
Introduction
Many imaging technologies developed recently attempt to 
measure characteristics pertaining to the passage of fluid 
through blood vessels, thereby providing a noninvasive 
means to quantify vascular features.1 Perfusion is of par­
ticular interest in oncologic imaging, where tissue, and in 
particular tumor perfusion, plays a critical role. The growth 
and migration of cancerous cells requires proliferation of 
networks of new blood vessels through the process of tumor 
angiogenesis, triggering modifications to the vasculature 
of the surrounding host tissue. In principle, measure­
ments obtained from perfusion imaging provide physi­
ological correlates for neovascularization induced by tumor 
angiogenesis.2

Thus, many investigators in cancer biology and onco­
logy are attempting to use these features to better under­
stand the pathophysiological processes at play in the tumor 
microenvironment. Ultimately, these efforts aim to identify 
biomarkers based on perfusion phenotypes that could be uti­
lized for cancer detection, disease prognostication, as well 
as prediction and monitoring of therapeutic response to 
intervention.3–6

Perfusion computed tomography (CTp) is one such 
functional imaging technology that enables noninvasive 
observation and quantification of perfusion characteris­
tics. Physiological models have been developed to quantify 
a variety of perfusion characteristics (such as tumor blood 
volume, capillary permeability) that derive from measuring 
temporal changes in contrast enhancement obtained from 
CT images acquired over a period of time during intrave­
nous administration of a contrast medium.7 Consequently, 
CTp provides a quantitative basis for evaluating vasculature 
heterogeneity. The functional imaging technology has been 
utilized in a number of organs and tumors, including the 
prostate, colorectal, head and neck, lung, liver, and normal 
tissue.

Because such techniques require a sequence of successive 
scans under intravenous administration of a contrast medium, 
the quality of the resulting perfusion data depends on the 
manner in which the data is acquired. When specifying an 
acquisition protocol, investigators must determine several fac­
tors that could affect the quality of the resultant perfusion 
measurements. For example, one important factor involves the 
delineation of the preenhancement setpoint, or time/image at 
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which the arterial upslope is considered to first occur.8,9 In 
order to avoid excessive radiation exposure, patients are not 
scanned continuously, but rather at regular intervals over the 
course of the acquisition. Thus, investigators must determine 
the interscan subsampling interval to use in the acquisition. In 
a recent study,10 the length of the subsampling intervals was 
shown to significantly impact the resulting perfusion charac­
teristics. In addition, investigators must determine an acquisi­
tion duration, or the extent of time for which the patient must 
undergo repeated scanning, that yields stable quantification of 
the perfusion characteristics. To limit radiation exposure, the 
acquisition duration should be minimized. Moreover, because 
the tissue type may be unknown before the diagnosis, any pro­
posed duration of acquisition must ensure stable quantification 
of CTp characteristics for both malignant and healthy tissues 
before CTp can be used for detection and prognostication.

In the cases of two recent attempts to determine stable 
acquisition duration for acquiring perfusion characteristics in 
body tumors using dynamic CT,11,12 recommendations were 
put forth that were inferred using statistical methods that are 
inappropriate for addressing this objective. In this context, 
the investigators implemented ttests between CTp values 
obtained at discrete acquisition durations using a traditional 
hypothesistesting framework. Information pertaining to 
neighboring scans was ignored in the inference, and stabil­
ity was concluded in the absence of significant differences 
for tests between successive scans. In the case of one study,12 
conclusions were also based on measures of linear dependence 
between pairs of intrapatient observations at successive scans.

It is well known that the traditional formulation of the 
hypothesistesting problem considers equality of effects under 
the null hypothesis, with the alternative hypothesis character­
izing inequality. The corresponding Pvalue provides a mea­
sure of evidence against the null hypothesis, not for it. Because 
the roles assumed by the null and alternative statements are 
logically asymmetric, equivalence should not be inferred from 
the absence of a significant difference, since, intuitively, any 
underpowered study would inevitably reach this conclusion. 
Moreover, it has been well described that measures of linear 
dependence are misleading and inappropriate for evaluat­
ing equivalence or “agreement”.13 A proper analysis requires 
an equivalencetesting framework that measures the evidence 
against nonequivalence in relation to a prespecified equivalence 
region.

