with-
held to reduce visitation). These samples were obtained from undisturbed (not handled)
bats on cave walls. We collected 20 cave air samples from P. subflavus, including 10 torpid
healthy bats (from 6 different caves) and 10 torpid WNS-diseased bats (from 5 different
caves), to serve as controls in determining the effects of handling bats only for biomarker-
identification analysis. Some differences in the temperature and humidity profiles of field
sites were evident; winter caves had minor variation in temperature (mean 13.6 ± 3.5 ◦C
with greater variation in relative humidity (mean 74.2± 11.6%) and summer field sites were
warmer (mean 26.8 ± 0.3 ◦C) than winter cave sites (humidity information unavailable).

We collected four field bat air samples in July–August 2017 from healthy and active
summer bats, (N = 2F, N = 2M). Bats were captured using mist nets (Avinet, Portland,
ME, USA) set at dusk in forested landscapes in Craighead Co., Arkansas, and Grant and
Natchitoches Parishes, Louisiana, respectively, as reported previously [32]. To reduce
potential of Pd cross-contamination, latex gloves were discarded after handling each bat.
Containers (jars) and holding bags were used once for each bat and autoclaved or sanitized
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the following day for re-use. Any instruments that required re-use during the same evening
(e.g., scale, calipers) were sanitized between measurements.

2.2. Ethical Considerations

All activities were conducted in accordance with the Institutional Animal Care and
Use Committee (IACUC) regulations at Arkansas State University (document IACUC #
FY16-17-22), using research permit approvals for bat captures from Arkansas Game and
Fish Commission (Permit # 051020161) and from Louisiana Department of Wildlife and
Fisheries (Permit # LNHP-17–024).

2.3. Bat Air-Sample Collection

Whole-body air samples were collected from bats expressing different physiological
states at locations outside and inside of caves. Healthy torpid cave bats were collected
from cave walls, during the winter hibernation season, from individuals that were asymp-
tomatic and apparently healthy without WNS diagnostic symptoms (i.e., no skin lesions
or signs of white fungal mycelium growing on muzzle and wings), and presumably with
active immune systems. Torpid Pd-infected diseased bats with WNS symptoms were
likewise captured during the same winter hibernation period. Healthy active field bats
were captured during summer outside of caves. The bat air-sampling procedure utilized
was previously outlined in some detail [32], but with some modifications as presented
below using a different air-collection device.

The design and components of the glass sampling chambers used for collection of
VOCs from bats were described previously [32]. Following capture, bats were held for
~10 min to isolate bats from ambient air and create headspace for sampling. To minimize
stress, cloth bags were placed over the sampling chamber during the isolation period. After
the 10 min isolation period, the vacuum-pump box was switched on and the VOC air
sample bag inside of the vacuum box was filled with air from the sampling chamber at
a rate of 0.5 L/min. The ultra-zero pure air bag (connected to port 2 of the air sampling
chamber) replaced the air removed from the sampling chamber at the same rate to prevent
ambient air contamination and to equalize pressure within the sampling chamber.

The bat VOC-sampling chamber was connected to a Low Vac 1 L vacuum box air
sampler (Model 1060, Xitech Instruments, Inc., Placitas, NM, USA), containing an identical
PE-AL VOC air-sample bag inside, and to a 1 L pure air replacement bag through separate
FEP tubing connections to Ports 1 and 2 as described previously [32]. The complete bat
VOC air-collection apparatus assembly with FEP tubing connections, air-transfer ports, and
PE-AL air bag with orientations is shown in Figure 1.

Explanations behind the methods and rationale for the air-collection apparatus designs,
developed for bat whole-body VOC-collection in this study, were provided previously
along with cleaning procedures utilized prior to re-use of these devices [32].

Control air samples were taken from inactive (torpid) cave-wall bats, not handled or
placed in VOC sampling jars, using elongated 4.8 mm ID, 6.4 mm OD FEP tubing, raised to
close proximity of bats using a 7.6 m (length) non-conductive fiberglass telescoping pole
(Hastings, Hastings, MI, USA), which was connected to the VOC air-collection device. The
collection of bat air within the sampling tube was fractionated and collected in PE-AL VOC
sampling bags on a time-delayed basis, depending on the length of the sampling tube used
and the flow rate of the vacuum sampler, to avoid collecting air already present in the
sampling tube prior to acquisition of air samples from bats. All bat air samples collected
in the field and caves using PE-AL VOC-collection bags were transported overnight to
the USDA Forest Service, Southern Hardwoods Laboratory (SHL, Stoneville, MS, USA)
pathology laboratory for e-nose analyses.
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boxes, inserted into custom-fit cardboard boxes, and shipped by overnight mail to the 
Southern Hardwoods Laboratory, Pathology Department, Stoneville, MS. Shipping boxes 

Figure 1. Bat VOC air-collection apparatus assembly. Xitech vacuum chamber (at right, containing
PE-AL VOC air-sampling bag inside) with glass bat air-sampling chamber (at left) connected via two
port valves to FEP tubing with Port 1 (receiving air inflow from pure zero-air replacement bag), and
Port 2 (allowing outflow of bat sample air to input port of Xitech air-collection chamber and internal
VOC air-collection bag).

Field-captured bats were handled according to methods used previously [32]. Cave-
captured bats were carefully placed back on the cave wall in the same location. The entire
procedure, from capture to release, generally did not exceed 20 min per bat.

The PE-AL air-sampling bags, containing bat air samples, were placed into styrofoam
boxes, inserted into custom-fit cardboard boxes, and shipped by overnight mail to the
Southern Hardwoods Laboratory, Pathology Department, Stoneville, MS. Shipping boxes
were stored at 4 ◦C within a walk-in cool room until air samples were individually prepared
for chemical analysis. Samples available for immediate analysis were maintained at 21 ◦C
prior to preparation for analysis.

2.4. Pre-Analysis Bat Air-Sample Preparation

An analytical reference standard custom mixture (Restek, Bellefonte, PA, USA, product
number 561203), composed of 11 sequential aliphatic alkanes (C7–C17), was utilized prior to
all GC sample analyses to set up Kovats calibrations for determinations of Kovats Retention
Indexes (KRI) for specific chromatographic peaks present in GC chromatograms.

2.5. GC/E-Nose Configuration Parameters and Data Acquisition

The details of methods (instrument configuration parameters, data acquisition, and
procedures) utilized with the Heracles II GC/Electronic-nose system (Alpha MOS, Toulouse,
France) for chemical analysis of headspace volatiles derived from bat whole-body air
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samples, were identical to those used previously for analysis of microbial headspace VOCs
of the Pd-pathogen and related Pseudogymnoascus species [38].

2.6. GC Identification of VOC Components and Biomarkers

The Statistical analyses of e-nose, smellprint signatures, and principal component
analysis (PCA) data were carried out using Alphasoft v14.20 and AroChembase software
using methods described previously [38]. Individual peaks recorded in GC chromatograms
were tentatively identified based on comparisons of Kovat values, calculated for each
unknown bat VOC-component (KRI-t) present in bat air-sample headspace, with Kovat
values (KRI-v) of known compounds within the Kovats Retention Index (KRI) reference
library. These comparisons indicated potential identities of peak compounds, based on
the nearest matches of KRI values from among >83,000 compounds present in the KRI
reference library. In addition, Relevance Index (RI) values, indicating percentage probability
of identity match, based on Kovats values for specific compounds, were displayed with
GC-output data in association with KRI-t values of each tentative identity compound.
Statistical differences in quantities of individual VOCs detected for metabolomic analyses
were determined using SigmaPlot 14.5 (Inpixon, Palo Alto, CA, USA) with Kruskal–Wallis
one-way ANOVA on ranks followed by Dunn’s tests at (p < 0.01).

Gas chromatographic data used in identifying chemical biomarkers associated with
specific types of physiological activities of the three P. subflavus bat air-sample types were
collected primarily from handled bats collected from cave walls that were placed within
VOC-sampling chambers. The physiological biomarkers identified from bats removed from
cave walls and placed in VOC-sampling chambers included healthy biomarkers, active
field biomarkers, and bat-activity biomarkers. Some additional air samples, collected from
undisturbed bats only on cave walls were collected as controls to identify metabolomic
biomarkers, such as torpor biomarkers, only found in completely inactive, torpid bats that
were not handled.

