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and Guerrero-Sánchez Y (2020) In Vitro

Study of Synergic Effect of Cisplatin
and Low Molecular Weight Heparin
on Oral Squamous Cell Carcinoma.

Front. Oncol. 10:549412.
doi: 10.3389/fonc.2020.549412

ORIGINAL RESEARCH
published: 18 November 2020

doi: 10.3389/fonc.2020.549412
In Vitro Study of Synergic
Effect of Cisplatin and Low
Molecular Weight Heparin on Oral
Squamous Cell Carcinoma
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Objectives: To evaluate the possible synergic effect of cisplatin and low molecular weight
heparin (LMWH) on oral squamous cell carcinoma (OSCC).

Materials and Methods: Cisplatin and enoxaparin sodium, alone or in combination,
were administered at doses of 1, 2, 4, 8 and 10 µM and 0.1, 0.5, 1, 5, 10, 50, and 100 µg/
ml, respectively, to the H357 human OSCC line. The effects on cell viability and apoptosis
were evaluated after 24, 48, and 72 h and on cell migration after 18 and 24 h.

Results: 10 µM concentration of cisplatin produced the greatest decrease in cell viability,
with significant differences at 24 (p=0.009), 48 (p=0.001) and 72 h (p = 0.003); the 100 µg/
ml dose of enoxaparin produced the greatest decrease in cell viability but without
significant differences (p>0.05). When different concentrations of cisplatin and
enoxaparin were combined, it was found that 100 µg/ml enoxaparin sodium produced
the greatest synergic effect on cell viability reduction. In analyses of apoptosis and cell
migration, it was found that the combination of cisplatin at 8 or 10 mM and 100 mg/ml
enoxaparin produced a higher rate of apoptosis at 24, 48, and 72 h and a greater
reduction in cell migration at 18 and 24 h.

Conclusions: A combination of cisplatin and enoxaparin sodium shows a synergic effect
that reduces cell viability and cell migration capacity and increases the apoptosis of human
OSCC cells.

Clinical relevance: Enoxaparin may be beneficial in chemotherapy for patients with
OSCC; this finding requires further clinical and laboratory investigation.

Keywords: cisplatin, low molecular weight heparin, oral squamous cell carcinoma, enoxaparin sodium, in vitro
cell line
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INTRODUCTION

Cancer is the main cause of death in both the developed and the
developing worlds. It is predicted that numbers of death resulting
from cancer will grow as populations and life expectancy increase,
especially in the developing world where 82% of the world’s
population is located. In the least developed countries, lifestyle
habits that constitute risk factors for developing cancer are
spreading – smoking, alcohol consumption, a nutritionally poor
diet (low consumption of fruit and vegetables), physical inactivity
(obesity), and changing reproductive habits (fewer births, later in
life) – and the numbers of cases of cancer have increased (1).
Squamous cell carcinoma of the head and neck (SCCHN) is the
fifth most common form of cancer and the sixth main cause of
cancer mortality in the world (2), with approximately 600,000 new
cases diagnosed worldwide each year (3). Oral squamous cell
carcinoma (OSCC) is the most common SCCHN and represents
approximately 3% of new cases of cancer diagnosed (4). Current
OSCC treatment includes surgery, radiotherapy and chemotherapy.
But long-term survival remains low. In fact, the survival rate of
patients with OSCC beyond 5 years is about 50% (5).

Conventional chemotherapy for OSCC is based on cisplatin
(cis-diammine-dichloro-platinum), the first of a family of drugs
that currently include carboplatin, oxaliplatin, satraplatin, and
picoplatin. Among medical cancer treatments, chemotherapy
with cisplatin has the greatest impact and its introduction has
changed the therapeutic management of a range of tumors over
the last 40 years. These include cancers of the bladder, breast, lung,
lymphomas, testicles, ovaries (6), as well as SCCHN including
OSCC (7). Cisplatin’s mechanism of cytotoxic action on cancer
cells is based on inducing apoptosis and cell cycle arrestthrough its
interaction with DNA that leads to the formation of cisplatin-
DNA adducts, which activate multiple signaling pathways see (8)
and (9). In comparison with other types of anticancer cell, cisplatin
enters cells relatively slowly. This is regulated by various factors
such as sodium and potassium ions, pH regulation, and the action
of transporters (10). Before attaching to DNA in cell cytoplasm,
cisplatin activates by replacing one of its two chlorine atoms with
water molecules. In this way, it covalently binds to DNA, which
produces what are known as DNA adducts. The resulting products
can cause damage to the DNA of the carcinogenic cells, blocking
their division (by blocking cells in the G2 phase of the cell cycle,
the mitotic phase) and leading to cell death resulting from
apoptosis (11).