In addition, the pairwise approaches to inference utilized 
in both studies ignore temporal trends in the data, masking 
stabilization as a function of acquisition time. Notably, when 
appropriate statistical techniques are applied, conclusions devi­
ate substantially from those provided by the aforementioned 
authors.14 Heretofore, an appropriate method for inferring 
stable acquisition durations for acquiring imaging biomarkers 
from dynamic imaging modalities has yet to be explained. Nor 
has the concept of “equivalence testing”15 been appreciated by 
the oncologic imaging community. In this paper, we explain 

how statistical modeling can be used to infer stable domains 
for stochastic curve estimation.

The ideas in this paper are presented in the following 
sequence. First we present the general method. Thereafter, 
we demonstrate the method by evaluating acquisition dura­
tions for a perfusion biomarker acquired in metastatic sites to 
the liver as well as healthy liver tissue using semiparametric 
model inference. We provide concluding remarks in the last 
section.

Inferring table Acquisition urations from 
tochastic urves.
This section presents a formal definition for stability as well as 
a general approach to inference based on equivalence testing.

tability criterion. Let t . 0 denote the acquisition 
duration, and let f  (t) characterize the nonstochastic map­
ping of a perfusionbased biomarker as a function of t. Let 

′ =
+ −

→f t f t u f u
tu( ) lim ( ) ( )

0
 denote the derivative or veloc­

ity of the function at acquisition time t. f ’(t) characterizes the 
infinitesimal rate of change in f (t) with respect to the change 
in acquisition time t. Mapping f (t) is considered to be δ-stable, 
δ . 0, at acquisition time point t0 if


| |f t f t t t0 0( ) − ( ) < >* , * .δ for all  (1)

The function has attained stability at time t if its veloc­
ity is bounded within a neighborhood of zero for all subse­
quent time points. Thus, stability condition (1) is satisfied for 
all δ . 0 if f ’(t) reaches a steady state (or is time invariant) 
beyond t0: f ’(t*) = 0, for all t* . t0. Therefore, we can evalu­
ate acquisition durations for time invariance by fitting smooth 
curves to the observed data and conducting inference on the 
corresponding derivatives to assess their relative proximity to 
zero as a function of time.

tability inference. Let yt denote a stochastic response 
variable associated with a perfusion biomarker acquired for 
one patient region. A general nonparametric additive model 
applies local regression to a lowdimensional projection of the 
data. For example, we may assume that a onetoone transfor­
mation of y, g(y), varies symmetrically about mean f(t) with 
random error ε and constant error variance Var( ) ,ε ε= σ 2


g y f t E Vart( ) ( ) , ( ) ( ) .= + = =ε ε ε εwhere and0 2σ  (2)

Mapping f (t) represents an arbitrary function of time, 
which can be estimated using smoothing splines or lowess.16

The traditional approach to statistical analysis through 
hypothesis testing is valid when the aim of an experiment is 
to evaluate the evidence for differences among experimental 
conditions. However, the condition of “stability” is actually 
a statement of equivalence. A proper analysis requires an 
equivalencetesting framework that measures the evidence 
against nonequivalence in relation to a prespecified “equiva­
lence” region.
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Let τ . 0 denote the maximum observation period, 
0,t,τ, and let Lα(t) and Uα(t) denote the lower and upper 
bounds of the 100(1 – α)% simultaneous confidence band 
(CB1_α) for f ’(t) over the interval (t, τ). Statistically, one should 
infer that f (t) is stable at acquisition duration t0 at significance 
level α if the corresponding CB1_α encompassing all subse­
quent acquisition durations are contained within a sufficiently 
small neighborhood of zero (–λ, λ), that is

 –λ,Lα(t*) and Uα(t*) , λ, for all t*.t0.

