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SNP Selection in Genome-Wide and Candidate Gene Studies
via Penalized Logistic Regression

Kristin L. Ayers� and Heather J. Cordell
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Penalized regression methods offer an attractive alternative to single marker testing in genetic association analysis.
Penalized regression methods shrink down to zero the coefficient of markers that have little apparent effect on the trait of
interest, resulting in a parsimonious subset of what we hope are true pertinent predictors. Here we explore the performance
of penalization in selecting SNPs as predictors in genetic association studies. The strength of the penalty can be chosen
either to select a good predictive model (via methods such as computationally expensive cross validation), through
maximum likelihood-based model selection criterion (such as the BIC), or to select a model that controls for type I error, as
done here. We have investigated the performance of several penalized logistic regression approaches, simulating data under
a variety of disease locus effect size and linkage disequilibrium patterns. We compared several penalties, including the
elastic net, ridge, Lasso, MCP and the normal-exponential-g shrinkage prior implemented in the hyperlasso software, to
standard single locus analysis and simple forward stepwise regression. We examined how markers enter the model as
penalties and P-value thresholds are varied, and report the sensitivity and specificity of each of the methods. Results show
that penalized methods outperform single marker analysis, with the main difference being that penalized methods allow
the simultaneous inclusion of a number of markers, and generally do not allow correlated variables to enter the model,
producing a sparse model in which most of the identified explanatory markers are accounted for. Genet. Epidemiol.
34:879–891, 2010. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

Regression methods are commonly used in statistical
analysis, and the recent move to single marker testing in
genetic association studies [WTCCC, 2007] has been out of
necessity on account of the large number of predictor
variables (upwards of 500,000 genetic markers) to be
examined. Analyzing markers together in a regression
model allows one to consider the impact of markers on
other markers; a weak effect may become more visible
when other causal effects are already accounted for, and a
false signal maybe removed by the inclusion of a stronger
signal from a true causal association. However, when the
number of markers is larger than the number of test
subjects or when variables are highly correlated, standard
regression methods become overwhelmed. Penalized
regression methods offer an attractive alternative. These
methods operate by shrinking the size of the coefficients,
pushing the coefficients of markers with little or no
apparent effect on a trait down toward zero, reducing the
effective degrees of freedom and in many cases perform-
ing model selection. Some penalization methods simply
reduce the magnitude of the regression coefficients, while
others coerce them to be zero. In genetic association
analysis, we expect only a few markers to have a real effect

on our trait (i.e. to be genuinely causal, or in linkage
disequilibrium (LD) with a causal variant). Thus, through
use of penalization, we can find the subset of markers
most associated with the disease. One potential problem
with penalization approaches is that a variable typically
enters the model only if it significantly improves predic-
tion. Thus, a variable with a strong marginal effect can be
overlooked if other variables explain the effect. However,
arguably, one would hope that the selection procedure
would select the variables that do indeed best explain the
data. Ideally, one strives to mimic the true underlying
model, penalizing and thus eliminating non-causal loci,
while leaving true causal loci unpenalized. A good penalty
should result in minimally biased estimators, a sparse
model and continuity to avoid instability in model
prediction.

As an illustrative example, see Figure 1. This figure
shows association test results for simulated data in a
region of high LD containing multiple causal loci. The
trend test gives small P-values at many loci correlated with
a causal locus, making it difficult to localize the causal
locus. Penalized methods are more particular, selecting
only one or several variables per causal locus.

In the genetics literature, use of these kinds of approach
is just starting to emerge. Ridge regression has been used
for distinguishing between causative and noncausative
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variants for quantitative traits [Malo et al., 2008]. For
binary traits, the normal exponential-g (NEG) distribution
[Hoggart et al., 2008], elastic net [Cho et al., 2009] and
group lasso [Croiseau and Cordell, 2009] have been
applied in order to identify important individual single
nucleotide polymorphisms (SNPs), while penalized logis-
tic [Park and Casella, 2008] and least angle [Zhang et al.,
2008] regression have been used for identifying gene-gene
interactions.

Unfortunately, all penalization methods require specifi-
cation of a penalization parameter (often referred to as the
tuning or regularization parameter), and the parameter
value yielding the optimal model is data driven. The
choice of penalty parameter controls the number of
variables selected: the larger the penalty, the smaller the
selected subset. The value of the penalization parameter
must be chosen, e.g. through cross validation, to avoid
selection of a sub-optimal value. An additional problem
with penalization approaches is that there are no efficient
ways of obtaining a confidence interval or P-value for a
coefficient. This must be done through a procedure such
as bootstrapping, and still does not reflect a true P-value in
the usual sense due to the complex selection procedure for
the reduced model. Wu et al. [2009] have suggested

calculating a leave-one-out index for each coefficient
(based on likelihood ratio tests, leaving one variable out
of the final model at a time), as a useful tool for comparing
variables in the model. Another downfall of penalization is
that many penalties not only shrink small coefficients but
tend to overshrink what should be large coefficients,
adversely affecting the value of the model in prediction.
However, if the primary interest lies in locating possible
disease genes, prediction per se is not of great concern.