2.7. Principal Component Analysis of E-Nose Data

Three-dimensional PCA was performed on e-nose sensor-response data derived from
whole-bat air samples to compare the relatedness between healthy and active field bats,
torpid, nonsymptomatic (healthy) bats, and torpid, symptomatic WNS-diseased bats based
on aroma signature patterns derived from e-nose sensor array output responses to VOC-
metabolite mixtures in headspace. Data used in PCA comparisons of the three P. subflavus
air sample types also included air samples collected from undisturbed bats on cave walls
in addition to samples collected from handled bats placed within VOC-sampling chambers.
These additional data of undisturbed cave-wall bats provided more evidence as controls to
demonstrate the effective discrimination of air sample types from bats in natural hibernac-
ula settings, not just in isolated, more controlled closed sampling chambers without access
to ambient cave air. PCA mapping distances between plot centers of data clusters of each
aroma class (bat-air sample type) were determined by pairwise comparisons of sample data
in all possible combinations. In addition, Pattern Discrimination Index (PDI), expressed
as a percentage difference between sample types, was calculated based on differences
in aroma smellprint patterns. PDI-values provided approximations of statistical level of
discrimination (p-values) between compared sample types.

3. Results

The output data from the dual-technology, Heracles II GC/E-nose instrument analysis
of whole-body VOC emission provided two types of chemical data that were useful in char-
acterizing the physiological states of P. subflavus bats under different physical environments
and levels of physical activity. Data from the dual-column GC FID detector provided gas
chromatographic data for identifying individual VOCs detected in the headspace of the
bat air-sampling chamber. Additional chemical data from the e-nose sensor array yielded
information specifying indications of chemical relatedness between VOCs present in air



Sensors 2022, 22, 1031 8 of 27

samples from the three P. subflavus sample types. Results from both chemical data types are
presented in the following, separate subsections.

3.1. Dual-Column GC Analyses

Fast-gas chromatographic analysis of headspace volatiles derived from bat whole-
body air samples of three types (healthy active field, torpid healthy cave, and torpid
Pd-infected cave bats) indicated significantly different numbers, molecular weights, and
quantities of VOCs, distinguishing the composition of VOC emissions from bats sampled
from different environments and having different physiological states. A comparison of
gas chromatograms, derived from the DB-5 column for each sample type, is provided with
numberings of major GC-peaks in Figure 2A–C. Differences in VOC profiles of each sample
type are demonstrated by vastly different patterns and distributions of chromatographic
peaks, peak areas, and retention times (RTs). The smallest number of major VOC peaks
was recorded for air samples from Pd-infected bats with WNS. All eight major peaks in the
chromatogram from diseased cave bats were clustered within a narrow range of 50–85 s
RTs, containing medium-sized VOCs in the molecular weight range of approximately
124–205 daltons (Figure 2A). The distribution of the largest eleven peaks of headspace
volatiles in the chromatogram for air samples from healthy torpid cave bats occurred
within a wider range of 15–95 d RTs, having a molecular weight range of 75–234 daltons
(Figure 2B). The widest distribution range and number of major VOC peaks was recorded
for healthy, active field bats with RTs ranging from 13–110 s, and a wider molecular weight
range of 72–280 daltons (Figure 2C). In all three bat sample types, the largest peaks (with
greatest peak areas) occurred in the mid-range of VOC molecular weights within the 50–67 s
RTs range using the DB-5 capillary column. Torpid bats, regardless of Pd-infection status,
exhibited lower numbers of major VOC peaks relative to physically active field bats.
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Figure 2. Gas chromatograms, derived from DB-5 column, displaying numbered major peaks
detected in whole-body VOC emissions from P. subflavus bats. (A) Pd-infected cave bats = Pd-
infected, WNS-symptomatic torpid bats with reduced physiologically activity, but with more frequent
arousal episodes due to dermatophytic, Pd-associated irritation (B) Healthy cave bat = physically
inactive, Pd-uninfected, torpid bats with greatly reduced physiological activity; and (C) Healthy field
bats = physically active foraging bats with full-range of metabolic activities.
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3.2. Chemical Analyses of Bat VOCs

The tentative chemical identities of VOCs detected in whole-body air samples obtained
from P. subflavus individuals (of three sample types) were determined by use of RTs in
combination with supporting reference data from the 83K+ compound KRI reference
library, compared with Kovats values established using 11-alkane reference standards, and
Relevance Index (RI) values, indicating percentage probability of identity matches with
known compounds. The tentative identities of best-match VOCs were selected (from a list
of possible matches) based on compounds for which the highest RI ranges (generally >90%
match at the top of the range) were calculated using data from both DB-5 and DB-1701
GC columns.

Peaks on GC chromatograms were designated as major or minor peaks with differ-
ent peak area ranges that varied depending on sample type. Major peaks were defined
for each sample type to include all peaks having the following approximate peak area
ranges: 120–4600 for active healthy field bats, 380–4400 for torpid healthy cave bats, and
220–1900 for torpid Pd-infected cave bats. All peaks with peak areas having less than
the minimum values, defined for the ranges of major peaks for each sample type, were
considered minor peaks.

The VOC profiles of active, healthy field bats, sampled outside of caves, consisted
of 16 major peaks on GC chromatograms with a wide range of RTs and representing
10 chemical classes (Table 1). Alkanes (25%) and ketones (19%) were the most frequent
VOC chemical classes represented by this sample type. On a peak area basis, the largest
VOC peaks consisted of alkane, benzene derivatives, terpene, and ketone chemical classes
in order of highest to lowest major peak area, respectively. Active field bats released
three chemical classes of VOCs with major peak areas which were not found as major-
emission VOCs from cave bats, either healthy or Pd-infected, including alcohols, amines,
and terpenes.

Table 1. Gas chromatographic data indicating tentative identities of whole-body VOC-metabolite
emissions associated with major peaks derived from active healthy, field tricolored bats (n = 4, N = 8).

Peak RT 1 Peak Area KRI-v 2 Tentative Identity CAS No. 3 KRI-t 4 RI Range 5 Chemical Class

1 13.6 646.3 414 Trimethylamine 75-50-3 425 82.5–91.0 Amine

2 14.3 127.4 431 Acetaldehyde 75-07-0 429 46.6–93.4 Aldehyde

Methanol 67-56-1 425 45.1–94.1 Alcohol

3 15.3 335.5 449 Ethanol 64-17-5 449 20.8–89.9 Alcohol

4 17.9 693.1 512 Acetone (propan-2-one) 67-64-1 498 76.9–94.4 Ketone

Propanal 123-38-6 499 77.7–92.9 Aldehyde

Ethanethiol 75-08-1 516 77.4–95.7 Thiol

5 21.3 516.0 590 S(+)-2-butanol 78-92-2 591 92.4–92.9 Alcohol

3-methylpentane 96-14-0 579 79.7–96.2 Alkane

6 26.5 161.3 656 Acetol (1-hydroxy-2-
propanone) 116-09-6 655 77.7–80.2 Ketone

3-methylfuran 930-27-8 630 75.3–90.0 Furan

7 30.0 614.4 697 Heptane 142-82-5 700 88.7–90.9 Alkane

3-ethylpentane 617-78-7 685 92.2–94.9 Alkane

8 50.4 1543.3 882 3-mercapto-4-methyl-
2-pentanone 75832-79-0 883 88.4–97.4 Ketone

2-methylbutanoic acid 116-53-0 872 82.4–98.2 Carboxylic acid

2-furanmethanol 98-00-0 860 81.9–97.6 Alcohol

9 58.9 2491.0 982 Phenol 108-95-2 986 93.7–96.1 Benzene alcohol
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Table 1. Cont.

Peak RT 1 Peak Area KRI-v 2 Tentative Identity CAS No. 3 KRI-t 4 RI Range 5 Chemical Class

Dimethylethylbenzene 98-06-6 990 92.7–94.5 Benzene
derivative

10 62.1 1959.5 1027 Limonene 138-86-3 1029 96.7–98.3 Cyclic
monoterpene

1-heptanethiol 1639-09-4 1021 96.9–98.5 Alkanethiol

11 63.3 3181.6 1045 5-ethylnonane 17302-12-4 1051 87.0–97.8 Alkane

1-methyl-4-
isopropenyl-1-
cyclohexene

138-86-3 1030 92.8–96.7 Cyclohexene,
monoterpene

12 64.8 4649.0 1067 2-methyldecane 6975-98-0 1064 94.8–99.7 Alkane

4-methyldecane 2847-72-5 1060 91.3–99.0 Alkane

13 65.9 1979.3 1084 3-methyldecane 13151-34-3 1071 89.8–97.4 Alkane

Undecane 1120-21-4 1100 90.6–95.9 Alkane

14 82.8 532.5 1402 δ-nonalactone 3301-94-8 1404 78.3–96.9 Lactone

Methyl eugenol 93-15-2 1404 79.2–93.1 Phenyl propene

15 95.0 975.5 1688 2-pentadecanol 1653-34-5 1710 94.33 Alcohol

Butyl cinnamate 538-65-8 1702 94.62 Ester

16 104.9 137.9 1919 Heptadecanal 629-90-3 1920 85.7–96.4 Aldehyde

Pentadecyl acetate 629-58-3 1907 68.2–97.7 Ester
1 Retention times (to 0.01 s, s.d. = 0.02) of VOCs present in major-peak whole-body emissions detected with a
10 m DB-5 column using GC-analysis parameters specified previously. 2 KRI-v = Kovats Retention Index known
values for specific VOC metabolites, represented by an individual peak and retention time for a 10 m DB-5 column
using 11-alkane (C7–C17) analytical reference-standard calibration. 3 CAS number = Chemical Abstracts Service
(CAS) Registry Number, unique numerical identifier. 4 KRI-t = Kovats Retention Index for tentative identify for
compounds; indicated as most probable identity based on closest KRI-values. 5 RI = Relevance Index, indicating
percentage probability of identity match, based on Kovats values for the specified tentative-identity reference
compounds, determined from dual-column data derived from 10 m DB-5 and DB-1701 columns with analytical
reference standards; NA = not available (due to limited data from all samples).

