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Abstract

In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and
motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after
adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–
adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given
a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’)
between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different
training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor
mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal
mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to
experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an
input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement
learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of
experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e.
adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase
changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also
captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain
factor, explained asymmetric spatial transfer and generalization of prism adaptation, as observed in other experiments.
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Introduction

Visuo–motor mappings are efficiently learned, adapted and re–

adapted throughout life. In many cases, adaptation takes place in a

matter of few trials and on a timescale of minutes. Prolonged

adaptation leads to an acquisition of new skills, and subjects

become capable to switch rapidly between various learned visuo–

motor mappings [1–3]. Adaptation and learning are often non–

local, such that new skills generalize to situations differing from the

particular situations used for training [4–6].

A daily situation exemplifies these observations: Learning to ride

a bike which differs from the one you already master. Being

subjected to a suddenly new or distorted situation normally causes

the experience that an action just performed is not adequate (the

direct effect) and needs to be corrected or adapted. If after successful

adaptation, the normal non–distorted situation is reestablished, the

subject usually experiences the necessity to re–adapt to the original

condition (the aftereffect). A fundamental question is whether it

matters for learning to master both bikes (dual–adaptation) how often

the training switches between bikes? A second important aspect

concerns the generalization: having mastered the new bike, will I

be able to master it equally well when adding heavy saddlebags?

Dual prism adaptation provides a suitable paradigm to study the

processes that occur during visuo–motor learning: Subjects are

instructed to perform pointing movements towards a visual target.

After some familiarization movements, the subjects have to wear

glasses which induce a relatively uniform horizontal shift of the

visual world, either leftwards or rightwards. When first confronted

with such a visual shift, observers have the strong tendency for

ballistic movements to deviate leftwards or rightwards (depending

on the type of prisms) of the correct reaching trajectory towards a

target. This behavior results in an error between final hand and

target positions, the direct effect. This error is subsequently corrected

by observers during further pointing movements, until they

acquire a new mapping between proprioceptive and visual space.

A pointing error in the opposite direction, the aftereffect, is observed

when returning from the shifted to the normal condition, i.e. when

removing the glasses. Similar effects are also seen when observers

are confronted with force fields during hand movements [7]. The

stepwise reduction of both direct effect and aftereffect by multiple

changes between phases with the shifted and non–shifted viewing

condition represents a measure of dual–adaptation, i.e. dual visuo–

motor mapping learning. Although in modern experimental
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setups, and in the studies reviewed in this article, visual shifts are

realized by a virtual reality setup on specialized computer

hardware, for historical reasons we will refer to the main paradigm

as ‘dual prism adaptation’.

Humans acquire and implement multi–modal visuo–motor

mappings such that they are able to switch very quickly from one

motor control pattern to another [1–3]. If a cue is available

indicating which situation is present, this switching becomes

practically instantaneous after prolonged training. According to

previous studies, adaptation takes place mostly in the propriocep-

tion, but also in vision [8,9]. Pointing while looking through prisms

is a task differing from riding a new bike, but in both situations the

coding and control of angles of our extremities by the proprio-

ceptive system is fundamental.

Here we investigate the dynamics of dual–adaptation in a

combination of experiments and modelling. In particular, we test

two hypotheses about putative factors determining the speed of

dual prism adaptation: the number of phase changes and the total

number of movements.

N The first hypothesis is that dual mappings are learnt faster the

more often a subject experiences a phase change (i.e. prisms off

versus prisms on, and prisms off versus prisms on). Then dual–

adaptation should depend mainly on the number of changes

between prism conditions.

N The alternative hypothesis is that the acquisition of multiple

mappings is mainly regulated by the number of trials with an

effective feedback, e.g. with a pointing error. This would mean

that dual–adaptation should mainly depend on the total

number of executed movements which provide feedback about

the error, but not on the number of phase changes.

In this contribution, we will show that to a first approximation,

only the number of executed movements determines the speed of

dual–adaptation, if these movements are performed on a tight

temporal schedule in one experimental session. The impact of the

number of phase changes was very small, as well as the size of the

visual shift.

These new results impose strong constraints on possible models

and mechanisms explaining dual–adaptation. The most charac-

teristic features of prism adaptation [8,10–12] and of dual prism

adaptation [2–4] have already been identified and discussed in

detail. Different mechanisms, independently responsible for

subsets of related motor adaptation features, have been proposed.

