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Abstract

Background: Theophylline, a non-selective adenosine receptor antagonist, improves renal 

perfusion in the setting of hypoxia-ischemia and may offer therapeutic benefit in neonates with 

hypoxic ischemic encephalopathy (HIE) undergoing hypothermia. We evaluated the 

pharmacokinetics and dose-exposure relationships of theophylline in this population to guide 

dosing strategies.

Methods: A population pharmacokinetic analysis was performed in 22 neonates with HIE 

undergoing hypothermia who were part of a prospective study or retrospective chart review. 

Aminophylline (intravenous salt-form of theophylline) was given per institutional standard of care 

for low urine output and/or rising serum creatinine (5 mg/kg IV load then 1.8 mg/kg IV q6h). The 

ability of different dosing regimens to achieve target concentrations (4–10 mg/L) associated with 

clinical response was examined.
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Results: Birth weight was a significant predictor of theophylline clearance and volume of 

distribution (p<0.05). The median half-life was 39.5 h (range 27.2 to 50.4). An aminophylline 

loading dose of 7 mg/kg followed by 1.6 mg/kg q12h was predicted to achieve target 

concentrations in 84% of simulated neonates.

Conclusions: In neonates with HIE undergoing hypothermia, theophylline clearance was low 

with a 50% longer half-life compared to full-term normothermic neonates without HIE. Dosing 

strategies need to consider the unique pharmacokinetic needs of this population.

INTRODUCTION

Due to global hypoxic/ischemic insult, acute kidney injury (AKI) is common after birth in 

neonates with moderate to severe hypoxic ischemic encephalopathy (HIE).(1–3) 

Theophylline and its salt formulation aminophylline (i.e. theophylline + ethylenediamine in 

a 2:1 ratio) are non-selective adenosine receptor antagonists that improve renal perfusion in 

the setting of hypoxia/ischemia(4,5) and may offer therapeutic benefit in neonates with HIE. 

Several randomized controlled trials (RCTs) in severely asphyxiated neonates have 

demonstrated a single IV dose of aminophylline or theophylline given within hours after 

birth reduces the risk of severe renal dysfunction in the first days of life.(6–11) However, all 

studies were performed in lower or middle income countries, and neonates did not receive 

concomitant therapeutic hypothermia, which is standard of care in most developed countries. 

In a contemporary observational cohort of neonates receiving therapeutic hypothermia for 

HIE, those exposed to theophylline demonstrated increased urine output and a slow decline 

in serum creatinine, suggesting a beneficial effect even during cooling.(12) However, the 

benefit of theophylline in neonates with HIE receiving hypothermia remains to be 

established and its use remains ‘off-label’. As theophylline is advanced as a renal protective 

therapy, further pharmacokinetic investigation is essential to guide dosing strategies in this 

vulnerable population.

Theophylline has a narrow therapeutic index, and individualized dosing strategies in a 

patient population are needed to ensure adequate exposures for efficacy yet avoid high 

exposures associated with toxicity.(13,14) In older infants and children, theophylline is 

almost entirely metabolized in the liver via demethylation and hydroxylation. However, in 

neonates liver metabolism is markedly reduced, and renal elimination of unchanged drug in 

the urine accounts for 50% of drug elimination.(13) Neonates with HIE receiving 

hypothermia present an additional challenge from a dosing standpoint due to frequent 

hypoxic ischemic injury of organs important in drug metabolism and elimination (i.e. liver 

and kidney) and potential effects of hypothermia itself on drug pharmacokinetics.(15,16) 

Several previous pharmacokinetic studies in neonates with HIE receiving hypothermia have 

demonstrated altered pharmacokinetics and unique dose needs for critical medications 

including morphine, gentamicin, phenobarbital, and midazolam.(17–20) As theophylline is 

advanced as a renal protective therapy in neonates with HIE receiving hypothermia, an 

understanding of its pharmacokinetics will be essential to guide dosing.

Theophylline given as its salt formulation, aminophylline, has been used ‘off-label’ at our 

center for several years in neonates with HIE receiving hypothermia if low urine output 
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(UOP) and/or rising serum creatinine (SCr) develop. This population provided a unique 

opportunity to examine the pharmacokinetics of theophylline. Utilizing data collected from 

(a) therapeutic drug monitoring during clinical care and (b) an opportunistic prospective 

clinical PK study, we evaluated the population pharmacokinetics of theophylline and 

developed customized dosing strategies for neonates with HIE receiving hypothermia.