Given the current interest in these types of method, the
objective of this study is to evaluate the performance of
several software packages for performing penalized
logistic regression, using computer simulations. We focus
on two different problems: first the issue of detection of a
relevant SNP or region, and second the issue of differentiation/
localization i.e. fine mapping within a region and distin-
guishing those variants that best explain the association and
are thus most likely to be causal, or be in strongest LD with
the causal variants. These two separate questions have not
always been clearly distinguished in the literature—for
example, Malo et al. [2008] compared ridge regression
with simple and multiple linear regression using receiver
operating characteristic (ROC) curves, without acknowl-
edging that the hypotheses being tested by the different

40800

0.
0

λ=70

Position (Mb)

|β
|

λ=20 λ=10

λ=5 λ=2 ATT

0.
2

0.
4

0.
6

0.
8

1.
0

40850 40900 40950 40800
0.

0

Position (Mb)

|β
|

0.
2

0.
4

0.
6

0.
8

1.
0

40850 40900 40950 40800

0.
0

Position (Mb)

|β
|

0.
2

0.
4

0.
6

0.
8

1.
0

40850 40900 40950

40800

0.
0

Position (Mb)

|β
|

0.
2

0.
4

0.
6

0.
8

1.
0

40850 40900 40950 40800

0.
0

Position (Mb)

|β
|

0.
2

0.
4

0.
6

0.
8

1.
0

40850 40900 40950 40800

0

Position (Mb)

–l
og

 (
P

-v
al

ue
)

2
4

6
8

40850 40900 40950

Fig. 1. Analysis of simulated data from the CYP2D6 gene region assuming five causal loci with MAFs o10%. The first five plots show

the absolute values of the regression coefficients for the program hyperlasso [Hoggart et al., 2008] as the penalty parameter k is relaxed.
The final plot is the �log P-values for the Armitage Trend test. Each causal locus is marked by a vertical line.
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methods differed. (The ROC curves for simple linear
regression counted detection of a locus in LD with the true
functional variant as a type 1 error—as would be correct if
one were using linear regression to try to differentiate
between causal and noncausal variants—but in fact simple
linear regression would generally be used for detection of
effects, not for dif ferentiation of effects, and so such an
observation should actually have counted towards the
power.)

We simulate data under a variety of disease locus effect
size and linkage disequilibrium patterns. We compare
several penalties, including the elastic net, the Lasso, a
pseudo-ridge, the minimax concave penalty (MCP) and
the NEG shrinkage prior to standard single locus analysis
(the Armitage Trend Test) and simple forward stepwise
regression. Software packages were selected for ease of use
and to cover a wide range of penalty functions. We explore
how markers enter a model as penalties or P-values are
varied, and report the sensitivity and specificity for each of
the methods.

METHODS

Binary traits such as case/control status are generally
analyzed using logistic regression. Given a dichotomous
phenotype vector Y of n observations, and a matrix of SNP
genotypes X, let p 5 P(Y 5 1|X 5 x). The likelihood is:

L ¼
Yn

pyð1� pÞ1�y

where

log
p

1� p

� �
¼ a1Xb

or equivalently,

p ¼
1

11 exp�ða1XbÞ

and b is our vector of coefficients.
In genetics, the advent of large-scale genotyping has

lead to underdetermined problems where the number of
markers is much larger than the number of individuals. In
this case, standard logistic regression cannot produce a
unique interpretable model. Penalized likelihood methods
maximize the loglikelihood subject to a penalty which is
dependent on the magnitude of the estimated parameters.
A penalty on the likelihood will penalize models which

have a large number of large regression coefficients, and
thus will be optimized with a sparser model. In genetics,
we have typically have many variables, but suspect that
there are only a few underlying causal variants. An ideal
penalty would quickly weed out variables with little
effect, with only the most relevant variables remaining in
the model. Use of a selection criterion, such as the
Bayesian Information Criterion (BIC), is a form of
regularization with a penalty that relies only on the
number of coefficients, but not on their magnitude.