The tentative identities of the largest major VOC peaks (by peak area) found in volatile
emissions from active field bats potentially provided some indications of major metabolic
pathways associated with physical activity (such as flying), physiological processes oc-
curring in nontorpid states, and exposures to chemicals outside of the cave environment.
Three alkanes, 5-ethylnonane (Peak 11), 2-methyldecane (peak 12) and 3-methyldecane
(Peak 13), were the most abundant alkanes released from field bats. Heptane (peak 7) was
a low molecular weight alkane (RT = 30.0), discovered with a minor peak area, which was
only present in emissions from active healthy bats. The second most abundant major VOC
(peak 9) was tentatively identified as phenol, classified as an alkane. A benzene alcohol,
phenol (peak 9), exhibited the highest peak height (among all peaks in the health field-bat
VOC profile) and occurred among the largest peak-area mid-range molecular weight VOCs
at RT = 58.9. Limonene (peak 10), a cyclic monoterpene, is another major-peak volatile
found in the VOC emissions of active bats. The other healthy field bat major-peak VOC
was 3-mercapto-4-methyl-2-pentanone (peak 8), an unusual sulfur-containing ketone. The
two largest molecular weight VOCs discovered in field bats was 2-pentadecanol (Peak
15), a long-chain secondary alcohol, and heptadecanal (peak 16), an aliphatic long-chain
fatty aldehyde.

Healthy, torpid cave bats exhibited VOC profiles that were different from those of
active, healthy field bats. Chromatograms of inactive, torpid cave bats contained 11 major
peaks, over a wide range of RTs and molecular weights, but represented by only six chemical
classes (Table 2). Alkanes were the most frequent chemical class represented among major
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peaks, accounting for 45% of total VOC emissions. The largest VOC peaks (on a peak area
basis) consisted of alkane, ketone, and benzene alcohol, chemical classes from highest to
lowest major peak area, respectively. Torpid cave bats released a single compound in the
ether chemical class that were not found among major VOC-emissions from active field bats
or Pd-infected. In addition, two major peaks not found among major VOC emissions from
active field bats or Pd-infected bats include a unique alkane, 2-methylheptane (peak 3), and
a lactone, δ-dodecalactone (peak 11).

Five alkanes, including 2-methyldecane (peak 7), 5-ethylnonane (peak 6), 3-methylhep-
tane (peak 3), 3-methyldecane (peak 8), and undecane (peak 9) comprise the largest major
VOC peaks (by peak area) found among volatile emissions from healthy torpid cave bats.
The major alkane 3-methylheptane (peak 3, RT = 37.1) was unique to active field bats.
The next most abundant VOC released from healthy cave bats was a ketone, 3-mercapto-
4-methyl-2-pentanone (peak 4). Only a single aromatic compound, phenol (peak 5), a
benzene alcohol, was found among major-peaks VOCs. The majority of the seven major-
peak (by area) VOC emissions from torpid, healthy cave bats were medium molecular
weight compounds (peaks 4–8) in the middle region (RTs = 50–67) of GC chromatograms.
Two additional lower molecular weight, major-peak VOCs also were discovered, including
a tertiary alkyl ether, t-butylmethylether (peak 2) and peak 3, described previously.

Symptomatic, WNS-diseased bats with noticeable Pd-infections and white mycelial
masses on the skin surfaces near exposed areas of the muzzle and ears exhibited a signifi-
cantly reduced VOC profile compared to healthy bats. Only 8 major peaks were observed
in gas chromatograms of inactive, torpid infected cave bats. All peaks were medium
molecular weight VOCs in a narrow wide range (RTs of 50–83) and represented by only five
chemical classes, including alkanes, ketones, benzene alcohol, ester, and lactone (Table 3).
Alkanes were the most frequent chemical class represented among major peaks, accounting
for 50% of total VOC emissions. The largest VOC peaks (on a peak area basis) consisted of
alkane, ketone, and benzene alcohol chemical classes from highest to lowest major peak
area, respectively.

Four alkanes comprised the largest major VOC peaks (by peak area) found among
volatile emissions from torpid WNS-diseased bats, with tentative identities of 2-methylde-
cane (peak 4), 5-ethylnonane (peak 3), 3-methyldecane (peak 5), and undecane (peak 6),
from highest to lowest peak areas, respectively. Like healthy cave bats, WNS-diseased bat
emissions contained undecane (peak 6), but at a mean level only about half the level found
in healthy cave bats. The next most abundant VOC released from healthy cave bats was
a ketone, 3-mercapto-4-methyl-2-pentanone (peak 1). A single benzene alcohol, phenol
(peak 2), was the third most abundant VOC tentatively identified among the major-peak
emissions in diseased bats.

A comparison of the total major and minor VOC emissions detected from the three
sample types is summarized by chemical classes in Table 4. A total of 10 chemical classes of
VOCs were tentatively identified among the major peaks of VOCs recorded in gas chro-
matograms of all sample types. These data provided indications of significant differences
in VOC composition and physiological states by sample type.

The abundance and diversity of different major and minor VOCs present in whole-
body emissions decreased in magnitude (from higher to lower) in healthy field bats, torpid
healthy cave bats, and torpid WNS-diseased cave bats, respectively. Consequently, healthy
cave bats emitted 14.9% fewer detectable total VOCs than healthy field bats, and torpid
WNS-diseased bats emitted 25.8% fewer detectable total VOCs than torpid healthy cave
bats. Thus, torpid WNS-diseased bats released 36.8% fewer detectable total VOC emissions
than healthy field bats.
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Table 2. Gas chromatographic data indicating the tentative identities of whole-body VOC-metabolite
emissions associated with major peaks derived from inactive (mostly torpid) healthy, intracave
tricolored bats (n = 15, N = 30).

Peak RT 1 Peak Area KRI-v 2 Tentative Identity CAS No. 3 KRI-t 4 RI Range 5 Chemical Class

1 15.3 392.9 453 Propenal 107-02-8 450 60.0–94.4 Aldehyde

Methanethiol 74-93-1 449 60.4–89.3 Thiol

2-methylbutane 78-78-4 464 60.0–89.3 Alkane

2 19.6 931.1 551 t-butylmethylether 1634-04-4 546 77.5–97.2 Ether

2-methylpentane 107-83-5 560 60.3–96.0 Alkane

Cyclopentane 287-92-3 567 76.2–95.6 Cycloalkane

3 37.1 1840.7 758 2-methylheptane 592-27-8 765 94.8–98.1 Alkane

4-methylheptane 589-53-7 767 90.3–98.2 Alkane

4 50.4 2806.1 882 3-mercapto-4-methyl-
2-pentanone 75832-79-0 883 92.2–99.0 Ketone

2-methylbutanoic acid 116-53-0 872 70.3–96.9 Carboxylic acid

Pentanoic acid 109-52-4 903 88.9–95.5 Carboxylic acid

5 58.9 1413.8 982 Phenol 108-95-2 986 88.0–99.2 Benzene alcohol

Dimethylethylbenzene 98-06-6 990 91.7–96.5 Benzene deriv.