METHODS

General Study Design

We performed a population pharmacokinetic analysis of theophylline given as its 

ethylenediamine salt form aminophylline in neonates with HIE undergoing therapeutic 

hypothermia at a single tertiary care neonatal intensive care unit (NICU). Patients who 

received aminophylline as part of clinical care were enrolled as part of (a) a retrospective 

chart review or (b) a prospective, opportunistic pharmacokinetic study. The prospective 

study was part of a larger clinical pharmacokinetic study in neonates <3 months post-natal 

age admitted to the NICU and receiving aminophylline for renal indications. Both the 

prospective and retrospective study were approved by the Stanford Institutional Review 

Board. Informed consent was obtained for all patients in the prospective study.

Patients

Neonates were ≥ 36 weeks gestational age diagnosed with moderate or severe HIE 

undergoing therapeutic hypothermia. Criteria for hypothermia were as outlined in the 

National Institute of Child Health and Human Development (NICHD) Whole Body 

Hypothermia study (21) with a planned duration of hypothermia therapy for 72 hours. 

Whole body cooling (target temperature 33.5°C) was achieved using either CSZ Blanketrol 

II/III Hyper-Hypothermia system (Cincinnati SubZero, Cincinnati, Ohio) or CritiCool 

thermoregulation system (Belmont Medical Technologies, Billerica, MA). Exclusion criteria 

included: presence of anatomical renal anomaly based on postnatal evaluation of the patient; 

need for renal replacement therapy; or major genetic abnormality (trisomy 13, 18 or 21).

Aminophylline Administration and Therapeutic Drug Monitoring

Aminophylline was given as part of standard of care for low urine output (<1 cc/kg/h), rising 

serum creatinine, and/or other concern for AKI by the treating physician. Aminophylline 

was given as a loading dose of 5 mg/kg (4 mg/kg theophylline equivalent) intravenous (IV) 

over 30 minutes followed by 1.8 mg/kg (1.4 mg/kg theophylline equivalent) IV every 6 

hours. Theophylline trough levels before the fourth or fifth dose were routinely monitored as 

part of clinical care and adjusted to maintain a level of 5–7 mg/L. Aminophylline was 

discontinued at the discretion of the treating physician. Quantitative determination of 

theophylline serum concentrations during clinical care were performed by the Stanford 

Clinical Laboratory using a particle enhanced turbidimetric inhibition immunoassay, 

PETINIA (Dimension clinical chemistry system, Siemens Healthcare Diagnostics Inc., 

Newark, DE). The lower limit of quantification was 0.2 mg/L. The within-run and total 

coefficient of variation for the assay were less than 5%.

Frymoyer et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pharmacokinetic Sampling in Prospective Study

In neonates enrolled in the prospective clinical study, dried blood spot (DBS) samples for 

pharmacokinetic analysis were collected at two different time periods while receiving 

aminophylline. Period 1 was on day 1 to 2 of aminophylline, and period 2 was on day 3 to 5 

of aminophylline. In both periods, DBS samples were collected onto Whatman 903 Protein 

Saver Cards (GE Health Care Life Sciences from Fisher Scientific, Fair Lawn, NJ) at the 

following times relative to a dose: pre-dose, 0.75–2h, 2–4h, and 4–6h. Samples were 

collected around the same dose for a given period.

For each DBS sample, ~100 μL whole blood was collected on Whatman 903 filter paper 

cards (~50 μL whole blood/spot × 2 spots) from an in-dwelling catheter already in place for 

clinical care or from a venous sample collected at the same time as laboratories for clinical 

care. After allowing to air dry for 4–24 hours, the DBS sample was then stored between −70 

and −80° C until analysis. The concentrations of theophylline in the DBS were measured 

using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay by 

iC42 Clinical Research and Development (Aurora, CO, USA). The lower limit of 

quantification was 0.05 mg/L and the calibration curves were linear from 0.05 mg/L to 7.5 

mg/L (r2>0.99). Samples were diluted 1:5 if above the upper limit of quantification and re-

run. The assay was validated and considered fit for purpose. For details of the methods and 

validation see ‘Electronic Supplementary Material.’