The most well-known penalty, L1 penalty, was intro-
duced in the form of the least absolute shrinkage and
selection operator or Lasso constraint by Tibshirani in
1996. The selection process in the Lasso is based on
constructing continuous trajectories of regression coeffi-
cients as functions of the penalty level, which results in a
more stable solution than subset selection methods [Efron
et al., 2004]. To solve the Lasso regression maximization
problem, methods such as least angle regression (LARS)
[Efron et al., 2004], which can compute the entire piecewise
linear path of the Lasso estimates for all values of the
penalty parameters, or cyclic coordinate descent [Friedman
et al., 2007; Wu and Lange, 2008] have been used. Lasso
logistic regression is implemented in R packages such as
penalized [Goeman, 2009], glmnet [Friedman et al., 2010],
grplasso [Meier et al., 2008] and in other packages such as
Bayesian binary regression (BBR) [Genkin et al., 2007] and
the genetics software package Mendel [Wu et al., 2009].
The coefficient estimates from the Lasso procedure can
also be interpreted in a Bayesian framework as posterior
mode estimates using a Laplace (double exponential) prior
on the coefficients [Tibshirani, 1996]. This observation has
provided motivation for fully Bayesian approaches such as
the Bayesian Lasso [Park and Hastie, 2008].

The Lasso will encourage sparsity, setting most small
coefficients to zero, due to the penalty function’s sharp
peak at zero. However, given a sufficiently large penalty
parameter, the Lasso will also impose heavy shrinkage on
large coefficients due to the absence of tails (constant rate
of penalization), leading to biased coefficient estimates
(see Fig. 2). A similar issue of bias is seen for other
commonly used penalty functions such as the ridge
(L2 penalty) [Hoerl and Kennard, 1970; Le Cessie and
van Houwelingen, 1992], the elastic net (a mix of L1 and L2

penalties) [Zou and Hastie, 2005] and convex bridge
regression (Lq penalty for 1oqo2). Many recent methods
strive to relieve some of this bias by introducing penalties
with flatter tails, so that large coefficients are only
minimally shrunk (see Fig. 2). These include nonconvex
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Fig. 2. Plots of the negative of the penalty functions �kf(b). The penalty (y-axis) is plotted against b (x-axis) for the Lasso, elastic net,

ridge and MCP. The last plot is the NEG penalty f(b, k), the log density of the NEG prior. The peaks of each function are at b 5 0. In these

plots, for each method, a k value was selected to allow the penalty functions to be plotted on approximately the same scale. Other

parameter values (such as the mixing parameter a in the elastic net) were set to the values used in the analysis.
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bridge regression (Lq penalty for 0oqo1), the NEG prior
implemented in hyperlasso [Hoggart et al., 2008] and
thresholding penalties such as the smoothly clipped
absolute deviation penalty (SCAD) [Fan and Li, 2001]
and the MCP [Breheny and Huang, 2008; Zhang, 2007]. For
a review of some of these methods and their properties,
see Hesterberg et al. [2008].

In penalized likelihood inference, our objective function
may be written as:

log LðX;Y; bÞ � lfðbÞ

where the penalty f is a function of the regression
coefficients (and possibly a mixing parameter). The
amount of shrinkage is directly controlled by the deriva-
tive of the penalty function, and many different penalty
functions have been proposed. For example, the elastic net
criterion is:

Sðl; a; bÞ ¼ log LðX;Y; bÞ � l
1� a

2
jjbjj221ajjbjj1

� �

where jjbjj22 ¼ �b
2
j and jjbjj1 ¼ �jbjj are the L1 and L2

norm, respectively. Here, l controls the strength of the
penalty while a is a mixing parameter that determines the
strength of the L1 versus the L2 norm. The elastic net
criterion above is reduced to the Lasso if we let a5 1. If
a5 0, we have the L2 penalty used in ridge regression. The
Lasso has been shown to be consistent for model selection
under certain conditions given that the correlation
between relevant (true) and irrelevant predictors is not
too large [Zhao and Yu, 2006], or in other words, the
selected model will contain the true model with high
probability. However, the Lasso can select at most n (the
number of observations) nonzero parameters, and cannot
have a unique solution if any two variables are completely
collinear. The elastic net is a stabilized version of the Lasso;
it encourages groups of correlated variables to enter the
model together, and thus a small change in the data will
not have a large effect on the model. In our investigation,
we use the glmnet software by Zou and Hastie [2005], to
implement the Lasso, the elastic net with a5 0.4, and
approximate ridge regression with a5 0.05. (We use
approximate ridge regression because standard ridge
regression only shrinks coefficients and does not set them
to zero [Tibshirani, 1996], thus it does not automatically
perform subset selection and one must compute a score for
each coefficient for model selection.)