6 63.3 3430.5 1045 5-ethylnonane 17302-12-4 1051 92.2–96.7 Alkane

4-ethylnonane 5911-05-7 1053 91.8–96.9 Alkane

7 64.8 4423.9 1067 2-methyldecane 6975-98-0 1064 92.2–98.8 Alkane

4-methyldecane 2847-72-5 1060 91.8–98.1 Alkane

5-methyldecane 13151-35-4 1058 91.2–97.5 Alkane

8 66.0 1717.6 1084 3-methyldecane 13151-34-3 1071 88.4–96.7 Alkane

γ-terpinene 99-85-4 1060 88.0–96.3 Monoterpene

9 67.2 622.6 1103 Undecane 1120-21-4 1100 86.0–98.0 Alkane

α-terpinolene 586-62-9 1088 85.3–98.0 Menthane
monoterpenoid

2-isopropyl-3-
methoxypyrazine 25773-40-4 1097 86.0–97.4 Pyrazine

10 82.8 446.6 1402 δ-nonalactone 3301-94-8 1404 69.7–92.6 Lactone

Methyl eugenol 93-15-2 1404 70.2–93.5 Phenyl propene

Histamine 51-45-6 1415 13.1–90.9 Histamine

11 95.0 384.6 1688 δ-dodecalactone 713-95-1 1715 93.3–97.3 Lactone

Dodecan-4-olide 18679-18-0 1677 94.6–98.7 Lactone
1 Retention times (to 0.01 s, s.d. = 0.02) of VOCs present in major-peak whole-body emissions detected with a 10 m
DB-5 column using GC-analysis parameters specified previously. 2 KRI-v = Kovats Retention Index for specific
volatile metabolite represented by the individual peak and retention time for a 10 m DB-5 column using 11-alkane
(C7–C17) analytical reference-standard calibration. 3 CAS number = Chemical Abstracts Service (CAS) Registry
Number, unique numerical identifier. 4 KRI-t = Kovats Retention Index for tentative identify for compounds;
indicated as most probable identity based on closest KRI-values. 5 RI = Relevance Index, indicating percentage
probability of identity match, based on Kovats values for the specified tentative-identity reference compounds,
determined from dual-column data derived from 10 m DB-5 and DB-1701 columns with analytical reference
standards; NA = not available (due to limited data from all samples).
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Table 3. Gas chromatographic data indicating the tentative identities of whole-body VOC-metabolite
emissions associated with major peaks derived from inactive Pd-infected (symptomatic WNS-
diseased), intracave tricolored bats (n = 9, N = 18).

Peak RT 1 Peak Area KRI-v 2 Tentative Identity CAS No. 3 KRI-t 4 RI Range 5 Chemical Class

1 50.4 1129.9 882 3-mercapto-4-methyl-
2-pentanone 75832-79-0 883 83.5–92.7 Ketone

2-methylbutanoic acid 116-53-0 872 91.2–96.6 Carboxylic acid

2 58.9 904.3 982 Phenol 108-95-2 986 93.3–99.0 Benzene alcohol

1-octen-3-one 4312-99-6 979 87.4–98.6 Ketone

Dimethyl trisulfide 3658-80-8 970 93.1–97.7 Sulfide

3 63.3 1468.2 1045 5-ethylnonane 17302-12-4 1051 89.6–94.2 Alkane

4-ethylnonane 45911-05-7 1053 89.2–93.8 Alkane

4 64.8 1964.9 1067 2-methyldecane 6975-98-0 1064 89.5–99.1 Alkane

4-methyldecane 2847-72-5 1060 88.9–98.5 Alkane

5-methyldecane 13151-35-4 1058 88.3–97.8 Alkane

5 66.0 758.2 1084 3-methyldecane 13151-34-3 1071 91.2–95.8 Alkane

Butylbenzene 104-51-8 1058 85.8–93.9 Benzene
derivative

6 67.2 310.1 1103 Undecane 1120-21-4 1100 80.3–96.0 Alkane

cis-decalin 493-01-6 1106 78.6–97.0 Bicyclic HC

7 77.5 221.6 1292 Hexyl pentanoate 1117-59-5 1293 98.37 Ester

1-p-menthen-8-thiol 71159-90-5 1285 62.3–98.2 Thiol

Tridecane 629-50-5 1300 71.5–98.6 Alkane

8 82.8 454.6 1405 δ-nonalactone 3301-94-8 1404 75.2–96.0 Lactone

Methyl eugenol 93-15-2 1404 75.5–96.5 Phenyl propene
1 Retention times (to 0.01 s, s.d. = 0.02) of VOCs present in major-peak whole-body emissions detected with a 10 m
DB-5 column using GC-analysis parameters specified previously. 2 KRI-v = Kovats Retention Index for specific
volatile metabolite represented by the individual peak and retention time for a 10 m DB-5 column using 11-alkane
(C7–C17) analytical reference-standard calibration. 3 CAS number = Chemical Abstracts Service (CAS) Registry
Number, unique numerical identifier. 4 KRI-t = Kovats Retention Index for tentative identify for compounds;
indicated as most probable identity based on closest KRI-values. 5 RI = Relevance Index, indicating percentage
probability of identity match, based on Kovats values for the specified tentative-identity reference compounds,
determined from dual-column data derived from 10 m DB-5 and DB-1701 columns with analytical reference
standards; NA = not available (due to limited data from all samples).

The composition (or diversity) of VOCs found in whole-body emissions from bats
of the three sample types also varied considerably. Healthy field bats exhibited major
VOC emissions consisting of compounds from at least 8 chemical classes, compared to
6 chemical classes represented in major VOC emissions from torpid healthy cave bats, and
only 5 chemical classes represented in major VOC emissions from torpid WNS-diseased
bats. All three sample types emitted major VOCs in common from four chemical classes
including alkanes, benzene alcohols, and ketones, and lactones. Torpid healthy and torpid
WNS-diseased bats had unique ketone (chemical class) major peak emissions that were
absent in healthy field bats. A unique ether, 2-butylmethylether (peak 2) was only found in
VOC emissions from torpid healthy cave bats, but not torpid diseased bats or healthy field
bats. A specific lactone, δ-dodecalactone (peak 11), also was present only in torpid healthy
cave bats, but not in heathy or diseased bats. Three alcohols were uniquely produced
only by active field bats which included ethanol (peak 3), S(+)-2-butanol (peak 5), and
2-pentadecanol (peak 15). Torpid WNS-diseased bats produced an ester, hexyl pentanoate
(peak 7) that was only found in Pd-infected samples.
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Table 4. Summary of major and minor whole-body VOC emissions from healthy active extracave
(field) bats, healthy inactive intracave bats, and WNS-diseased intracave tricolored bats.

VOC Chemical Classes 1 Healthy Field 2 Healthy Cave 2 Infected Cave 2

Alcohols 3 - -
Aldehydes 2 1 -

Alkanes 4 5 4
Amines 1 - -

Benzene alcohols 1 1 1
Esters - - 1
Ethers - 1 -

Ketones 3 1 1
Lactones 1 2 1
Terpenes 1 - -

Totals:
Major VOC peaks 16 11 8
Minor VOC peaks 98 86 64

All VOC peaks 114 97 72
1 Chemical classes of VOCs detected in whole-body emissions from bats based on the primary functional groups
of individual compounds present in the sample headspace. 2 Tricolored bat whole-body air sample types (aroma
classes): Healthy field bats = physically active foraging bats with full-range of metabolic activities; Healthy cave
bat = physically inactive, Pd-uninfected, torpid bats with greatly reduced physiological activity; Pd-infected
cave bats = Pd-infected, WNS-symptomatic torpid bats with reduced physiologically activity, but more frequent
arousal episodes due to dermatophytic, Pd-associated irritation.

Some additional manmade compounds from extra-cave sources, not derived from bat
metabolic pathways, also were found among minor peak area volatile emissions from bats,
particularly including different types and classes of agricultural pesticides. Pesticide VOC
emissions were discovered at different levels in bats from all three sample types (Table 5).
The highest levels of pesticide emissions, based on GC chromatogram peak areas, occurred
in healthy, active field bats outside of caves, presumably having greater exposure to various
pesticides in the environment. Lower quantities of pesticides were found in VOC emissions
from inactive (torpid) cave bats. Pesticide levels in VOC emissions from healthy cave bats
were consistently higher than in Pd-infected cave bats. Pesticides occurred less commonly
in symptomatic WNS-diseased bats.

Most pesticides discovered among bat volatile emissions were insecticides and her-
bicides. The seven insecticides detected were tentatively identified as organophosphates,
phosphorothioates, and organothiophosphates, which are effective acetylcholinesterase
inhibitors used to kill agricultural insects and occasionally mite pests. Five herbicides were
identified as triazine and thiocarbamate herbicides, having photosynthesis inhibitor activity
and preemergence growth inhibitor modes of action, respectively. A single carbamate ester
herbicide with selective growth inhibition properties to graminaceous weeds was also
discovered. No other pesticide types were detected.

All pesticides detected among bat volatile emissions were predominantly higher
molecular weight VOCs (RTs = 76–98) with relatively low volatility.