Population Pharmacokinetic Analysis

A population pharmacokinetic model was developed from the theophylline concentration 

time data using the nonlinear mixed-effects modeling program NONMEM (Version 7.3, 

Icon Development Solutions, Ellicott City, MD). Aminophylline dose was converted to 

theophylline equivalents by multiplying by 0.79. Standard model building and evaluation 

methods were used as previously described and included goodness-of-fit plots, bootstrap 

resampling techniques, and simulation-based diagnostics.(22) In brief, after developing the 

structural model (i.e. one compartment model with linear elimination), the effect of weight 

on clearance and volume was implemented a priori using an allometric model with the 

exponent defining the relationship fixed to 0.75 and 1, respectively.(23) Clinically plausible 

covariates were evaluated in the model in a stepwise forward addition, backward elimination 

procedure and included gestational age (GA), postnatal age (PNA), serum creatinine (SCr), 

period of hypothermia treatment, and disease severity markers (inotropic support, invasive 

ventilatory support, acute kidney injury, and electrographic or clinical seizures). Acute 

kidney injury was defined based on a rise in SCr of 0.3 mg/dL or 50% from the lowest 

previous value.(24) Significance was set at p<0.001 during model selection. DBS 

concentrations (CDBS) were adjusted to plasma concentrations (Cplasma,adjusted) in the model 

based on the hematocrit of the neonate and a model estimated red blood cell-to-plasma ratio 

of theophylline.(25) Additional model development details are available in the ‘Electronic 

Supplementary Material.’

Exposure Response Analysis

The relationship between the average theophylline plasma concentration over 24 hours 

(Cavg,24) and change in urine output (ΔUOP) over the 24 hours after aminophylline start was 
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examined testing both linear and log-linear relationships. UOP over the 12 hours before 

aminophylline served as baseline for each neonate. Cavg,24 was calculated in each neonate in 

NONMEM using the final PK model by integrating the theophylline concentration over the 

first 24 hours and then dividing by 24. Similarly, the relationship between Cavg,24 and 

change in serum creatinine (ΔSCr) at 48 hours after aminophylline start was examined.

Development of Optimized Dose

To optimize aminophylline dosing regimens in neonates with HIE undergoing therapeutic 

hypothermia Monte Carlo simulations were conducted. Using the final population 

pharmacokinetic model parameters estimates, the pharmacokinetic profiles of 3,000 

‘hypothetical’ neonates with birth weights of 2.5, 3.5 and 4.5 kg were repeatedly simulated. 

Loading doses examined ranged from 5 to 10 mg/kg given intravenous over 30 minutes. 

‘Maintenance’ doses examined ranged from 1 to 2 mg/kg given every 6 or 12 hours. A 

trough serum concentration between 4 – 10 mg/L was targeted based on prior clinical reports 

in adults, children, and neonates showing these exposures are safe and associated with 

improvement in UOP or serum creatinine (26–31). In addition, to avoid toxicity in these 

vulnerable neonates serum concentrations considered potentially toxic (i.e. > 10 mg/L) were 

also examined.(13) The dosing strategy that resulted in the highest targeted achievement rate 

was selected. Statistical analyses of the data and figure productions were performed using R 

version 2.12 (R core team) and STATA 13 (StataCorp LP, College Station, TX).

RESULTS

Patients and Theophylline Concentrations

Twenty-two neonates with HIE treated with hypothermia had theophylline concentration 

data available for analysis. Five patients were enrolled in the prospective PK study and 17 

neonates in the retrospective chart review. Patient characteristics are shown in Table 1. Of 

neonates studied, 17 (77%) had seizures, 14 (64%) required inotropic support, and 6 (27%) 

died after withdrawal of intensive care support during the first week of life for poor 

neurologic prognosis. Aminophylline was not stopped in any neonate due to concern for 

toxicity.

Patients were started on aminophylline at a median (IQR) age of 28 (16 – 38) hours after 

birth, and the median (IQR) duration of aminophylline treatment was 63 (36 – 94) hours. All 

patients received a loading dose between 4.7 to 5.1 mg/kg except one who received a dose of 

2.8 mg/kg. Starting maintenance doses were between 1.7 to 1.9 mg/kg every 6 hours in all 

patients except for one patient who received 2.4 mg/kg every 6 hours and one patient who 

received 1.0 mg/kg every 6 hours.

There were 52 plasma theophylline concentrations measured as part of clinical care in the 22 

study patients, and an additional 29 DBS theophylline concentrations measured in the 5 

patients enrolled in the prospective PK study. This resulted in a total of 81 theophylline 

concentrations available for pharmacokinetic analysis. The number of concentrations 

measured on the 1st, 2nd, 3rd, and ≥ 4th day of therapy were 30, 18, 23 and 10, respectively. 