The MCP [Breheny and Huang, 2008; Zhang, 2007] is a
nonconvex penalty that applies the same rate of penaliza-
tion as the Lasso when the coefficients are near zero. The
rate of penalization is the derivative or slope of the penalty
function. As a coefficient moves away from zero, the rate
of penalization is continuously relaxed until a defined
threshold where the rate of penalization drops to zero. All
coefficient values above this threshold contribute equally
to the total penalty, so that very large coefficients do not
increase the penalty too much, leading to less biased
estimates of the large coefficients. The MCP is implemen-
ted in the R software package grpreg, and for our analyses
we set a 5 30, the default (where a is a tuning parameter
related to the threshold at which the rate of penalization
drops).

The method implemented in hyperlasso [Hoggart
et al., 2008] is a Bayesian-inspired penalized maximum
likelihood approach using a NEG prior. The NEG prior is a

continuous prior distribution with a sharp mode at zero
which has the effect of shrinking the regression coeffi-
cients heavily when they are near zero. The penalty
function is derived by taking the logarithm of the prior,
yielding a penalty that is a function of the coefficients
squared and the logarithm of a parabolic cylinder function
of the absolute value of the coefficients. For our analyses
we set the shape parameter to 0.1.

All penalized regression methods require input of one or
more values for the penalization parameter(s). From here
on we will refer to this parameter as l. The parameter
value must be selected (e.g. through cross validation) to
avoid selection of a sub-optimal parameter value. In
general, a very large value of l will only allow a small
number of variables to enter the model. If we choose the
value too small, the number of variables in the model may
be too large, and our coefficients become less reliable
because of their high variances; we approach standard
regression with most of the variables included the model
and overfitting occurs. The best choice of l is data
dependent and may vary, for example, from chromosome
to chromosome, or window to window, within the same
data set.

Due to the difficulties in finding an optimal value for l,
we found it most insightful to look at how variables enter a
model as the penalization parameter is relaxed, or in
nonpenalized methods as the P-value threshold for
declaring significance is relaxed. Penalized methods tend
to select only one or few variables belonging to a group of
correlated variables, resulting in a sparse model. The
question remains: are they missing anything? In our
investigation we vary the value of l to allow approxi-
mately only one additional variable enter the model at
each step. We record the number of true positives and false
positives at each value of l for each method, along with
the maximum LD between a false signal and a causal locus
and the maximum LD between a missed causal locus and
a signal.

We used computer simulation to compare five penalized
methods (Lasso, elastic net (EN), ridge, MCP and NEG) to
the Armitage trend test (ATT) and simple forward
stepwise regression (FSTEP). All methods were run under
the assumption of an additive allelic disease model. For
the ATT, we look at how variables become significant as
we increase the P-value threshold for declaring signifi-
cance. In FSTEP, at each step the variable with the smallest
P-value is added to the model, until no more variables
reach the required threshold. We compare methods first
with respect to detection of effects, in which detection of an
allele in LD (r240.05) with a true causal variant counts as a
success (and any other detection counts as a false positive),
and second with respect to localization/dif ferentiation, in
which we only count detection of the true causal locus
itself as a success.

SIMULATION STUDY 1: DETECTION OF
EFFECTS

Following the approach of Hoggart et al. [2008], we used
the program FREGENE [Chadeau-Hyam et al., 2008;
Hoggart et al., 2007] to simulate a population of 10,000
individuals with a sequence length of 20 Mb using
recombination and mutation rates representative of a
human population. We then thinned the data down to
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4,000 SNPs with frequencies 40.01, retaining approxi-
mately one SNP every 5 kb. We then used the program
SAMPLE [Chadeau-Hyam et al., 2008; Hoggart et al., 2007]
to simulate 500 replicate data sets, requesting 1,000 cases
and 1,000 controls generated from a model with six causal
loci of varying allele frequencies of approximately 15, 5
and 2%, and risk ratios ranging from 1.4 to 3.0.

Genotype variables were used as predictor variables in
each of the methods. Both glmnet and grpreg standardize
the genotypes to have mean zero and variance 1 by
default, and thus for comparability we also standardized
the genotypes for the NEG and FSTEP. As the causal loci
are not necessarily in the thinned SNP set, and our
markers have low enough density that LD between them is
fairly small, we report a true positive detection when a
SNP of r240.05 with a causal variant is selected. A False-
positive occurred when a SNP of r2r0.05 was selected;
however, a false positive was only recorded if it was more
than 20 kb from a previously detected false positive, as was
done by Hoggart et al. [2008]. This allows us to count a set of
signals from a group of highly correlated variables as a
single signal to prevent inflated false-positive rates in
methods such as the ATT and the EN.