3.3. Identification of Chemical Biomarkers of Physiological States

Analysis of the specific chemical composition of VOC emissions detected in each
sample type were used to help identify and characterize individual bat VOC metabolites as
potential chemical biomarkers useful as indicators of bat physiological states or metabolic
conditions depending on physical activity, environmental location, and WNS-disease (Pd-
infection) status.

Biomarker VOC metabolites, tentatively identified within GC chromatograms derived
from analysis of volatile emissions from healthy field, healthy cave, and Pd-infected bats,
were found to be associated with specific types of bat physiological states (defined above)
as summarized in Table 6. Thirteen total VOC biomarkers were detected as six low to
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moderate molecular weight compounds (peaks 1–6) with (RTs = 14–46), and seven higher
molecular weight compounds (peaks 7–13), with (RTs = 48–105).

Table 5. Agricultural pesticides present in whole-body VOC-emissions from healthy active extracave
(field) bats, healthy inactive intracave bats, and WNS-diseased intracave tricolored bats.

GC Peak Areas Range/(no. Bats) 3

P. subflavus Bat Type

RT 1 Pesticides 2 RI Range Chemical Classes Pesticide Types Healthy
Field

Healthy
Cave

Infected
Cave

75.6 Dichlorvos 86.0–98.5 Organophosphate Insecticide - 80–145 (7) 64–113 (2)
88.0 Molinate 63.1–97.2 Thiocarbamate Herbicide 137–552 (1) 75–95(2) -
91.8 Demeton-O 88.4–94.8 Phosphorothioate Insecticide 140–385 (1) 59–60 (2) -
93.6 Dicrotophos 91.9–97.7 Organophosphate Insecticide 51–235 (2) 66–107(4) -

Carbanilic acid,
isopropyl ester 74.4–99.4 Carbamate ester Herbicide 161–235 (1) 51–93 (6) -

Sulfotep 91.4–94.0 Organothiophosphate Insecticide - - 70–104 (2)
95.0 Atraton 53.7–96.9 Diaminotriazine Herbicide - 64–665 (2) 112–160 (3)

Phorate 55.4–92.3 Organothiophosphate Insecticide 70–92 (1) 409–470 (3) 83–428 (3)
96.8 Atrazine 71.2–97.8 Triazine Herbicide - 55–58 (1) -

trans-Diallate 46.9–97.2 Thiocarbamate Herbicide - 56–264 (5) 60–86(3)
Dimethoate 59.6–81.4 Organophosphate Insecticide 871–1521 (1) 56–81 (1) 56–68 (3)

98.2 Propazine 77.9–97.0 Chloro-s-triazine Herbicide 51–54 (1) - -
Delnav II 78.4–98.3 Organophosphate Insecticide - 57–174 (2) -

1 Retention times (to 0.01 s, s.d. = 0.02) for pesticide VOCs present in minor-peak whole-body emissions detected
with a 10 m DB-5 column using GC-analysis parameters specified previously. 2 Pesticide common chemical names.
3 Peak areas are represented as ranges of areas (under each chromatogram peak curve) for the given number of
bats (indicated in parentheses).

Table 6. Biomarker metabolites of tricolored bats, indicative of physiological states based on whole-
body minor-peak VOC-emissions, associated with healthy active extracave (field) bats (n = 4, N = 8),
healthy inactive intracave bats (n = 15, N = 30), and WNS-diseased intracave bats n = 9, N = 18).

Tentative Identity of P. subflavus VOC Biomarkers

Peak RT 1 KRI-v 2 Healthy Field Healthy Cave Pd-Infected Cave CAS no. 3 RI Range 4 Chemical Class

1 14.3 431 Acetaldehyde - - 75-07-0 46.6–93.4 Aldehyde

Methanol - - 67-56-1 45.1–94.1 Alcohol

2 15.3 449 Ethanol Propenal - 64-17-5
123-38-6

20.8–89.9
60.0–94.4

Alcohol
Aldehyde

- Methanethiol - 74-93-1 60.4–89.3 Thiol

- 2-Methylbutane - 78-78-4 60.0–89.3 Alkane

3 26.5 656 Acetol - - 116-09-6 77.7–80.2 Ketone

3-methylfuran - - 930-27-8 75.3–90.0 Furan

4 27.6 667 2-methyl
hexane - - 591-76-4 61.1–74.4 Alkane

Cyclohexane - - 110-82-7 61.4–73.8 Cycloalkane

5 42.7 810 - 3-hexanol Propyl propanoate 623-37-0
106-36-5

78.5–92.7
93.8–96.7

Alcohol
Ester

- 2-hexanol - 626-93-7 78.1–93.2 Alcohol

6 45.7 839 - Ethylcyclohexane Ethylcyclohexane 1678-91-7 49.8–96.7 Cycloalkane

- Propylcyclo-
pentane Propylcyclo-pentane 2040-96-2 50.3–97.9 Cycloalkane
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Table 6. Cont.

Tentative Identity of P. subflavus VOC Biomarkers

Peak RT 1 KRI-v 2 Healthy Field Healthy Cave Pd-Infected Cave CAS no. 3 RI Range 4 Chemical Class

7 48.1 862 4-ethylheptane 4-ethylheptane Ethyl benzene 2216-32-2
100-41-4

56.0–98.0
65.3–95.7

Alkane
Benzene deriv.

8 56.3 948 Glycerol Aniline - 56-81-5
62-53-3

82.5–92.2
77.2–93.9

Polyol
Analine

δ-valerolactone
3-methyl-3-

sulfanylbutanol-
1-ol

-
542-28-9
34300-94-

2

64.7–84.6
75.9–93.4

Lactone
Alcohol

9 60.7 1006
2-(2-

ethoxyethoxy)
ethanol

2,4-
heptadienal

2-(2-ethoxyethoxy)
ethanol

111-90-0
5910-85-0

60.8–96.5
78.68–98.8

Alcohol
Aldehyde

2,4-heptadienal
(E,E)- - 2,4-heptadienal (E,Z) 4313-03-5

4313-02-4

60.6–96.7
78.78–
99.27

Aldehydes

10 72.4 1192 Ethyl octanoate 2-decanone,
3-decanol

5-ethyl-3-hydroxy-4-
methyl-2(5H)-

furanone

106-32-1
693-54-9

1565-81-7
698-10-2

94.2–95.5
94.8
94.5

75.4–98.2

Ester
Ketone
Alcohol

Furanone

Z-3-hexen-1-ol,
butanoate - 2-pentyl-pyridine

16491-36-
4

2294-76-0

94.55–95.3
77.4–96.9

Ester
Pyridine

11 86.2 1479 γ-decalactone γ-decalactone 2-methyl-
tetradecane

706-14-9
1560-95-8

67.5–96.1
65.7–96.4

Ketone
Alkane

4-methyl-
tetradecane - 4-methyl-

tetradecane
25117-24-

2 65.7–93.5 Alkane

12 98.6 1769 4-
ethylhexadecane - - NA 91.0–97.9 Alkane

7-methylhepta-
decane - - 20959-33-

5 91.0–97.9 Alkane

13 104.9 1919 Heptadecanal - - 629-90-3 85.7–96.4 Aldehyde

Pentadecyl
acetate - - 629-58-3 68.2–97.7 Ester

1 Retention times (to 0.01 s, s.d. = 0.02) of VOCs present in major-peak whole-body emissions detected with a
10 m DB-5 column using GC-analysis parameters specified previously. 2 KRI-v = Kovats Retention Index for
specific volatile metabolite represented by the individual peak and retention time for a 10 m DB-5 column using
11-alkane (C7–C17) analytical reference-standard calibration. 3 CAS number = Chemical Abstracts Service (CAS)
Registry Number, unique numerical identifier, na = not available. 4 RI = Relevance Index, indicating percentage
probability of identity match, based on Kovats values for the specified tentative-identity reference compounds,
determined from dual-column data derived from 10 m DB-5 and DB-1701 columns with analytical reference
standards; NA = not available (due to limited data from all samples).

The VOC biomarkers identified in association with different physiological states were
categorized into two major groups, referred to here as: (1) activity-specific biomarkers
and (2) metabolomic biomarkers. The subcategories of VOC biomarkers identified within
each of the two groups are specified, along with indications of detection within the VOC
emissions of each sample type, within Table 7. To improve indications and comparisons of
physiological states, biomarker data were collected from bats (removed from cave walls)
and handled bats placed within VOC sampling jars, as well as from undisturbed wall
(control) bats by which VOC emissions were taken in the very close vicinity of these bats to
avoid handling disturbance.
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Table 7. VOC biomarkers types identified from whole-body VOC-emissions from healthy active
extracave (field) bats, healthy inactive intracave bats, and WNS-diseased intracave tricolored bats.