The number of concentrations measured <2 h, 2–4h, and >4 h after the last dose were 16, 12 
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and 53, respectively. No theophylline concentrations measured by either method were below 

the limit of quantification.

Population Pharmacokinetic Analysis

The time course of theophylline concentration data was adequately described by a one-

compartment model with first-order elimination and an exponential error model for inter-

patient variability on clearance and volume. The residual variability was best described by 

separate proportional error models for plasma samples and DBS samples. After the addition 

of birth weight to the model, no other significant predictors of clearance or volume were 

identified.

The final population pharmacokinetic model parameter estimates are presented in Table 2. 

The mean (range) of pharmacokinetic parameters estimates in the 22 study patients were a 

clearance 0.049 L/h (0.030 – 0.093), volume 2.7 L (1.9–4.0), and half-life 39.2 hours (27.2 – 

50.4).

Diagnostic evaluation of the final model demonstrated no systemic bias (Figure 1; 

Supplemental Figure S1, online), and parameter estimates as found by a bootstrap 

resampling technique were in agreement with those obtained by the final population 

pharmacokinetic model (Table 2). Simulation based diagnostics using normalized prediction 

distribution errors (NPDE)(32,33) demonstrated that the final model performed well in 

describing the observed data. The NPDE mean was 0.07 (95% CI: −0.16 to 0.30) and 

variance was 1.07 (95% CI: 0.76 – 1.37); the theoretical NPDE mean is zero with a variance 

1.0. The percentage of observations that fell inside the theoretical 90% prediction interval 

were 90.1%. In addition, there were no major trends in NPDE across predicted 

concentration, time, or birth weight (Supplemental Figure S2, online). The NPDE mean was 

similar for DBS samples (0.01 [95% CI: −0.44 to 0.46]) and plasma samples (0.1 [95% CI: 

−0.17 to 0.36]). To evaluate the impact of DBS samples on PK parameter estimates, the final 

model was re-estimated using only plasma samples, and all parameter estimates were within 

10% of the full dataset except the interindividual variability of volume (12.7% lower) and 

residual variability of plasma samples (20.4% lower).

Exposure Response

Twelve patients had UOP data available for analysis. After aminophylline start, UOP 

significantly increased from 0.7 ± 0.5 ml/kg/h to 3.2 ± 1.6 ml/kg/h (Δ 2.6 ± 1.5 ml/kg/h; 

p<0.001). No relationship between Cavg,24 and ΔUOP was found (Figure 2a, p=0.70). All 

patients had SCr data available. No significant change in SCr was seen 48 h after 

aminophylline start (1.2 ± 0.4 mg/dL vs 1.1 ± 0.6 mg/dL; p=0.37), and no relationship 

between Cavg,24 and ΔSCr was found (Figure 2b, p=0.36).

Dose Optimization

Drug accumulation occurred with the aminophylline dosing strategy used in clinical care (5 

mg/kg load followed by 1.8 mg/kg every 6h), and 10 of 11 (91%) neonates who had drug 

concentrations measured after 48 hours of treatment had a theophylline concentration ≥ 10 

mg/L. This was also seen in Monte Carlo simulations with 90% of simulated neonates 
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predicted to have a trough concentration at steady-state (Ctrough,ss) >10 mg/L with the dosing 

strategy used in clinical care (Figure 3a). The optimal aminophylline dose found from Monte 

Carlo simulations was a load of 7 mg/kg followed by 1.6 mg/kg every 12h (Figure 3b). At 

this dosing strategy, 84% of simulated neonates achieved the target Ctrough,ss between 4–10 

mg/L, and 9% had a Ctrough,ss >10 mg/L.

DISCUSSION

This is the first study to describe the pharmacokinetics of theophylline in neonates with HIE 

receiving hypothermia. The major study finding was that theophylline clearance is low in 

neonates with HIE receiving hypothermia, resulting in a >50% longer half-life compared to 

what is reported in the FDA theophylline prescribing information for term neonates.(13) 

Theophylline (or aminophylline) dosing strategies will need to consider the unique 

pharmacokinetics of this vulnerable population. In addition, monitoring of drug 

concentrations will be necessary due to the narrow therapeutic window of theophylline and 

the underlying variation in pharmacokinetics between neonates with HIE receiving 

hypothermia.