SIMULATION STUDY 2: FINE MAPPING AND
DIFFERENTIATION/LOCALIZATION OF
EFFECTS

We also performed simulations based on three known
gene regions of varying LD patterns (see Fig. 3): CYP2D6,
CFTR and CTLA4 containing 110, 190 and 228 SNPs,
respectively. Although it would be possible to do standard
logistic regression in this case (owing to the smaller
number of markers compared to our previous simulation),
the fact that the genotype variables are highly correlated
leads to estimates with large variances.

With the software HAPGEN [Marchini et al., 2007], we
simulated 500 replicate data sets for each of the three
regions. We used the 120 haplotypes from the HapMap
[The International Hapmap Consortium, 2003] CEU
population as the basis of our simulations. In each
replicate, a population of 20,000 individuals was created
using the HapMap CEU haplotypes, and 1,000 cases and
1,000 controls were sampled from that population. For
each region we considered six different underlying genetic
model scenarios. We picked five ‘‘common’’ causal loci of
varying but high minor allele frequency (see Table I)
within each gene region. In scenarios 1–5, each locus in
turn was used as the single (only) disease-causing variant,
whereas in scenario 6, all five loci were assumed to act
together multiplicatively to increase disease risk. The
relative heterozygote and homozygote risk ratios in each
scenario were set at 1.3 and 1.7, and the penetrance was
chosen to give a population prevalence of approximately
10–13%. To compare the situation of common alleles
having small effects with that of rare alleles having strong
effects, the simulation was repeated using smaller minor
allele frequencies, and relative risks chosen to give
approximately 80% power for the detection of the
individual SNP (see Table I).

The simulated data were analyzed using the same five
penalized methods as in Simulation Study 1. Since in this
second experiment we were interested in the performance
of the methods with respect to differentiation of SNPs, in
common with Malo et al. [2008] we counted detection as

CYP2D6

CTLA4

CFTR

Fig. 3. LD plots (pairwise r2) in three gene regions.

TABLE I. Generating allele frequencies of the five
causal loci

Allele frequencies

RR of 1.3 and 1.7 RR to give 80% power

Gene Gene

Locus CYP2D6 CFTR CTLA4 CYP2D6 CFTR CTLA4

1 0.325 0.050 0.375 0.100 0.050 0.030
2 0.050 0.175 0.450 0.008 0.080 0.008
3 0.192 0.475 0.183 0.025 0.025 0.050
4 0.242 0.242 0.275 0.043 0.008 0.025
5 0.450 0.367 0.050 0.017 0.042 0.017

The first set correspond to common alleles and were used with
heterozygote/homozygote relative risks set at 1.3 and 1.7. The
second set correspond to rare alleles with relative risks chosen to
give approximately 80% power.
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selection of the true causal locus and considered all other
detections a false positive. However, in a similar manner to
Simulation 1, we considered a false signal in very close
proximity (10 kb) to a previously reported false positive as
a single false-positive signal.

RESULTS

SIMULATION STUDY 1: DETECTION OF
EFFECTS

With respect to detection, Figure 4 shows that the
penalized approaches all outperform the ATT and FSTEP,
and NEG slightly outperforms the other methods. We
might expect penalties with flatter tails to perform better
as they are less likely to allow important variables to leave
a model after they have entered. The Lasso appears to pull
the more weakly related parameters to zero faster than the
elastic net or ridge regression does. Thus, penalties that do
not have a strong peak at zero tend to let in too many
weakly correlated variables leading to larger amounts of
false positives. Forward stepwise regression performs
slightly worse than the penalized methods, probably due
to the fact that it is greedy, making poorer decisions in
variable selection as the model grows larger.

CHOICE OF k

Figure 4 shows the relationship between true and false-
positive detection for each of the methods as l is varied.
However, there is always the question of which penaliza-
tion parameter value to use in practice (i.e. which value of
l is optimal). Some software uses either cross validation
with training and testing data sets, or bootstrapping, both
of which can be computationally intensive. Cross-validation
uses prediction accuracy to find the best penalty, which
can lead to models that contain too many false positives,
i.e. variables which are not true predictors [James and
Radchenko, 2009; James et al., 2009]. Selection criteria such
as the Aikike Information Criteria (AIC), BIC and general-
ized cross validation (GCV) have been suggested. How-
ever, in genome-wide association studies, we are less
interested in prediction performance than we are in
identifying important predictors (while not identifying