In addition to the adverse effects of this drug (nausea, vomiting,
dose- and time-dependent toxicities, in particular nephrotoxicity,
cardiotoxicity, neurotoxicity and ototoxicity) (12), there are
various routes by which cells can develop resistance to the
anticarcinogenic action of cisplatin on OSCC. The molecular
mechanisms responsible for cell resistance to cisplatin are
complex, and may be related to limited cisplatin entrance into
cells, intracellular cisplatin deactivation, increased tolerance by the
cells, or even increased cisplatin exit to the cell’s exterior (13). As a
consequence, the formation of cisplatin-DNA adducts decreases,
reducing cytotoxicity, which results in greater resistance (11).
Furthermore, according to theories of cancer stem cell behavior
(CSC), tumors organize themselves hierarchically in similar ways
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to healthy tissue, with a sub-population of CSCs that may be
resistant to the chemotherapy administered, and that generate
differentiated cancer cells (14). This subpopulation of CSCs was
first identified in leukemia and later isolated in solid tumors
including breast, brain, lung, liver, prostate, colon, and
pancreatic cancers (15–19), as well as SCCHN (20–22). The
CSCs express high levels of ATB-binding-cassette (ABC),
transporter proteins in numerous drugs that are the cause of
resistance to treatment by chemotherapy. Some ABC protein
families are responsible for the cytoprotective effect of cancer
cells against cisplatin (23–25). For this reason, there is a need to
develop new anticarcinogenic therapies.

Low molecular weight heparins (LMWHs) were approved by
the US Food and Drug Administration (FDA) in 1998 as an
anticoagulant treatment and have been administered
satisfactorily ever since (26). More recently, several studies
have shown that LMWHs reduce death by cancer in patients
with deep-vein thrombosis, and different types of cancer (27–29).
Although various clinical studies have shown that LMWHs
prolong survival and reduce mortality in patients with
advanced solid cancer, the exact mechanism whereby LMWHs
exercise their anticarcinogenic action has not yet been
determined (30–33). Their anticarcinogenic action is probably
produced through an antiproliferative action (due to their anti-
angiogenic action) (34–36) and antimetastatic action (37–40).
Regarding their antiproliferative action, LMWHs have been
shown to exert an anti-angiogenic action that regulates
tumoral angiogenesis via two paths; on the one hand, by
impeding thrombin generation, which inhibits the tissue factor
pathway through the release of an endothelial tissue factor (TF)
pathway inhibitor (TFPI) (41), and on the other, by inhibiting
the formation of Xa factor through the attachment of the
antithrombin-herapin complex to this factor (42). Its
antimetastatic activity would appear to be related to its
capacity for attachment to selectins (mainly P- and L-selectin),
integrins (mainly VLA-4), cytokines, and enzymes such as
heparanases that are able to degrade the extracellular matrix
and the components of the basal membrane (38–40).

Enoxaparin sodium is an LMWH obtained by an alkaline
depolymerization method; it has an average molecular weight of
4.5 kDa, and its anticarcinogenic activity has been studied in
cases of pancreatic adenocarcinoma cells, human breast
carcinoma cells, human lung adenocarcinoma epithelial cells,
glioma cells, melanoma cells (37, 43–47) and against metastasis
from brain and colon cancer (48, 49). But its anticarcinogenic
action on OSCC, alone or in combination with cisplatin,
is unknown.

The aim of this study was to evaluate the possible synergic
effect of cisplatin and enoxaparin sodium on OSCC.
MATERIALS AND METHODS

Cell Line
The study used the H357 human OSCC line (European
Collection of Cell Cultures), belonging to stage 1 OSCC
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(T1N0M0) located at the base of the tongue of a male patient.
Cells were cultured in Iscove’s Modified Dulbecco’s Medium
(IMDM) supplemented with 10% fetal calf serum (FCS),
glutamine (2 mM), 0.5 mg/ml hydrocortisone sodium
succinate, 1% penicillin, and 1% streptomycin (full medium) at
37°C, in an atmosphere of 95% oxygen and 5% CO2.