Mean GC Peak Areas/no. Bats 4

Handled Bats (Removed from Cave Wall) Undisturbed Wall Bats 3

Biomarker
Type 1 No. 2 RT 3 Healthy Field

n = 4
Healthy Cave

n = 15
Infected Cave

n = 9
Healthy Cave

n = 10
Infected Cave

n = 10

Activity
specific

Active Field 1 14.3 127.4 a 29.8 b - b 27.6 b - b
2 26.5 121.0 a 1.8 b - b 73.2 ab - b
3 27.6 272.0 a - b - b 147.3 b - b
4 98.6 46.4 a 13.4 b - b - b - b
5 104.9 120.6 a 56.3 b 2.9 b - b 2.8 b

Torpor 1 42.7 - c 224.3 a 112.6 bc 292.8 ab 36.9 c
2 45.7 - b 58.2 a 32.0 ab 121.4 a 5.1 b

Metabolomic
Healthy 1 15.3 335.5 ab 392.9 a - c 201.5 b 44.9 c

2 48.1 56.0 a 70.7 a 60.6 ab 71.9 a 2.7 b
3 56.3 149.9 a 63.7 a 5.9 b 62.9 a - b
4 86.2 253.3 a 103.7 ab 61.4 b 108.6 ab 4.0 c

Conscious
activity 1 60.7 189.0 a 6.9 b 83.3 a 67.8 b 8.4 b

2 72.4 772.0 a 19.7 ab 77.5 a 16.8 ab - b
1 Retention times (to 0.01 s, s.d. = 0.02) of VOCs present in whole-body emissions detected with a 10 m DB-5
column using GC-analysis parameters specified previously. 2 Biomarker number (in numerical order by retention
times). 3 Retention times (to 0.01 s) for biomarker VOCs present in minor-peak, whole-body emissions detected
with a 10 m DB-5 column using GC-analysis parameters specified previously. 4 Peak areas are represented as
ranges of areas (under each chromatogram peak curve) for the given number of bats (indicated in parentheses).
Data were analyzed using Kruskal–Wallis one-way ANOVA on ranks. Mean GC peak area values within each
data row followed by the same letter are not significantly different according to Dunn’s tests at (p < 0.01).

Activity-specific biomarkers are VOCs metabolites that are only found in bats with cer-
tain specific and defined physiological states based on physical or metabolic activities. Two
types of activity-specific biomarkers, including active-field (AF) biomarkers and torpor (T)
biomarkers, were identified as those VOCs uniquely found in the volatile emissions from
bats recently engaged in physical activity (flying, feeding, grooming, and other conscious ac-
tivities) or bats primarily in an inactive and unconscious (torpid) state, respectively. Healthy
field bats were the most consistent sample group that released AF-biomarker metabolites
in their VOC emissions. AF-biomarkers were absent for WNS-diseased bats, whether
handled or undisturbed, and from healthy cave bats handled during VOC sampling.
Volatile emissions from undisturbed, healthy cave-wall bats only occasionally contained
active-field biomarkers, presumably associated with intermittent consciousness or physical
activity. Five AF-biomarkers were detected and tentatively identified as acetaldehyde,
acetol, 2-methyhexane, 4-ethylhexadecane, and heptadecanal which are members of the
aldehyde, ketone, alkanes, and aldehyde chemical classes, respectively.

Torpor biomarkers were always absent from the VOC emissions of healthy field bats
but were consistently found in volatile emissions of all unconscious cave bats in torpid
state, whether healthy or WNS-disease, and collected from handled or undisturbed bats
during VOC sampling. Two torpor biomarkers were tentatively identified as 3-hexanol and
ethyl cyclohexane from alcohol and cycloalkane chemical classes, respectively.

Metabolomic biomarkers are VOC metabolites produced and released at varying
levels from bats of different defined physiological states. Two types of metabolomic
biomarkers were detected, including healthy (H) biomarkers and conscious activity (CA)
biomarkers. H-biomarkers are defined as volatile metabolites released in greater quantities
within VOC emissions from healthy bats, whether from field or cave bats. By contrast,
Pd-infected cave bats released either no H-biomarkers or significantly lower quantities of
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healthy biomarkers in their whole-body emissions than healthy bats (producing 2–4 times
greater quantities). Four healthy-bat H-biomarkers were tentatively identified as propenal,
4-ethylheptane, glycerol, and γ-decalactone that are from aldehyde, alkane, polyol, and
lactone chemical classes.

Another metabolomic biomarker type, referred to here as the conscious activity (CA)
biomarkers, provided indications of consciousness or awake activity resulting from physio-
logically active states associated with either active field bats or episodes of consciousness
occurring during periods of arousal between torpid states in cave bats. The emissions
of CA-biomarker VOCs were highest in healthy field bats that were awake continuously
(lacking torpid states). Cave bats with predominant torpid states with occasional episodes
of arousal exhibited significantly lower levels of these VOCs. Healthy bats, handled during
capture for sampling, showed similar levels of CA-biomarkers as undisturbed healthy
wall bats. However, WNS-diseased bats, handled during capture, exhibited significantly
higher levels of CA-biomarkers than undisturbed diseased wall bats. Two CA-biomarkers
were identified as 2-(2-ethoxyethoxy) ethanol, ethyl octanoate, belonging to the alcohol
(derivatives), and ester chemical classes.

3.4. Principal Component Analysis

The multisensory output data from the Heracles II MOS e-nose sensor array were
plotted to form an aromaplot for each of the three sample types. These data were analyzed
by three-dimensional PCA to determine how well sample types were discriminated by
principal components within VOC emissions and for determining the tightness of data
clustering by plotted data points within each sample type or aroma class (Figure 3). VOC
emissions from healthy field bats resulted in a wide range distribution of data points,
indicating the greatest variability of VOC components in sampled air in field bats compared
to cave bats. Data point clusters of plotted data for infected and healthy cave bats were
considerably tighter with a narrower range of VOC composition relative to field bats.
Discrimination Index (DI) indicates the relative strength of discrimination between all
sample types included in the PCA test. This displayed discriminate index value (DI = 49),
validated by Alphasoft V14.20 software, indicated a 3-d PCA test at p ≤ 0.01 level of
significance in discriminating between sample types.

The percentages of total variance, accounting for the variability explained by each
orthogonal principal component in the PCA, were as follows: PC 1 = 74.8%; PC 2 = 13.7%;
and PC 3 = 3.8%. Thus, most of the variability in the PCA was accounted for by PC 1
(x-axis), whereas PC 2 (y-axis) and PC 3 (z-axis) accounted for only a minor proportion
(17.5%) of the total data variance.

The chemical relatedness between VOC composition of whole-body volatile emissions
from the three sample types (aroma classes) were determined using the quantitative sta-
tistical indicator, pattern discrimination index (PDI), by which the percentage differences
in chemical relatedness between aroma classes were determined in all possible combina-
tions. These PDI results are presented in Table 8. PCA distances indicate actual aromaplot
distances between data cluster centers of aroma classes defined by PCA.

The biggest difference (77.1%) in chemical relatedness between headspace volatiles,
indicated by PDI, occurred between Pd-infected cave bats and healthy cave bats. The
next highest chemical difference (66.8%) in VOC composition was found between volatile
emissions of healthy field bats and Pd-infected cave bats. The lowest percent difference
(37.7%) in VOC emissions was found between healthy field bats and healthy cave bats.

Distances between plot centers of data clusters between aroma classes indicated
similar results although plotting distance between data clusters of healthy field bats and
Pd-infected cave bats was greater than plotting distance between Pd-infected bats and
healthy cave bats. Nevertheless, these results are consistent in showing large differences
in VOC composition of healthy bats from diseased bats regardless of location (inside or
outside of the cave environment) and associated physiological states. Considerably more
data were collected from cave bats, both healthy and Pd-infected, relative to field bats
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due to the difficulty of live captures. However, the data clustering for field bats was
still relatively close despite the large diversity of ambient conditions of field capture sites
because ambient air was removed and replaced with zero air prior building headspace for
air sample collection.

Table 8. Chemical relatedness between electronic-nose VOC-profiles of P. subflavus bat whole-body
headspace volatiles analyzed by 3-d PCA with pattern discrimination index.