too many false positives). If we desire to control the false-
positive rate, say at 1 in 100,000 (10�5), one way to get a
rough estimate of the appropriate l is to use permutation.
For Simulation Study I above, to calculate the appropriate
value of l in each replicate, we did 25 permutations of the
case/control status and recorded the value of l at which
the first variable entered the model in each permutation.
Since in each simulation replicate there are 4,000 markers
and 25 permutations (for a total of 100,000 tests), we
choose the largest value of the recorded l from the 25
permutation replicates as an estimate of the l that allows
only one variable out of 100,000 markers to enter the
model for that simulation replicate. (In a study with
100,000 markers genotyped, one could instead perform a
single permutation and choose the value of l that allows a
single marker to enter the model.) Table II demonstrates
that the value of l chosen in this way was reasonable,
giving a false-positive rate of the correct order of
magnitude. In the case of a large number of markers, this
process is also much faster than doing cross validation, as
it is not necessary to run a large number of different values
for l. The P-value cut off for the FSTEP and ATT (which
do not require specification of a penalization parameter)
for this comparison was set at 10�5, which similarly
produced a false-positive rate of the correct order of
magnitude.

The procedure described above estimates a (potentially
different) value of l in each simulation replicate. A more
accurate estimate of l could be obtained by using all 500
simulation replicates, taking advantage of the fact that
there should be a single value of l that gives the same
desired expected type I error in each replicate. This
approach, however, could not be implemented in a real
study that consists of essentially a single data replicate.
Hoggart et al. [2008] obtained an explicit expression for the
approximate type-I error of the NEG, so that it can be
calibrated without recourse to permutation techniques.
However, this functionality is not currently implemented
within their software. For the group lasso method, Meier
et al. [2008] proposed using a fixed value of l based on the
number of groups of predictors being considered; how-
ever, for genetic studies, this choice of l was found to work
poorly in practice [Croiseau and Cordell, 2009].

SIMULATION STUDY 2: FINE MAPPING AND
DIFFERENTIATION/LOCALIZATION OF
EFFECTS

With respect to differentiation/localization, in common
with previous studies [Hoggart et al., 2008], we found
penalized methods to perform better than single marker
tests (see Fig. 5). Single locus analysis was less able to
differentiate between true causal SNPs and those corre-
lated with the true causal SNPs. In the case of rare causal
alleles, our results are similar to those in the Simulation
Study 1, with the NEG slightly outperforming the other
methods, and the ATT again performing most poorly.
However, with extremely common alleles, all methods
perform rather poorly, with forward stepwise regression
and the ATT doing slightly worse than the other methods.
We also tried using smaller relative risks but all of the
methods were somewhat under powered, and the results
were less interpretable, although there was the same
general trend (data not shown). The common alleles
tended to be in very high LD with many markers, and
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Fig. 4. Sensitivity (detection rates) versus 1-specificity (false-
positive rates) as the penalty parameter k is varied. Results are

for seven different methods over 4,000 simulated SNPs with six

causal loci. Note the difference in axis scales, as we are

interested in low false-positive rates.

884 Ayers and Cordell

Genet. Epidemiol.



because we only recorded detection if we found the true
causal locus, detection was quite difficult.

CHOICE OF k

We again compared the methods with respect to
achieving a given error rate. Our desired false-positive
rate was 0.05 divided by the number of markers, a
Bonferroni correction. Within each replicate we therefore
performed 20 permutations (1/20 5 0.05) and picked the
maximal value of l leading to just one marker entering the
model, in order to obtain an estimate of the appropriate l
in the same way as before.

For both rare and common causal alleles (Tables III and IV),
our false-positive rates for all methods are higher than we
would expect. For example, in CYP2D6, we would hope
for 0.05/110 5 0.00045. This inflation in false-positive rate
may be due to the fact that we have simulated causal loci
in regions of very strong LD. The inflation in false-positive
rates was even higher with common causal alleles where
the degree of LD between other markers and these loci was

larger. There are many markers in the model that are in
very strong LD with our causal locus but are counted as a
false positive. The fact that the penalized methods again
give the same order of magnitude of false-positive rates as
the ATT test (which is based on a P-value cut off) is
confirmation that using permutation to pick the best
penalization parameter seems a reasonable thing to do.
Comparing the methods, forward stepwise regression
seems to be the most conservative method, but is least
powerful, while the ATT has high error rates and reason-
able power, but becomes less powerful than the other
methods as the P-value threshold is relaxed. Of the
penalized methods, the NEG is the most conservative,
with very little loss of power over the other methods,
while the ridge penalty allows far too many variables in
the model.