An understanding of the pharmacokinetics of a drug are fundamental to developing safe and 

effective dosing strategies. In the current study we examined the population 

pharmacokinetics of theophylline in neonates with HIE receiving hypothermia. For a typical 

study neonate with HIE receiving hypothermia, theophylline clearance was 14.5 ml/h/kg. No 

clearance for comparison in term neonates is reported in the literature as historically 

theophylline has primarily been used in preterm neonates as a treatment for apnea of 

prematurity. The FDA prescribing information for theophylline does report a half-life of 

25.7 hours for term neonates 1–2 days old, which when compared to the half-life of 39.2 

hours found in the current study suggests a markedly lower clearance in neonates with HIE 

receiving hypothermia(13). Reduced drug clearance in neonates with HIE ± hypothermia has 

also been found for several other drugs when compared to nonasphyxiated neonates of the 

same gestational age.(17–20,34)

Two prior reports compared the pharmacokinetics of theophylline in asphyxiated and 

nonasphyxiated preterm neonates and found a 19%(35) and 46%(36) lower clearance in the 

asphyxiated group. These preterm neonates were not cooled. Interestingly, the clearance of 

theophylline we found in term neonates with HIE receiving hypothermia was within the 

range reported in asphyxiated preterm neonates (10.8 ml/h/kg(36) and 16.4 ml/h/kg(35)). A 

decrease in clearance of theophylline in term neonates with HIE receiving hypothermia may 

be due in part to organ dysfunction, changes in blood flow, the effect of hypothermia, and/or 

other unknown factors.(15,16) In our study, markers of disease severity (inotropic support, 

invasive ventilatory support, acute kidney injury, and/or seizures) and hypothermia were 

examined and not found to be predictors of clearance. However, our study likely had low 

power to detect predictors of clearance given the small sample size and lack of a control 

group. The volume of distribution of theophylline in term neonates with HIE receiving 

hypothermia (0.82 L/kg) was similar to prior reports in preterm neonates (0.69 – 0.86 L/kg).

(36–39)
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The mechanism by which theophylline provides renal protection in the setting of hypoxia 

ischemia is thought to be via its properties as a non-selective adenosine receptor antagonist. 

During renal hypoxia, adenosine levels increase due to adenosine triphosphate (ATP) 

consumption exceeding production. Subsequent adenosine A1 receptor mediated 

vasoconstriction occurs in the afferent arteriole of the renal cortex(40,41) leading to a 

reduction in renal blood flow and glomerular filtration rate (GFR) in newborn animal models 

of hypoxemia (4). If adenosine receptors are inhibited with intravenous theophylline in the 

setting of hypoxemia, renal blood flow, GFR, and filtration fraction are preserved.(4,5) The 

concentration of theophylline effective in the newborn animal model was ~0.7 mg/L(4). This 

effective concentration is in line with in vitro binding affinity studies demonstrating 

adenosine receptor inhibition at theophylline concentrations of 1–2 mg/L (42–44). Similarly, 

clinical studies of theophylline in neonates, children, and adults demonstrated augmented 

urine output or improved creatinine clearance at concentrations of 4–10 mg/L.(26–29) In our 

study, the average theophylline concentration in neonates during the first day of treatment 

ranged from 4.9–8.6 mg/L and resulted in a clinically significant increase in UOP. Within 

this concentration range, no relationship between theophylline exposure and change in UOP 

were observed. Similarly, no relationship between theophylline concentration and serum 

creatinine was found. The lack of an exposure-response relationship may potentially be due 

to neonates being within a range of exposures where maximal response was already 

achieved. Based on animal and in vitro binding affinity studies described above, lower 

concentrations in neonates might be effective yet have not been studied. While the optimal 

theophylline exposure for renal protective effects in neonates with HIE receiving 

hypothermia is not currently known, evidence to date support clinically effective target 

concentrations of 4 to 10 mg/L.

Applying the final population pharmacokinetic model, Monte Carlo simulations were 

performed to optimize the aminophylline dosing strategy most likely to achieve target 

theophylline concentrations of 4 to 10 mg/L in neonates with HIE receiving hypothermia. 