Aroma Class 1 1 Aroma Class 2 1 PCA Plot Distance 2 PDI (%) 3

Healthy field bats Pd-infected cave bats 14,021.01 69.83
Healthy cave bats 7889.59 37.73

Pd-infected cave bats Healthy cave bats 11,921.69 77.09
1 Bat whole-body air sample types (aroma classes): Healthy field bats = physically active foraging bats with
full-range of metabolic activities; Healthy cave bat = physically inactive, Pd-uninfected, torpid bats with greatly
reduced physiological activity; Pd-infected cave bats = Pd-infected, WNS-symptomatic torpid bats with reduced
physiologically activity, but more frequent arousal episodes due to dermatophytic, Pd-associated irritation. 2 PCA
distances indicate actual mapping distances between plot centers of aroma class data clusters defined by 3-d
principal component analysis (PCA) aromaplot. 3 Pattern discrimination index (PDI) values indicate percentage
differences in VOC-aroma profile chemical composition determined by pairwise comparisons of aroma class
(sample types) based on PCA statistical tests of data derived from the e-nose multisensor array.
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Differences in PDI values, determined by pairwise comparisons between aroma classes,
provided further confirmations of chemical data showing contrasts in VOC emissions,
tentatively identified by GC analysis data (for each sample type), and a different measure
of WNS-disease effects on alterations of bat physiology in the change from healthy to
WNS-disease states and the change from active (field) to torpid (cave) physiological states.

4. Discussion

The VOC profiles determined from whole-body volatile emissions of individual bats
varied widely depending on physiological states, defined by levels of physical activity
(active vs. torpid), environment (inside or outside of caves), and WNS-disease status.
Volatile emissions from physically active healthy field bats contained 114 total VOCs with
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a wide range of molecular weights and consisted of 16 major components from at least
8 chemical classes. The diversity of VOCs in emissions from primarily torpid cave bats
was substantially reduced with healthy individuals emitting 97 total detectable VOCs
and Pd-infected individuals emitting only 72 detectable total VOCs. These emissions
included 11 major components from 6 chemical classes for healthy torpid bats and 8 major
components from 5 chemical classes in WNS-diseased torpid bats. The greater abundance
and diversity of VOC emissions detected in healthy active bats, compared to torpid cave
bats, suggest differences in levels of physiological activities. The attenuation of many
metabolic pathways that occur as bats enter the torpid state for hibernation explains much
of the reduction in VOC emissions from torpid bats compared to active bats. Active bats
have additional metabolic pathways operating in association with flying and feeding
(muscular) activities which are absent in sedentary, torpid bats that have only diminished
basal metabolic activities in operation. Field bats also tend to show greater exposure to
outdoor environmental pollutants and agricultural pesticides.

The most common VOC type collected in air samples from all sample types were
in the alkane chemical class. Alkanes accounted for a large majority of VOCs detected
in volatile emissions from healthy field bats (25%), healthy cave bats (45%), and WNS-
diseased bats (50%), respectively. Among the alkane VOC emissions, heptane was unique
to active field bats, while 2-methylheptane was unique to healthy cave bats. Three alkanes,
(5-ethylnonane, 2-methyldecane, 3-methyldecane), were produced in common within VOC
emissions from all three groups, but infected bats had much lower emissions of these three
alkanes than healthy bats from both field and cave locations. Undecane, found only in
volatile emissions from torpid cave bats, was released by healthy bats at twice the levels of
Pd-infected bats.

Most alkanes detected among all samples were either methylated or ethylated alkanes.
There is some indication that the degree of methylation in alkane emissions in mammals
may be an indication or measure of host immune activity. Higher emissions of methylated
alkanes have been associated with presence of mammalian immune responses to diseases.
Lawal et al. [52] studied VOC signatures from volatile emissions derived from the co-culture
of lung epithelial cell line with bacterial pathogen Pseudomonas aeruginosa and found several
alkanes associated with immune responses. Yang et al. [53] found that lipid peroxidation-
induced pentane and C5–C7 methylated alkanes constituted a specific fingerprint in the
breath of pneumoconiosis patients. If induction of alkane emissions as an indicator of
immune operation applies to similar physiological activities in Pd-infected bats, the higher
emissions of methylated and ethylated alkanes in active bats might provide a chemical
indicator of greater immune activity operating in healthy field bats than are measured in
torpid WNS-diseased bats with altered immune responses.

Alkanes and methylated alkanes also have been associated with oxidative stress and
lipid peroxidation [54–56]. Moore et al. [57] provided evidence that oxidative stress was
a significant factor contributing to WNS-associated mortality. Lawal et al. [52] found
several alkanes including decane, hexane, octane and cyclohexane that were elevated when
epithelial cells were exposed to oxidative stress. Phillips et al. [55] developed the Breath
Methylated Alkane Contour (BMAC) 3-d plot of lung alveolar C4–C20 mono-methylated
alkanes produced by lipid peroxidation (oxidative stress) which could be used as a model
to study host responses to certain diseases involving oxidative stress.

Acetone (propan-2-one) derived from fatty acid oxidation can be converted in the
liver to form glucose for respiration or stored as glycogen. The rate of conversion of fat
to carbohydrate (fatty acid oxidation→ acetoacetate→ acetone→ glucose) normally is
determined by levels of physical activity in healthy bats in the absence of starvation. Serum
acetone rises proportionally to intensity of physical activity and peaks 15–30 min after
cessation of exercise [58]. This explains why acetone (Peak 4, RT = 17.9) was detected
in VOC emissions of field bats (shortly after capture) but absent in torpid cave bats. At
low acetone concentrations (under normal physiologic situations), acetone is converted
to glucose, but at high concentrations (hyperketonemia), acetone is mainly converted to
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acetate, resulting in ketoacidosis. Torpid cave bats have low metabolic rates and consume
fat reserves slowly despite possible starvation conditions. Normally, serum acetone levels
in conscious bats in a state of starvation would be expected to be elevated, resulting in
higher acetone emissions from exhaled breath. However, Pd-infected bats in torpor, even
in advanced stages of starvation, apparently have sufficient metabolic rates (although
attenuated due to torpor) to consume serum glucose (generated from acetone via fat
conversion), preventing accumulation of serum acetone and release in the breath. Bats
with WNS have higher torpid metabolic rates [59]. Warnecke et al. [12] found low serum
glucose levels (~70 mg/dl) in WNS-diseased little brown bats (M. lucifugus) compared to
healthy controls (>100 mg/dl). They concluded that hypoglycemia and ketoacidosis were
possible causes of death. This may partially explain why acetone levels were not detected
in volatile emissions from Pd-infected cave bats. Acetone concentrations in exhaled breath
of mammals previously have been shown to correlate strongly with acetone and glucose
concentrations in blood [60].

Three ketone bodies, (acetone, acetoacetate, and 3-β-hydroxybutyrate), are produced
as alternative energy sources within the mammalian liver when glucose is less available,
such as during starvation periods. Extracave bats involved in prolonged active exercise
(e.g., when feeding and flying), tend to have low serum glucose levels and elevated ketone
bodies in their blood. Energy shortages cause the liver to break down fats at a higher rate
and increase production of serum ketone bodies to supply metabolic needs while bats are
in starvation states with low energy reserves. Among the three ketone bodies, acetone is
the most volatile and thus most abundant in the exhaled breath bats, compared to the other
two VOCs, during starvation. One additional small molecular weight ketone (Acetol or
1-hydroxy-2-propanone), a possible metabolic derivative of acetone), was also found in
volatile emissions from active field bats that were absent in cave bats.

We found more than a dozen agricultural pesticides from several chemical classes
within whole-body emissions, including highly toxic organophosphate and carbamate
insecticides. The detection of pesticide VOCs within volatile emissions has significance as
major contributing factors to exacerbate the negative pathophysiological effects of WNS.
Bat exposure to pesticides has been shown to negatively affect bat fat reserves through
increases in metabolic respiration that accelerates fat consumption, reducing fat reserves of
starving bats needed for winter survival [61]. As pesticide-contaminated fats are consumed,
pesticides are remobilized, causing neurotoxic effects (by organophosphates carbamates)
that may contribute to increased mortality [62].

Pesticide bioaccumulation within body fats have the potential to affect immune
response, enzyme activity, reproduction, and contribute to detrimental effects and in-
creased disease-associated mortality [62]. Some reports have recorded sublethal effects of
organophosphates in mammals include interference in normal behavior, oxidative stress,
abnormal metabolic and endocrine changes, and reduction in the effectiveness of immune
system functions and body thermoregulation [61,63–65]. Chemical contaminants may have
synergistic or additive detrimental effects on disease mechanisms when WNS-diseased
bats undergo unusually frequent arousals from hibernation that accelerate depletion of fat
reserves [11,13].

Insectivorous bats receive most pesticide exposure from consuming contaminated
insects, but pesticide absorption through the skin is also possible due to their large sur-
face area to body weight ratio. Bats store pesticides primarily in fat, brain, and liver
tissues [66–68]. Bats are capable of metabolically degrading many pesticides in their body
prior to fat storage. However, the metabolic products derived from pesticide degradation
may also be bioaccumulated within fat reserves, inducing immunotoxicity and reproductive
failure [69].