For more common alleles, the results are less clear
(Table IV). Even though the effect size is quite small, we
should still have high power to detect common alleles.
However, the high LD seems to detract from the ability to
distinguish between true causal loci and those variants in

TABLE II. Simulation Study 1: true and false-positive counts and rates for best k

Method

Lasso EN RIDGE MCP NEG FSTEP ATT

No. of true detections 1,163 1,167 1,180 1,152 1,110 1,172 1,174
Detection rate 0.3877 0.3890 0.3933 0.3840 0.3700 0.3907 0.3913
No. of false positives 36 40 52 35 25 30 44
False-positive rate 1.80e�05 2.00e�05 2.60e�05 1.75e�05 1.25e�05 1.50e�05 2.20e�05
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Fig. 5. Sensitivity versus 1-specificity as the penalty parameter k is varied in gene regions. The results for each gene region under

scenario 6 (five causal loci). The top row shows results for rare causal alleles while the bottom row shows results for common alleles.
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LD with them. While rare alleles are not in LD with many
markers, common alleles are in high LD with many, not
necessarily adjacent, markers.

On closer inspection of our results, we found a good
proportion of the false positives in all methods to be in
high LD with a true causal locus. In all methods but the
ridge, and to a lesser extent the elastic net, if a true causal
locus was missed, then there is often a marker in the model
that is in high LD with the causal locus which gets selected
instead of the true causal locus (see Figs. 6 and 7). To see if
there were a large number of false positives perfectly
correlated with a causal locus, we repeated the simulation

for the common alleles in the CYP2D6 region which had
the highest level of LD. We did not count these perfectly
correlated variables as false positives, and counted them as
a detection if the causal locus was not originally detected.
As expected, we found that the sensitivity improved, and
the false-positive rate dropped, but that the effect was
relatively small and fairly uniform across the different
methods.

The above results relate to scenario 6, in which five
causal variants were simulated within each gene region.
We also performed the same comparison for scenarios 1–5,
in which only one causal allele was simulated in each gene

TABLE IV. Simulation Study 2: true and false positives for best k for common alleles with relative risks of 1.3 and 1.7

Method

Lasso EN RIDGE MCP NEG FSTEP ATT

CYP2D6
No. of true detections 811 1,310 1,714 599 551 372 1,061
Detection rate 0.32 0.52 0.69 0.24 0.22 0.15 0.42
No. of false positives 1,480 3,881 6,819 652 586 702 4,700
False-positive rate 0.0282 0.0739 0.1299 0.0124 0.0112 0.0134 0.0895

CTLA4
No. of true detections 435 687 970 367 307 286 723
Detection rate 0.17 0.27 0.39 0.15 0.12 0.11 0.29
No. of false positives 1,470 2,215 3,597 1,120 817 901 2,495
False-positive rate 0.0132 0.0199 0.0323 0.0100 0.0073 0.0081 0.0224

CFTR
No. of true detections 503 972 1256 342 296 113 849
Detection rate 0.20 0.39 0.50 0.14 0.12 0.05 0.34
No. of false positives 1019 2293 4202 598 508 478 2500
False-positive rate 0.0110 0.0248 0.0454 0.0065 0.0055 0.0052 0.0270

Average ratio of True Positives to False Positives
0.44 0.35 0.27 0.55 0.60 0.37 0.27

Results are given for Scenario 6 (five causal loci).

TABLE III. Simulation Study 2: true and false positives for best k for rare alleles with relative risks chosen to give
approximately 80% power

Method

Lasso EN RIDGE MCP NEG FSTEP ATT

CYP2D6
No. of true detections 722 762 802 697 665 508 609
Detection rate 0.29 0.30 0.32 0.28 0.27 0.20 0.24
No. of false positives 232 335 681 220 187 151 574
False-positive rate 0.0044 0.0064 0.0130 0.0042 0.0036 0.0029 0.0109

CTLA4
No. of true detections 442 472 539 444 417 332 432
Detection rate 0.18 0.19 0.22 0.18 0.17 0.13 0.17
No. of false positives 237 284 395 253 215 223 387
False-positive rate 0.0021 0.0026 0.0035 0.0023 0.0019 0.0020 0.0035

CFTR
No. of true detections 418 432 469 380 374 256 242
Detection rate 0.17 0.17 0.19 0.15 0.15 0.10 0.10
No. of false positives 340 618 1297 313 261 218 823
False-positive rate 0.0037 0.0067 0.014 0.0034 0.0028 0.0024 0.0089

Average ratio of True Positives to False Positives
1.96 1.35 0.76 1.94 2.20 1.85 0.72

Results are given for Scenario 6 (five causal loci).