The optimal aminophylline loading dose of 7 mg/kg (= theophylline dose 5.5 mg/kg) 

followed by 1.6 mg/kg (= theophylline dose 1.3 mg/kg) every 12 hours achieved target 

concentrations at steady-state in 84% of neonates. In comparison, the dosing strategy used 

during clinical care at time of the study was a 2-fold higher daily dose (7.2 mg/kg/day vs. 

3.2 mg/kg/day) and was predicted to result in high concentrations (>10 mg/L) at steady-state 

in 90% of neonates. Due to the long half-life of theophylline, high exposures resulting from 

a dosing strategy may not be recognized for several days as drug accumulation occurs 

(Figure 2a). In our patients, concentrations of theophylline measured on the first day of 

treatment were within the target range in all but one neonate, but in the 11 who remained on 

aminophylline for more than 48 hours, 10 (91%) had subsequent concentrations >10 mg/L. 

While these higher concentrations were not associated with known adverse outcomes 

compared to neonates with HIE who did not receive aminophylline(12), assessment of 

toxicity is difficult in this population who frequently have multi-organ failure including 

central nervous system derangements and seizures.(16) Our center has since implemented in 

clinical care the optimized dosing strategy supported by this study. In addition, theophylline 

trough concentrations are monitored before the fourth maintenance dose. However, ongoing 

safety assessment within well-controlled studies will be important.
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This study is limited by the small sample size and caution is warranted generalizing our 

results across a heterogenous population of neonates with HIE receiving hypothermia. Our 

center’s use of aminophylline provided a unique opportunity, and we utilized an 

opportunistic design to examine neonates already receiving aminophylline as part of clinical 

care. Neonates in our study are likely representative of other neonates with HIE receiving 

hypothermia as eligibility criteria is based on standardized guidelines from the NICHD 

clinical trials demonstrating clinical efficacy of hypothermia.(21) We have applied this same 

opportunistic approach to study gentamicin(17) and morphine(18) pharmacokinetics 

successfully in neonates with HIE receiving hypothermia, and our findings were later 

confirmed in pharmacokinetic studies performed by other centers.(45,46)

Micro-volume pharmacokinetic sampling using DBS in the prospective study minimized 

blood volume requirements and enabled more sampling in each neonate.(47) A limitation 

resulting from the use of DBS sampling is the red blood cell-to-plasma ratio for theophylline 

is not currently known, and this ratio is important to help standardize concentrations in DBS 

samples compared to plasma samples. Since the red blood cell-to-plasma ratio was not 

known, it was estimated within the underlying pharmacokinetic model. This approach 

resulted in a final pharmacokinetic model that was able to adequately predict concentrations 

in both DBS and plasma samples. In addition, a sensitivity analysis demonstrated minimal 

changes in the predicted pharmacokinetics of theophylline when only plasma samples were 

used to estimate the final model.

Future research is critical to establish the clinical utility of aminophylline (and/or 

theophylline) for renal protection in neonates with HIE. While the pharmacokinetic data 

acquired here will help with design of a randomized controlled trial, a greater understanding 

of the importance of the timing of aminophylline administration in relation to hypoxic 

ischemic injury, the duration of exposure required to optimize efficacy, and populations most 

likely to benefit from treatment is needed. Aminophylline will also need to be studied in 

conjunction with more precise and dynamic biomarkers of renal function and injury beyond 

urine output and creatinine.(48) Lastly, demonstrating the long term impact of treatment on 

kidney function or other relevant clinical outcomes beyond the intensive care setting will be 

necessary to change clinical practice.

Conclusions

Pharmacokinetic studies are essential to support the clinical development of novel therapies 

in neonates and provide a starting point to guide safe and effective dosing strategies. In 

neonates with HIE receiving hypothermia, theophylline clearance was low with a 50% 

longer half-life compared to full-term neonates without HIE not undergoing hypothermia. 

Accordingly, customized dosing strategies are needed in this population, and an 

aminophylline loading dose of 7 mg/kg (= theophylline dose 5.5 mg/kg) followed by 1.6 

mg/kg (= theophylline dose 1.3 mg/kg) every 12 hours was predicted to regularly achieve 

theophylline concentrations associated with renal pharmacodynamic effects. Randomized 

controlled trials are needed in neonates with HIE receiving hypothermia to better establish 

the role of aminophylline (or theophylline) as a renal protective therapy.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Impact

• Theophylline is potential renal protective therapy in neonates with HIE 

undergoing therapeutic hypothermia, however the pharmacokinetics and dose 

needs in this population are not known.