The medium (IMDM), 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT), dimethylsulfoxide
(DMSO), cisplatin, and enoxaparin sodium used in the study
were supplied by Sigma-Aldrich® (Sigma-Aldrich Chemistry,
S.A., Madrid, Spain).

Drug Preparation
Cisplatin was dissolved in 0.5% DMSO and enoxaparin sodium
in phosphate buffered saline (PBS), with 1 mg/ml of cisplatin or
enoxaparin sodium being used as a stock solution. The working
solutions were diluted with Iscove’s modified Dulbecco’s
medium (IMDM). All manipulations with cisplatin and
enoxaparin sodium were performed under subdued lighting.
The dose range was 1, 2, 4, 8 and 10 µM of cisplatin and 0.1,
0.5, 1, 5, 10, 50, and 100 µg/ml of enoxaparin sodium.

Cell Viability Test (MTT)
The technique described by Carmichael et al. (50, 51) was used
for cell viability quantification, adapted to the study’s culture
conditions. The cells were cultured at a density of 3,200 cells per
well in 96-microwell plates, after which cisplatin or enoxaparin
sodium were added at different concentrations (1, 2, 4, 8, and 10
µM of cisplatin and 0.1, 0.5, 1, 5, 10, 50, and 100 µg/ml of
enoxaparin sodium), individually or in combination.

At different time points after the start of treatment (24, 48,
and 72 h), the medium was eliminated and the cells were
incubated with MTT (Sigma-Aldrich Chemistry, S.A.) (1 mg/
ml) for 4 h, after which the non-metabolized MTT was discarded
and 100 µl of DMSO were added to each well. Absorbance in
each well was measured with an enzyme-linked immunosorbent
assay (ELISA), using a Multiskan MCC/340P plate
spectrophotometer at a reading wavelength of 570 nm and a
reference wavelength of 690 nm. Each test was performed
in triplicate.

Apoptosis (Histone/DNA Fragment ELISA)
The ELISA cell death detection kit was used (following the
manufacturer’s instructions) to detect apoptosis in cells treated
with cisplatin and enoxaparin sodium. Briefly, cells were seeded
in 96-well plates at a density of 3,200 cells per well for 24 h,
adding the medium containing the two highest concentrations of
cisplatin used in the cell viability test (8 and 10 µM) combined
with the highest concentration of enoxaparin sodium used in the
cell viability test (100 µg/ml). After 24, 48, or 72 h, the cytoplasm
inthe control and treatment groups was transferred to the 96-
well plate, peridiumed by streptavidin, and incubated with
biotinylated histone antibody and peroxidase-tagged mouse
anti-human DNA for 2 h at room temperature. Absorbance at
405 nm was measured with EXL-800 type Enzyme-Linked
Immunosorbent apparatus. Each test was performed in triplicate.
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Migration (Scratch Wound Healing)
Scratch wounds were generated in confluent monolayers of cells
using a sterile 200 µl pipette tip (52). After washing away
suspended cells with phosphate buffer saline (PBS), the culture
medium was changed and added at different concentrations: the
two highest concentrations of cisplatin used in cell viability
test ing (8 and 10 µM) combined with the highest
concentration of enoxaparin sodium used in cell viability
testing (100 µg/ml). Migration into the wound space was
photographed using an inverted microscope equipped with a
digital camera at the time of the initial wound and at time
intervals up to 18 and 24 h after wounding. The relative distances
between edges of the injured monolayer were obtained by means
of pixel counts at a minimum of 10 sites per wound, using MIP-
4® image software (CID, Barcelona, Spain) and applying the
formula: migration distance = initial distance of free-of-cells
space – distance at 18 or 24 h of free-of-cells space (53). Each
test was performed in triplicate.