The approach is analogous to testing null hypotheses of 
nonequivalence with equivalence region (–λ, λ). The boundary 
parameter λ represents the minimal magnitude of deviation 
that is meaningful in the context of the analysis. This may be 
specified as a scaled multiple of the estimated residual error 
standard deviation.

ase tudy in  Perfusion
In this section, we demonstrate the method for stability infer­
ence presented in the previous section using semiparameteric 
regression with implementation to the perfusion characteris­
tic most commonly utilized in oncology, namely blood flow 
(BF). Specifically, spline regression is used to avoid prespeci­
fication of a parametric form for the underlying functional 
relationships, which are often unknown. As demonstrated 
in Ref. 14, deconvolution modeling of dynamic CT requires 
acquisition durations of sufficient length in order to achieve 
accurate quantification of a patient’s perfusion characteristics. 
Before attaining steady states, these models yield biomark­
ers that are characterized by periods of noisy fluctuation. The 
dynamic periods are explained in part by the initial absorp­
tion of contrast. Ensuring stable quantification for the vari­
ous perfusion scanning applications in oncology requires the 
implementation of acquisition protocols that use acquisition 
durations that yield relative timeinvariant mappings. We 
will use the statistical model to flexibly estimate the mean 
velocity in the presence of stochastic curves. The stability cri­
terion will be used to infer a minimum stabilization time for 
blood flow when acquired in metastatic sites in liver as well as  
healthy liver.

 perfusion data. The study collected data on 16 
patients with neuroendocrine liver metastases in whom CTp 
had been undertaken on a target lesion in the liver. CT per­
fusion images were obtained from a dualphase protocol 
spanning a duration of 590 seconds. BF was acquired using 
a deconvolution analysis with the distributed parameter physi­
ological model.7,17,18 BF is the rate measured as milliliters per 
minute per 100grams of liver tissue (mL/min per 100g). The 
dataset analyzed here consisted of 59 eightslice cine images 
temporally sampled at 0.5seconds from the phase 1 acquisi­
tion, together with 8 anatomically matched images from the 
phase 2 acquisition. A final BF value was obtained for each 
region of interest (ROI) by averaging across each of the eight 

CT slice images. There were 25separate ROIs where BF was 
obtained in liver metastases and 27separate ROIs where BF 
was obtained in normal liver tissue. The observed BF values 
were transformed to the log scale for the purpose of adjust­
ing for conditionally asymmetric residual error at a given 
acquisition time and to mitigate heteroskedasticity as a func­
tion of acquisition time. Figure 1 provides the scatterplots 
of the observed log BF as a function of acquisition time for 
both types of tissue. Solid lines connect observations acquired 
from the same ROI, while dots characterize the observed scan 
times. The figure suggests that BF tends to be both elevated 
and more heterogenous in tumor sites when compared to nor­
mal liver.

emiparametric model. We model the CTp curves 
using penalized splines due to their smoothness properties 
and the fact that a unified framework for computing simulta­
neous confidence bands has recently been established.19 Our 
case study analysis uses a truncated polynomial following 
the mixed model framework established by Ruppert etal.20, 
thereby enabling direct estimation and inference on the deriv­
atives of the CTp curves as a function of acquisition duration.

Penalized spline regression. A spline basis is in essence a 
linear combination of piecewise polynomials. Let s denote a 
K×1 vector of knot locations. At time t, a truncated polyno­
mial spline basis of degree D is defined as


f t t t u t SD

D
k k

D

k

K
( ) , , ( ) ,= + + + + − +

=
∑β β β0 1

1

  (3)

where ( ) ( )t s t s t sD D− = − >+ 1( ) for the indicator function 1(). 
Note that, when restricted to each region of the time domain, 
the function is a Dth degree polynomial. f  (t) is smooth for all 
t for D.0. Unlike polynomials that possess all derivatives 
over the entire domain, splines possess all derivatives only at 
points that are not knots. The extent to which the spline is 
differentiable at a knot depends on the degree of the spline. 
For example, statistical inference with D=1 approximates the 
derivative f ’(t), with a step function over the time axis parti­
tion failing to yield continuity. In general, a Dth degree spline 
has no more than D – 1 continuous derivatives.