• Theophylline clearance was low in neonates with HIE undergoing therapeutic 

hypothermia with a 50% longer half-life compared to full-term normothermic 

neonates without HIE.

• As theophylline is advanced in clinical development, dosing strategies will 

need to consider the unique pharmacokinetic needs of neonates with HIE 

undergoing therapeutic hypothermia.
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Figure 1. 
Individual predicted theophylline concentrations in neonates with HIE receiving 

hypothermia based on the final pharmacokinetic model as compared to the observed 

measured concentrations. DBS, dried blood samples measured as part of prospective study; 

Plasma, plasma samples measured as part of clinical care.
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Figure 2. 
Relationship between the average theophylline concentration over the first 24 hours of 

treatment (Cavg,24) and a) change in urine output (ΔUOP) 24 hours after start of treatment 

and b) change in serum creatinine (ΔSCr) 48 hours after start of treatment.
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Figure 3. 
Predicted theophylline concentration-time course after aminophylline using a) dosing 

strategy used in clinical care during the study time period (loading dose 5 mg/kg followed 

by 1.8 mg/kg every 6 hours) and b) optimized dosing strategy (loading dose 7 mg/kg 

followed by 1.6 mg/kg every 12 hours). Each dosing strategy was simulated in 3000 

neonates using the final population pharmacokinetic model. Solid line represents the median 

and dashed lines represent the 10th and 90th percentile. Shaded area represents targeted 

concentration range of 4 to 10 mg/L.
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Table 1.

Patient Demographics (n = 22)

Mean ± SD or No. Min, Max

Gestational Age, wks 38.5 ± 1.8 35.4 – 40.9

Birthweight, kg 3.3 ± 0.5 2.47 – 4.73

Female, n (%) 9 (41%)

Serum Cr, mg/dL 1.1 ± 0.4 0.5 – 2.1

Hematocrit
a
, (%)

49.9 ± 6.0 42.9 – 58.2

Acute kidney injury
b
, n (%)

7 (32%) -

Seizures, n (%) 17 (77%) -

Inotropic support n (%) 14 (64%) -

Death, n (%) 6 (27%) -

Serum Cr, serum creatinine at start of aminophylline

a
Data for five patients who had dried blood spot sampling

b
Based on serum creatinine by modified KDIGO criteria for neonates.
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Table 2.

Final population PK model parameter estimates for theophylline.
1

Final Model Bootstrap (n=1000)

Population PK Parameters Estimate %SE Median 95% CI

CL (L/h for 3.3 kg)
2

0.048 9.6% 0.048 0.040 – 0.060

V (L per 3.3 kg)
3

2.70 5.6% 2.68 2.38 – 3.00

K (RBC/plasma ratio)
4

0.68 19.4% 0.66 0.42 – 0.98

Interindividual variability

 CL, %CV 25.0% 54.9% 23.3 0.4% – 53.5%

 V, %CV 20.5% 37.4% 19.1 0.6% – 27.4%

Residual variability

 DBS, %CV 10.3% 37.0% 10.3 5.8 – 17.1

 Plasma, %CV 14.3% 35.9% 13.5 7.9 – 19.2

CL, clearance; V, volume of distribution; %CV, coefficient of variation x 100; %SE, relative standard error x 100; 95% CI, Bootstrap parameter 
estimate at the 2.5th and 97.5th percentiles; DBS, dried blood spot concentration; HCT, hematocrit; K, red blood cell to plasma ratio

1
, Parameters for theophylline. Aminophylline dose should be converted to theophylline equivalents by multiplying by 0.79.

2
, CL L/H = 0.048 × Birthweight

3.3 kg
0.75

3
, V L = 2.70 × Birthweight

3.3 kg

4
, PredictedConcentration Plasma, mg/L =

Concentration DBS, mg/L
1 − HCT 1 − K

Pediatr Res. Author manuscript; available in PMC 2021 March 12.


	Abstract
	INTRODUCTION
	METHODS
	General Study Design
	Patients
	Aminophylline Administration and Therapeutic Drug Monitoring
	Pharmacokinetic Sampling in Prospective Study
	Population Pharmacokinetic Analysis
	Exposure Response Analysis
	Development of Optimized Dose

	RESULTS
	Patients and Theophylline Concentrations
	Population Pharmacokinetic Analysis
	Exposure Response
	Dose Optimization

	DISCUSSION
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.