Statistical Analysis
Data were analyzed using the SPSS version 20.0 statistical
software package (SPSS® Inc., Chicago, IL, USA). A descriptive
study was made of each variable. The associations between
different quantitative variables were studied using one-way
analysis of variance (ANOVA) for more than two samples,
verifying in each case whether variances were homogeneous.
Statistical significance was accepted for p ≤ 0.05.
RESULTS

Effects of Cisplatin, Enoxaparin Sodium,
and the Combination of the Two on H357
Cell Viability
At all incubation times (24, 48 and 72 h), it was found that as the
dose of cisplatin increased, OSCC cell viability decreased. The 10
mM cisplatin concentration produced the greatest reduction in
cell viability, with statistically significant differences at 24 h
(p=0.009), 48 h (p=0.001), and 72 h (p=0.003) (Figure 1A).
When the effect of enoxaparin sodium on cell viability was
analyzed at 24, 48, and 72 h incubation, it was found that as
the dose of LMWH increased, cell viability decreased, with the
greatest reduction seen with the 100 mg/ml dose of enoxaparin
sodium, although without statistically significant differences at
24 h (p= 0.215), 48 h (p=0.558), or 72 h (p=0.303) incubation
(Figure 1B).

When the different doses of cisplatin assayed (1, 2, 4, 8 and 10
µM) were combined with different concentrations of enoxaparin
sodium (0.1, 0.5, 1, 5, 10, 50, and 100 µg/ml) it was found that
combining any concentration of cisplatin with 100 µg/ml
enoxaparin sodium produced the greatest synergic effect OSCC
cell viability reduction, with statistically significant differences
for combinations of 8 and 10 µM cisplatin at 24 h incubation
(p<0.001 and p<0.001, respectively), and for 1, 2, 4 and 8 µM
cisplatin at 48 h incubation (p<0.001, p=0.006, p=0.030, p<0.001,
respectively) (Figures 2 and 3).
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A

B

FIGURE 1 | Effects of cisplatin or enoxaparin sodium on H357 cell viability. (A) 24 h, p = 0.009; 48 h, p = 0.001; 72 h, p = 0.003. (B) 24 h, p = 0.215; 48 h,
p = 0.558; 72 h, p = 0.303. * means that there is significative differences at such picture.
A

B

C

FIGURE 2 | Effects of cisplatin (1, 2, and 4 µM) and enoxaparin sodium (0.1, 0.5, 1, 5, 10, 50, and 100 µg/ml) on H357 cell viability. (A) 24 h, p = 0.228; 48 h, p < 0.001; 72 h,
p = 0.077. (B) 24 h, p = 0.729; 48 h, p = 0.006; 72 h, p = 0.502. (C) 24 h, p = 0.774; 48 h, p = 0.030; 72 h, p < 0.001. * means that there is significative differences at such picture.
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Effects of Cisplatin and Enoxaparin
Sodium on H357 Cell Apoptosis
Both the cell death test and the cell migration assay, investigated
the two highest concentrations of cisplatin (8 and 10 µM), and
enoxaparin sodium (100 µg/ml), as these doses led to the greatest
reductions in cell viability.

In the cell apoptosis test it was found that 24, 48, and 72 h
incubation times all produced higher rates of apoptosis with the
combination of 8 or 10 mM cisplatin and 100 mg/ml enoxaparin
sodium, obtaining statistically significant differences at 48 h
treatment (p=0.008 and p=0.009, respectively) (Figure 4).

Effects of Cisplatin and Enoxaparin
Sodium on H357 Cell Migration
When 8 or 10 mM cisplatin were combined with 100 mg/ml
enoxaparin sodium, a greater reduction in cell migration capacity
was observed, with statistically significant differences when 8 mM
cisplatin were combined with 100 mg/ml enoxaparin sodium,
both at 18 h (p=0.003) and 24 h (p=0.004) (Figures 5–7).
DISCUSSION

Most tumors in the oral cavity, pharynx and larynx (>90%) are
squamous cell carcinomas. OSCC represents 6% of all malign
neoplasias and constitutes the eighth most common cancer in
terms of worldwide incidence (1). Mortality associated with
Frontiers in Oncology | www.frontiersin.org 5
OSCC remains high due to the fact that most cases are
detected at an advanced stage, and also to treatment failure in
the form of locoregional recurrence (15–50%) or distant
metastasis (54, 55). The survival rate of patients with OSCC
over 5 years is over 80% providing they receive treatment while
the cancer is at an early stage. However, when the disease has
spread to the cervical lymph nodes, this percentage decreases to
40%, and falls to only 20% when the case presents
metastasis (56).