Penalized estimation uses constrained optimization to 
attempt to strike a balance between smoothness and a close fit 
to the data.20 In the mixed model representation, the spline coef­
ficients u1,…,u

k
, are modeled as independent and identically dis­

tributed (i.i.d.) random effects with variance σu
2 , and thus can 

be estimated using restricted maximum likelihood estimation 
(REML). Importantly, asymptotic simultaneous confidence bands 
can be obtained using Hotelling’s volumeoftube formula.19

Let yi denote an mi × 1 vector of BF measurements 
acquired at times ti for the ith ROI. In addition, let y 
denote the column vector obtained from stacking each yi, 
i=1,…, n. In our study, mi varies between 15 and 17. Adopt­
ing the mixed model notation provided by Ruppert et al.20, 
the semiparametric model is defined using design matrices X 
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and Z corresponding to fixed and random components of the 
additive model, respectively,

 y = + +X Zuβ ε,  (4)

where ε ε~ ~N e u( , ), ( , ), ( , ) , ( , , , , ),0 0 0 12 2 2σ σu N cov u X t t t D= = …  

Z t s t sD
K

D( ) , ,( ) ,− − + +1 …  and u is the K×1 vector of spline 
coefficients defined in (3). Let θ=(β, u) and define matrices


C X Z D I

D

K
= ( ) =













+
, , .and

0 0

0

1

After estimating the variance components with REML, 
we can obtain the estimated best linear unbiased predictor 
(BLUP) of f (t), which follows as f t H y ( ) ( ) ,= φ  where 

H C C C D CT T( )φ
φ




= +















−
1

1

 and φ σ σ ε
  = u

2 2/ .  As φ 

increases, σ u
2 becomes large relative to σ e

2, and therefore the 
fit attributes more total variation to an increasingly complex 
relationship. Conversely, as φ decreases, the fit becomes more 
smooth, as more of the total variation is attributed to random 
fluctuation.

In addition, the residual sumofsquared (RSS) errors 

can be used for cross validation, RSS I H yi
n

n i
= −( ){ }=∑ 1

2
( )φ , 

or to conduct model criticism for comparing knot locations 
or among spline bases of varying degrees using Akaike’s 
information criterion: AIC RSS DF nfit= +log( ) ( ) / ,2 φ  where 
DF tr H D D Kfit ( ) ( ) , .φ φ = { } ∈ + + +[ ]1 1

Derivative inference. Point and interval estimators can be 
derived for the rate of change as a function of acquisition time. Let 
g denote a G×1 vector of grid points or acquisition times of inter­
est on interval [0, τ], and let Cg = (Xg, Zg) denote the corresponding 
design matrix such that Xg and Zg are the column design matrices 
that result from application of the derivative operation to f (g):



X g Dg

Z D g s D g

g j j
D

j G

g j

D

j

= 





= −( ) −

−( )

≤ ≤

+

−

0 1 2 1

1

1

1

, , , ,

, ,

,
…

…

and

ssK

D

j G
( )



+

−

≤ ≤

1

1 .

The estimated BLUP for the derivative f ′ g( ), at each 
point in g, follows as


f C Cg



′ g( ) = +











−

C D CT T1
1

φ
y  (5)

Using the mixed model formulation, Ruppert et al.20 
demonstrated that the corresponding large sample covariance 
of f f ′ g g( ) − ′( ) follows as
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igure1. Scatterplots of log blood flow measurements from the liver perfusion study in tumor (left) and normal liver (right) as functions of acquisition time. 
olid lines connect repeated observations obtained from the same region of interest; dots characterize scan times.
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V C C C D Cg g

T
g
T( ) .φ

φ
ε

 


= +










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−

σ
2

1

1

 
(6)

Thus, approximate 100(1 – α)% interval estimators can 
be computed by selecting an appropriate asymptotically justi­
fied critical value cg

* ,

 f c Vg g
 ′ g( ) ± * ( ).φ

(7)

A 100(1 – α)% pointwise confidence interval results from 
fixing c g

*  at the (1 – α/2)th quantile of a Student’s tdistribution 
with n – DFfit degrees of freedom. Krivobokova et al.19 use 
Hotelling’s volumeoftube formula to derive an approximate 
simultaneous CB1_α, whereby asymptotically the critical value 
is selected to satisfy