886 Ayers and Cordell

Genet. Epidemiol.



region (see Table V). With regards to a causal locus, the
Lasso, NEG, forward stepwise regression and MCP often
select only one of a group of highly correlated variables,
and if the wrong one is selected, the true causal locus has
little chance of entering the model at a later step, as is
evident by flat sensitivity versus 1-specificity curves (data
not shown). This may occur when the disease locus is in
perfect LD with another markers or in any replicate where
a marker in very high LD with the causal locus is more
strongly associated with disease status than the causal
locus by chance. For rare causal alleles, we found FSTEP
performed best (with the highest ratio of true detections to
false positives), with NEG coming in second place. For
common causal alleles, there was less difference between
the methods, but FSTEP and NEG again performed best in
two out of the three gene regions (CYP2D6 and CTLA4).

DISCUSSION

In this study we have examined the performance of a
variety of different penalized regression approaches and

compared their performance with respect to (a) detection
and (b) distinguishing of true from false causal variants in
genetic association studies. Although the performance of
some of the individual methods we considered has
previously been examined, to our knowledge there has
been no comprehensive comparison between methods and
between such methods and the simpler approaches that
are often used in genetic association studies (such as the
Armitage trend test and forward stepwise regression).
Moreover, some previous studies [Malo et al., 2008] have
been plagued by confusion over whether the methods
were being assessed with respect to (a) or (b).

Overall, we found broadly similar performance between
the different penalization methods, with NEG giving the
overall best and the ATT the overall worst performance.
Although larger parameter estimates are always more
heavily penalized, methods that apply larger relative
penalties on small parameter estimates and relatively
lower penalties to larger estimates seem to perform better
and more accurately estimate the effect size of the selected
SNPs. These penalties prevent variables that enter the
model early from leaving the model later on, and exclude
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Fig. 6. Maximum LD of missed causal loci with detected loci. Results are shown as histograms of maximum LD (r2) of a missed causal

locus with markers in the model. Presented are the results for the CYP2D6 gene region under scenario 6 (five common causal alleles) for

the k value chosen through permutation, where the y-axes are the counts over the 500 replicates.
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the entry of additional variables whose effects are solely
due to correlation with already included variables. As we
relax the error rate, penalized methods outperform the
ATT in detection, and may be useful for further explora-
tion of causal variants.

Although forward stepwise regression is conservative
for very stringent P-values, for more relaxed P-values it
generally performed slightly worse than the penalized
methods with a higher false-positive rate and lower
sensitivity, although it did perform well with respect to
fine mapping in the simulations where only a single causal
variant existed in a region. Forward stepwise regression
has the disadvantage that once a variable enters the model
it cannot correct itself by removing it if other variables are
a better fit; it is known to be greedy and unstable
[Breiman, 1996]. However, a forward/backward selection
procedure might perform better, although penalization
methods would still be expected to be less greedy.
Penalized methods have previously been shown to give
superior performance over stepwise elimination/addition
algorithms that often lead to local rather than globally
optimal solutions [Breiman, 1995]. However, in spite of
their theoretical limitations [Hastie et al., 2001], stepwise

regression approaches [Cordell and Clayton, 2002] have
frequently been used to differentiate between potentially
causal and noncausal variants in genetic association
studies [Barratt et al., 2004; Plenge et al., 2007; Scott
et al., 2007; Ueda et al., 2003] and appear to work rather
well in practice [Charoen et al., 2007].

As well as giving the overall best performance in our
study, the NEG has the advantage of being genuinely
applicable to genome-wide data comprising many thou-
sands of predictor variables, unlike most of the other
penalized approaches we considered, which suffer from
limitations with respect to the number of markers that can
be considered simultaneously [Croiseau and Cordell,
2009]. Given the recent success of single-marker ap-
proaches in detecting effects in genome-wide association
studies [Easton et al., 2007; Fellay et al., 2007; Frayling
et al., 2007; Todd et al., 2007; WTCCC, 2007; Zeggini et al.,
2008, 2007], in practice it is hard to imagine not under-
taking a first-pass single-locus analysis. However, the
superior performance of the NEG with respect to detection
as well as with respect to differentiation/localization of
effects suggests that, for most genome-wide studies, a
follow-up analysis using the NEG or similar (to generate a
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Fig. 7. Maximum LD of false positives with causal loci. Results are shown as histograms of maximum LD (r2) that a false positive shares
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sparser model in which the most important explanatory
markers are accounted for) would be a worthwhile
undertaking.
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