Cisplatin is the most often used chemotherapy in OSCC
treatment, often administered in combination with taxanes
and/or 5-fluoruracil (57). But in addition to the adverse effects
of this drug (nausea, vomiting and toxic effects on different
organs) (12), there are various routes by which the cancer can
develop resistance to cisplatin’s anticarcinogenic action on
OSCC: reduced formation of cisplatin-DNA adducts (which
causes a reduction in cytotoxicity against carcinogenic cells)
and generation of subpopulations of CSCs capable of ABC
expression (drug transporter proteins) that may be responsible
for OSCC resistance to cisplatin (23–25). In this context,
development of an oral cancer-specific, anticancer drug is
needed; new therapeutic strategies need to be identified and
evaluated in preclinical models before entering clinical trials.

Heparin and LMWHs have shown substantial anticarcinogenic
properties in addition to their traditional anticoagulant properties
(34, 58, 59). It is possible that their anticarcinogenic action is due to:
a) antiproliferative activity (due to their antiangiogenic activity) that
A

B

FIGURE 3 | Effects of cisplatin (8 and 10 µM) and enoxaparin sodium (0.1, 0.5, 1, 5, 10, 50, and 100 µg/ml) on H357 cell viability. (A) 24 h, p < 0.001; 48 h,
p < 0.001; 72 h, p < 0.001. (B) 24 h, p < 0.001; 48 h, p = 0.616; 72 h, p < 0.001. * means that there is significative differences at such picture.
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A

B

FIGURE 4 | Effects of cisplatin (8 and 10 µM) and enoxaparin sodium 100 µg/ml on H357 cell apoptosis. (A) 24 h, p = 0.582; 48 h, p = 0.008; 72 h, p = 0.716.
(B) 24 h, p = 0.413; 48 h, p = 0.009; 72 h, p = 0.592. * means that there is significative differences at such picture.
A

B

FIGURE 5 | Effects of cisplatin (8 and 10 µM) and enoxaparin sodium 100 µg/ml on H357 cell migration. (A) 18 h, p = 0.003; 24 h, p = 0.004. (B) 18 h, p = 0.116;
24 h, p = 0.133. * means that there is significative differences at such picture.
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impedes thrombin generation and so inhibits TF expression (41)
and fibrin formation (42); and b) their antimetastatic activity
deriving from their capacity for attachment to selectins, integrins,
cytokines and enzymes such as heparanases (38–40). However, the
action of LMWH, whether alone or in combination with cisplatin,
on cell viability, apoptosis and cell migration capacity on human
OSCC cells remains unknown.
Frontiers in Oncology | www.frontiersin.org 7
The present study used enoxaparin sodium, which is an
LMWH whose anticarcinogenic activity has been investigated
inpancreatic adenocarcinoma cells, human breast carcinoma
cells, human lung adenocarcinoma epithelial cells, glioma
cells, melanoma cells (37, 43–47), and against metastasis of
brain and colon cancer (48, 49) but never on human
OSCC cells.
FIGURE 6 | Cell migration into the wound space photographed at the time of initial wounding and at time intervals up to 18 and 24 h after wounding. Results of
cisplatin 8 µM alone and combined with 100 µg/ml enoxaparin sodium.
FIGURE 7 | Cell migration into the wound space photographed at the time of initial wounding and at time intervals up to 18 and 24 h after wounding. Results of
10 µM cisplatin alone or combined with 100 µg/ml enoxaparin sodium.
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The present study assayed the effect of enoxaparin sodium on
cell viability at 24, 48 and 72 h incubation, observing that, as the
dose of LMWH increased, cell viability decreased, with the greatest
reduction found with the 100 mg/ml dose, although no statistically
significant differences were found at any of the incubation times
assayed. Nevertheless, in 2011, Abu Arab et al. (45) observed an
antiproliferative effect on human lung adenocarcinoma epithelial
cell line A549 cultured with different concentrations of enoxaparin
sodium (5, 10, 20, and 30 U/ml), obtaining statistically significant
differences in comparison with a control group.