We discovered five active field (AF) VOC biomarkers, (tentatively identified as ac-
etaldehyde, acetol, 2-methyl hexane, 4-ethyl hexadecane, and heptadecanal), common
to active summer bats which were mostly absent in torpid bats except for a few healthy
cave bats. These AF biomarkers consisted of two aldehydes, a ketone, and an alkane. We
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propose several possible explanations for the occurrence of AF biomarkers in some healthy
torpid cave bats. Southern bats, unlike northern species of insectivorous bats, commonly
fly out of the cave to feed during warmer winter periods, detected by cave bats via lower
cave barometric pressure. This winter feasting activity requires energetically costly arousals
that consume some fat reserves, but presumably result in a net energy gain if sufficient
insects are consumed during these feeding bouts [70,71]. Some cave bats regularly fly to
new locations within caves to find better conditions for hibernating sites (with different
temperature or humidity conditions). Regular arousals during torpor also are an important
means for stimulating the reactivation of parts of the immune system in healthy bats which
generally have greater fat reserves [72]. This mechanism of arousal for stimulating the
immune system in healthy bats may not be activated in WNS-diseased bats (at a lower
level of consciousness), precluding emissions of AF biomarkers. Nevertheless, the often
more frequent arousals in Pd-infected bats, due to irritation caused by Pd attacks, could
involve a different physiological mechanism of arousal that do not activate AF-biomarker
emissions. AF biomarkers provide indications of significant metabolic activity associated
with physical activity.

Two torpor-specific (T) VOC biomarkers, tentatively identified as 3-hexanol and
ethylcyclohexane, were only found in torpid cave bats, and absent in active field bats.
The T-biomarkers include an alcohol and a cycloalkane, respectively. The T-biomarkers
provide metabolic indications that bats are in a torpid state at the specific time the air
samples were collected. These VOC emissions presumably are released from torpor-specific
metabolic pathways that initiate and operate only when bats enter torpor. Metabolic
activities that occur when bats have consciousness or are engaged in physical activity,
resulting in release of AF-biomarker VOCs, are predominantly shut down and replaced by
T-biomarker emissions. Bats undergo physiological changes from summer active to winter
torpid states to reduce respiration rates, circulatory activities, and catabolic pathways
primarily to conserve energy [41–43]. Thus, emissions of VOCs from bats can change
dramatically over time as their physiological states are altered by environment cues, such as
ambient conditions outside or inside of caves, or internal hormonal mechanisms controlling
entry into torpor and arousal periods. Different types of volatile biomarkers may be
monitored over time to detect internal physiological changes associated with specific types
of metabolic activities occurring at different times when VOC emission are analyzed.

Four metabolomic Health (H)-associated VOC biomarkers, (including compounds
tentatively identified as ethanol, 4-ethylheptane, glycerol, and γ-decalactone), were found
to be emitted at significantly higher levels in healthy bats, both in active field and healthy
cave bats, but were released at much lower levels or not at all in WNS-diseased bats. The
H-biomarkers were from alcohol, alkane, polyol, and lactone chemical classes. Detection of
H-biomarkers (at specific levels) potentially may provide indications of the relative health
state of bats (healthy, in decline, or diseased), based on H-biomarker emission rates, useful
for quickly monitoring bat clusters at different locations in caves and to assess and estimate
the health state of an entire cave population, through suitable air-sampling surveys in
the vicinity of bats, throughout the cave. Additional research is warranted to confirm
the identities and chemical structures of putatively identified bat metabolites defined as
specific biomarker types in this paper.

Two additional metabolomic biomarkers, designated as conscious activity (CA) VOC
biomarkers, were found at emission levels that appeared to correspond to relative phys-
iological activities associated with levels or duration of consciousness. CA-biomarkers
emissions were highest in active field bats and considerably lower in torpid field bats.
The CA-biomarkers do not appear to be related to physiological activities associated with
vigorous physical activities (such as flying), but are more associated with sedentary awake
activities such as cleaning or grooming off activities which are conscious activities more
commonly practiced by active field bats or bats that have recently entered a cave (and have
not yet initiated torpor), and less common in torpid cave bats that engage in grooming
activities only for brief intermittent periods during infrequent prolonged arousals. The
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release of CA-biomarkers in cave bats also may possibly be correlated with activation of
major histocompatibility complex (MHC) immune responses when bats are awake, in-
volving cytokine production, that have been indicated as adaptive immunity to WNS in
certain European bat species developing long-term resistance, but may not yet be fully or
effectively operating in North American bat species due to only recent occurrence of this
disease [57,73,74].

McGuire et al. [59] provided direct evidence that heightened energy expenditures
during torpor and higher evaporative water loss independently contribute to WNS patho-
physiology. Pd-infected little brown bats (Myotis lucifugus) have been observed to have
significantly higher torpid metabolic rates and evaporative water loss compared to un-
infected controls [59,75]. In addition, the downregulation of immune functions during
hibernation allows the Pd-pathogen to invade skin tissues without confronting a strong
immune response [76]. Bats with more severe WNS symptoms typically exhibit more
frequent arousals [11]. Fuller et al. [77] found little brown bats expressed relatively shallow
torpor bouts during intensive healing at the end of hibernation and face a severe energetic
imbalance during early recovery from WNS.

The 3-d PCA results, based on MOS e-nose sensor array analysis of VOC emissions,
indicated significant differences in VOC composition of gaseous emissions from active field,
healthy cave, and WNS-diseased bats. Tentative identifications of individual VOCs detected
within volatile emissions using dual-column GC with Kovats Retention Indices and RI
values confirmed differences in composition of each sample type. Differences in chemical
relatedness of VOCs were further confirmed by PDI values, derived from this quantitative
statistical indicator, providing precise percentage values of chemical relatedness between of
sample types through pairwise comparisons in all possible combinations. These differences
in VOC emissions provide strong evidence of differences in physiological states of active
vs. torpid bats caused by metabolic changes that occur in response to a multitude of
factors including levels of physical activity, consciousness, environmental factors, and
health conditions associated with Pd-infections, severity of WNS-disease development,
and related immune responses.

Bat VOC emissions from whole-body air sampling include emissions from the skin,
hair, and the breath (mouth and lungs). Additional VOCs also could be emitted from urine
and feces excretions with various microflora and resident microbes on the skin as well as
the Pd-pathogen and VOCs derived from pathogenesis. Skin and hair VOC alterations, due
to chemical exposure to biological and chemical contaminants in field and or caves, also are
possible. Any of these possible variable sources of VOCs could potentially alter the VOC
profiles of each samples type to confound the results. However, Lutz et al. [78] compared the
gut microbiomes of insectivorous and frugivorous bats from multiple anatomical sites and
geographic localities and concluded that gut, oral, and skin microbiota of bats are shaped
predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis
observed in other mammals. Diet and host phylogeny primarily drive the taxonomic and
functional contents of gut microbiome for most mammals, but there is little correlation
between diet and variations in gut microbiome phylogeny in bats [79]. Our PCA aroma
maps results showed tight clustering of sample types within data plot clusters despite bat
samplings from multiple cave sources, indicating that VOC profiles within each sample
type were not significantly altered by variable VOC sources that were possible from many
different caves and locations.

Virulence factors associated with WNS pathogenesis contribute to changes in bat
host metabolic pathways which likely result in changes in VOC emissions that could be
identified in subsequent studies. The most important WNS virulence factors produced
directly by the Pd-pathogen include extracellular proteases that digest bat skin tissues and
riboflavin (vitamin B2) that contributes to oxidative stress, cytokine storms, and IRIS-related
effects [9,74,80,81].
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5. Conclusions

The cumulative results presented here suggest that new e-nose EAD-technologies,
based on GC/E-nose dual-technology VOC-detection capabilities and analyses of physio-
logical states by VOC emissions, provide additional information and a new noninvasive
alternative for early assessment of Pd-infection and WNS-disease status, avoiding the
semi-invasive and tenuous early-detection capabilities of qPCR that require tactile swabs
from external bat skin surfaces. This approach also allows the opportunity to monitor
gradual metabolic changes (indicative of complex physiological alterations) that occur in
transitions of host metabolic pathways (physiological states) from healthy to advanced
diseased states and from active bat activities to torpid states during winter hibernation.

Additional research is needed to further explore the gradual changes in physiological
states of bats from when they first enter caves in late autumn or early winter, acquire
Pd-infections within the cave, and transition to increasingly severe WNS-disease states
throughout the winter during hibernation. The effects of gradual physiological changes
that occur due to WNS-associated pathogenesis could be better elucidated with additional
pathophysiological analysis of VOC emissions from bats in different stages of WNS disease
develop over time within winter hibernacula. More research also is needed to determine
the originating sources of individual VOCs occurring in whole-body emissions.
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