Pr

H m
Hy

T

gmax
g

c
∈

( ) + ( )
( ) ≥









 =

(0 )

| |

|| ||,
* ,

τ

φ ε
σ φε

g
α

where ε = y – Cθ and m(g) accounts for bias due to shrinkage, 
m(g) = H(φ)TCθ – Cθ.

esults
Acquisition durations for BF from the liver perfusion study 
were inferred for CTp curves obtained in metastatic sites as 
well as regions of healthy liver (from the left or right lobes). 
For each tissue type, penalized spline regression analysis 
was implemented using truncated polynomial spline bases of 
D = 1, 2, 3. Our analysis used the package AdaptFitOS in 
statistical software R to implement REML and to select c g

*  for 
the resulting simultaneous confidence bands.

Knots were placed at evenly spaced quantiles of the 
observed acquisition time points. While, in principle penal­
ized spline estimators are robust to knot selection, because 
the sample sizes are rather small, the total number of knots 
were selected using the “corrected” version of AIC provided 
by Hurvich and Simonoff,21



AIC RSS
DF

n DF
c

fit

fit

= ( ) +
( ) +{ }

− ( ) −
log .

2 1

2

φ

φ





AICc was also used to compare goodness of fit among 
splines of varying degree. Table1 provides the AIC “optimal” 
numbers of knots for each spline degree and analysis in tumor 
and normal sites. In addition, the resulting AICc and RSS are 
provided for each model. Figure2 plots the point and inter­
val estimates for the BF maps obtained in tumor (top) and 
normal liver (bottom), as functions of acquisition time. The 
thirddegree truncated polynomial basis clearly resulted in a 
smooth fit when compared to the piecewise linear model (first 
degree). An intermediate degree of smoothness is evident for 
the fit corresponding to the seconddegree spline. As evident 
in Table 1, the firstdegree spline yielded the best tradeoff 
between goodness of fit and model complexity as defined by 
AICc in tumor. For sites in normal liver, the extent of enhanced 
smoothness provided by the thirddegree polynomial yielded 
the best tradeoff.

Figure3 provides the resultant estimated BLUP for the 
derivatives and the corresponding CB0.95, with an equivalence 
region (red) defined by ±0.5. The residual error standard devia­
tion was estimated to be approximately 0.55in tumor and 0.42in 
normal tissue. Therefore, λ=0.5 was chosen so that stability 
was measured in relation to the evidence that the mean curve 
varied less than approximately 1 standard deviation of random 
error. Using the approach described in the previous section, we 
concluded that CTp provides sufficiently stable characteriza­
tion of BF when acquired for at least 220seconds. Stabiliza­
tion was evident sooner in normal liver, where a duration of 
131seconds yielded stable acquisition. This is not surprising, 
since, as noted in Figure1, tissue perfusion tends to be more 
heterogeneous in regions undergoing tumor angiogenesis.

iscussion
In this paper, we described a statistically justified modelbased 
approach for inferring stability for estimation of stochas­
tic curves that eventually attain steady states. The effort was 
motivated in the oncologic imaging setting in the context of 
evaluating acquisition protocols for functional modalities that 
depend on a sequence of scans to acquire biomarkers that char­
acterize biological processes associated with tumor angiogen­
esis. The approach was used to select acquisition durations that 
yield stable characterizations of a perfusion biomarker when 
acquired in metastatic sites in liver as well as normal liver tis­
sue. It is important that the oncologic community recognize 

Table1. Statistical summaries obtained from semiparametric regression analysis of log blood flow from the liver perfusion study using penalized 
splines with truncated polynomial bases of specified degree. Boldfaced values mark the spline degrees that achieved minimum AICc.

T  N k AIC R SS

S g S g S g

1 2 3 1 2 3 1 2 3

umor 13 10 8 4.896 4.899 4.898 129.53 130.00 129.80

ormal 11 9 8 4.387 4.387 4.385 77.88 78.05 77.86
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and use appropriate methods of inference when evaluating 
acquisition protocols for functional imaging modalities so 
that these promising technologies realize their full potential 
as tools for constructing biomarkers for guiding cancer detec­
tion, prognostication, and treatment selection.
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