On the basis of the present results, it was found that cisplatin
concentrations combined with 100 µg/ml enoxaparin sodium
produced the greatest synergic effect on OSCC cell viability
reduction, with statistically significant differences at
concentrations of 8 and 10 µM cisplatin at 24 h incubation
Frontiers in Oncology | www.frontiersin.org 8
(p<0.001 and p<0.001, respectively), and for 1, 2, 4 and 8 µM
cisplatin at 48 h incubation (p<0.001, p=0.006, p=0.030, and
p<0.001, respectively). The present results for the action of
cisplatin in combination with enoxaparin sodium up OSCC cells
TABLE 1 | Effects of cisplatin or enoxaparin sodium on H357 cell viability
(ANOVA test).

Treatment/Time point Absorbance (% over control) p-value
mean ± SD*

Cisplatin/24 h 0.009
1 µM 97.21 ± 27.91
2 µM 89.45 ± 20.53
4 µM 101.51 ± 19.82
8 µM 82.26 ± 12.23
10 µM 80.33 ± 24.92
Cisplatin/48 h 0.001
1 µM 131.92 ± 21.19
2 µM 130.52 ± 19.24
4 µM 115.09 ± 28.51
8 µM 103.69 ± 29.54
10 µM 97.12 ± 44.61
Cisplatin/72 h 0.003
1 µM 110.11 ± 13.66
2 µM 98.65 ± 17.26
4 µM 105.01 ± 14.81
8 µM 107.13 ± 13.78
10 µM 92.61 ± 16.64
Enoxaparin sodium/24 h 0.215
0.1 µg/ml 114.08 ± 15.01
0.5 µg/ml 112.89 ± 20.24
1 µg/ml 112.57 ± 11.37
5 µg/ml 110.33 ± 19.54
10 µg/ml 105.32 ± 20.21
50 µg/ml 102.83 ± 12.78
100 µg/ml 96.07 ± 29.31
Enoxaparin sodium/48 h 0.558
0.1 µg/ml 107.21 ± 18.36
0.5 µg/ml 111.94 ± 21-06
1 µg/ml 114.04 ± 21.57
5 µg/ml 106.41 ± 23.36
10 µg/ml 105.30 ± 16.59
50 µg/ml 108.82 ± 13.61
100 µg/ml 97.76 ± 23.72
Enoxaparin sodium/72 h 0.303
0.1 µg/ml 126.71 ± 33.14
0.5 µg/ml 122.77 ± 25.51
1 µg/ml 113.84 ± 23.14
5 µg/ml 109.31 ± 23.28
10 µg/ml 109.25 ± 17.37
50 µg/ml 108.98 ± 29.21
100 µg/ml 106.18 ± 15.51
*SD, standard deviation.
TABLE 2 | Effects of cisplatin (8 and 10 µM) and enoxaparin sodium (0.1, 0.5, 1,
5, 10, 50, and 100 µg/ml) on H357 cell viability (ANOVA test).

Treatment/Time point Absorbance
(% over control)

p-value

mean ± SD*

Cisplatin 8 µM/24 h <0.001
Cisplatin 8 µM 82.26 ± 12.23
Cisplatin 8 µM + Enoxaparin sodium 0.1 µg/ml 106.42 ± 3.59
Cisplatin 8 µM + Enoxaparin sodium 0.5 µg/ml 99.48 ± 3.32
Cisplatin 8 µM + Enoxaparin sodium 1 µg/ml 94.04 ± 4.54
Cisplatin 8 µM + Enoxaparin sodium 5 µg/ml 94.37 ± 8.69
Cisplatin 8 µM + Enoxaparin sodium 10 µg/ml 92.37 ± 3.57
Cisplatin 8 µM + Enoxaparin sodium 50 µg/ml 88.61 ± 2.16
Cisplatin 8 µM + Enoxaparin sodium 100 µg/ml 83.26 ± 10.92 <0.001
Cisplatin 8 µM/48 h
Cisplatin 8 µM 103.69. ± 29.54
Cisplatin 8 µM + Enoxaparin sodium 0.1 µg/ml 81.13 ± 8.39
Cisplatin 8 µM + Enoxaparin sodium 0.5 µg/ml 89.60 ± 18.11
Cisplatin 8 µM + Enoxaparin sodium 1 µg/ml 96.82 ± 14.07
Cisplatin 8 µM + Enoxaparin sodium 5 µg/ml 87.29 ± 10.33
Cisplatin 8 µM + Enoxaparin sodium 10 µg/ml 78.65 ± 13.95
Cisplatin 8 µM + Enoxaparin sodium 50 µg/ml 77.07 ± 4.09
Cisplatin 8 µM + Enoxaparin sodium 100 µg/ml 76.39 ± 10.78
Cisplatin 8 µM/72 h <0.001
Cisplatin 8 µM 107.13 ± 13.78
Cisplatin 8 µM + Enoxaparin sodium 0.1 µg/ml 109.57 ± 13.82
Cisplatin 8 µM + Enoxaparin sodium 0.5 µg/ml 102.78 ± 9.52
Cisplatin 8 µM + Enoxaparin sodium 1 µg/ml 98.25 ± 10.45
Cisplatin 8 µM + Enoxaparin sodium 5 µg/ml 95.54 ± 8.92
Cisplatin 8 µM + Enoxaparin sodium 10 µg/ml 89.68 ± 5.71
Cisplatin 8 µM + Enoxaparin sodium 50 µg/ml 89.08 ± 4.61
Cisplatin 8 µM + Enoxaparin sodium 100 µg/ml 78.61 ± 8.62
Cisplatin 10 µM/24 h <0.001
Cisplatin 10 µM 80.33 ± 24.92
Cisplatin 10 µM + Enoxaparin sodium 0.1 µg/ml 105.32 ± 11.96
Cisplatin 10 µM + Enoxaparin sodium 0.5 µg/ml 93.59 ± 6.11
Cisplatin 10 µM + Enoxaparin sodium 1 µg/ml 85.58 ± 7.36
Cisplatin 10 µM + Enoxaparin sodium 5 µg/ml 86.88 ± 6.57
Cisplatin 10 µM + Enoxaparin sodium 10 µg/ml 80.21 ± 6.81
Cisplatin 10 µM + Enoxaparin sodium 50 µg/ml 80.58 ± 4.65
Cisplatin 10 µM + Enoxaparin sodium 100 µg/ml 78.92 ± 4.41
Cisplatin 10 µM/48 h 0.616
Cisplatin 10 µM 97.12 ± 44.61
Cisplatin 10 µM + Enoxaparin sodium 0.1 µg/ml 102.21 ± 23.52
Cisplatin 10 µM + Enoxaparin sodium 0.5 µg/ml 93.97 ± 14.99
Cisplatin 10 µM + Enoxaparin sodium 1 µg/ml 89.82 ± 14.93
Cisplatin 10 µM + Enoxaparin sodium 5 µg/ml 87.65 ± 15.31
Cisplatin 10 µM + Enoxaparin sodium 10 µg/ml 86.92 ± 14.91
Cisplatin 10 µM + Enoxaparin sodium 50 µg/ml 85.71 ± 15.85
Cisplatin 8 µM + Enoxaparin sodium 100 µg/ml 83.91 ± 10.98
Cisplatin 10 µM/72 h <0.001
Cisplatin 10 µM 92.61 ± 16.64
Cisplatin 10 µM + Enoxaparin sodium 0.1 µg/ml 44.22 ± 28.11
Cisplatin 10 µM + Enoxaparin sodium 0.5 µg/ml 43.71 ± 26.87
Cisplatin 10 µM + Enoxaparin sodium 1 µg/ml 42.83 ± 24.83
Cisplatin 10 µM + Enoxaparin sodium 5 µg/ml 39.31 ± 21.81
Cisplatin 10 µM + Enoxaparin sodium 10 µg/ml 41.64 ± 26.09
Cisplatin 10 µM + Enoxaparin sodium 50 µg/ml 36.36 ± 18.53
Cisplatin 10 µM + Enoxaparin sodium 100 µg/ml 34.23 ± 14.57
November 2020
 | Volume 10 | Article
*SD, standard deviation.
549412

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Camacho-Alonso et al. Effect Cisplatin Enoxaparin on OSCC
cannot be compared with any previous investigation of the possible
synergic effects of these drugs for treating OSCC. Nevertheless, in
2016, Djaafar et al. (49) observed that enoxaparin sodium (200 mg/
ml) reduced proto-oncogene regulator (cyclin D1) expression in
mouse colon carcinoma cells MCA38. Cyclin D1 is related to the
progression of G1 phase to S phase in the cell cycle. Its expression is
generally increased in most tumors, but was seen to decrease
through the action of enoxaparin sodium. Cell viability of colon
cancer cells used in the study (MCA38) was seen to decrease after
the reduction in cyclin D1 expression. This action of enoxaparin
sodium combined with cisplatin’s action (whereby it induces
apoptosis and arrest of the cell cycle resulting from its interaction
with DNA, such as the formation of cisplatin-DNA adducts, which
activate multiple signaling pathways) (8) could explain the synergic
effect of the cisplatin/enoxaparin sodium combination on cell
viability of the H357 human OSCC line.

When the action of cisplatin combined with enoxaparin sodium
on cell apoptosis was assayed it was found that at 24-, 48-, and 72-h
incubation times, higher rates of apoptosis were producedwhen
treatment combined 8 or 10 mM cisplatin and 100 mg/ml
enoxaparin sodium, obtaining statistically significant differences
after 48 h treatment (p=0.008 and p=0.009, respectively). In 2006,
Balzarotti et al. (47) obtained similar results, although these
researchers investigated enoxaparin sodium alone, using primary
cell cultures obtained from high-grade glioma; a statistically
significant increase in cell apoptosis was produced with doses of
10 and 100 U/ml enoxaparin sodium in comparison with a control
group. Recently, Niu et al. (29) have studied the possible synergic
effect of another LMWH (Low-molecular weight heparin calcium)
(Bopuquin, TianJing Chase Sun Pharmacological Co, Ltd, TianJing,
China) on cell apoptosis in cisplatin-resistant and cisplatin-sensitive
lung adenocarcinoma A459/DDP cells. The authors found
statistically significant differences for both cell lines when
cisplatin was applied combined with 5 IU/ml LMWH, compared
with treatment by cisplatin alone and a control group.

Lastly, when 8 or 10 mM cisplatin were combined with 100
mg/ml enoxaparin sodium, this produced the greatest reduction
in cell migration capacity, with statistically significant differences
for 8 mM cisplatin with 100 mg/ml enoxaparin sodium, at both
18 h (p=0.003) and 24 h (p=0.004) incubation. The interaction of
enoxaparin sodium with heparanase at the start of the tumor
metastasis process would appear to be closely related to the
phenomenon of reduction in cell migration. During this step in
the process, carcinogenic cells degrade the extracellular matrix
and the basal membrane (including its main components—
heparan sulfate proteoglycans [PGHS]) through heparanase,
subsequently releasing cytokines, chemokines, and angiogenic
growth factors [VEGF, bFGF]), so favoring angiogenesis,
tumoral growth and metastasis. However, the reduction in
Frontiers in Oncology | www.frontiersin.org 9
heparanase expression (overexpressed in most human tumors)
by the action of enoxaparin sodium will reduce this cell
migration mechanism. In a study by Djaafar et al. (49),
treatment of mouse colon carcinoma cells MCA38 with 200
mg/ml enoxaparin sodium, significantly reduced heparanase
expression after 24 h by up to 50% (both ARN and proteins).
Enoxaparin sodium’s mode of action on the extracellular matrix
will slow the cancer’s invasion process (related to the action of
heparanase) and could explain the results obtained in the present
study. Mousa et al. (37) using the B16 melanoma mouse model of
metastasis, found that a pre-tumor cell injection of enoxaparin
sodium followed by daily doses (for 14 days) reduced lung tumor
formation by 70%, with significant differences in comparison
with an animal control group. The best enoxaparin sodium
results were published by Seeholzer et al. (46) who studied 25
patients with advanced breast cancer, pointing to good clinical
outlook for the use of this LMWH for treating cancer.

In conclusion, the combination of cisplatin and enoxaparin
sodium showed a synergic effect in reducing cell viability and
migration capacity and increased the apoptosis of H357 human
OSCC cells. The present results suggest enoxaparin sodium
could be beneficial in chemotherapy for OSCC patients.
Further laboratory and clinical assays should be conducted to
confirm and develop the present findings (see Tables 1 and 2).
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