The approaches comprise two main groups: The first group

consists of complex feedback adaptive controllers based on internal

models for motor control and trajectory planning, or on learnable

basis functions [5,13–15]. The second group comprises probabi-

listic and statistical frameworks such as Bayesian inference,

optimum information integration and error estimation via Kalman

filters [16–18].

However, approaches on neural models for dual–adaptation, as

to be found in [19], more inspired by and focused on putative

biological implementations, are less explored. More importantly,

none of the above mentioned abstract conceptualizations repro-

duces in a unified manner the important features of dual–

adaptation. The importance of a neural approach is its potential to

identify the ‘machinery’ behind human adaptation and learning. It

allows for understanding of and predictions about capabilities and

limitations of the human visuo–motor system.

In the modelling part of our study, we will show that a

minimalistic neural network is capable of reproducing our

experimental results on the learning dynamics during dual–

adaptation both qualitatively and quantitatively. In addition, and

despite its structural simplicity, our approach provides a unifying

account for other phenomena characteristic for prism adaptation,

such as the generalization of adaptation to different target

positions. Thus, the model sheds light on the mechanisms

underlying the experimentally observed phenomena.

The proposed model uses two forms of inputs: The first input is

used to estimate the target location from a neuronal representation

of visual space in the early visual areas. The second input informs

about the situation (condition) that the subject currently faces. It

contains a cognitive component of the paradigm by modeling the

abstract realization that ‘something has changed’, which is

necessary for a subject to choose the appropriate motor control

pattern actually needed for the current situation.

We show that our model can reproduce quantitatively key

features of experimental data, as well as predict motor behavior

when certain experimental conditions are manipulated. The

constitution of this model is based on biologically plausible

mechanisms, e.g. the coding of angles of eyes and other body parts

by muscle spindles [20], and on behavioral responses, e.g.

realignment of proprioception and vision [3,21]. With a plausible

learning mechanism inspired by reinforcement learning [22], our

model finds a configuration of its internal parameters (synaptic

weights) that allows for acquisition and storage of dual sensory–

motor mappings.

This paper is organized in four main sections. The next section

contains a description of the experimental setup and paradigm for

studying dual–adaptation, together with a short description of

methods used for data analysis, and a full description of the model.

The second section reports the main experimental findings. The

third section compares the results obtained from experiments and

from model simulations. The final section discusses the results and

presents testable validations and refinements of the model. The

appendix S1 holds additional information for the model setup and

generalization of results.

Methods

Ethics Statement
All experiments were approved of by the Bremen University

ethics committee. Prior to the experiment, subjects were briefed

about the experimental procedure and gave their written informed

consent. The guidelines in the declaration of Helsinki (2008) were

strictly followed throughout the experiment.

Participants
The 50 subjects (21 male) were right–handed volunteers, mostly

students at Bremen University, aged 20 to 30 years (M~24:1,

SD~3:2). All subjects had normal, or corrected-to-normal visual

acuity (Snellen: 20/20) and ‘normal’ stereoscopic vision (ƒ550’’),
they were also naive to prism addaptation. Subjects were paid 8

EUR per hour for their participation.

Experimental setup and task
In the experiment we used a virtual reality (VR) setup with a

CRT screen viewed via a mirror (figure 1). In the setup the subject

was looking down at the working area hidden behind the mirror.

This hidden working area (approx. size 380 mm width6260 mm

height6190 mm depth) was designed to coincide with natural

hand movement space. Hand movements in the working area

were recorded in six degrees of freedom (3 spatial, 3 rotational)

with a manipulandum (Phantom Premium 1.5 HF) and used in

real time for controlling the position and orientation of a virtual

hand in the VR. Subjects held the manipulandum handle in their

right hand with the index finger parallel to the handle and

Modeling Dual-Adaptation
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oriented towards the virtual screen. A box with a button mounted

on its top was used as starting position for all movements. Shutter

glasses (Crystal Edge) were used to create a 3D visual VR adjusted

to the subjects’ individual pupillary distance. The virtual screen

was realized as a reflection of the real screen on the mirror, and

appeared perpendicular to the viewing axis 47 cm in front of the

subject. On the screen a target with a surrounding rectangular

frame (165 mm height6250 mm width) and a virtual hand could

be displayed. A white rectangle was used as the target, shown 6 cm

behind the surface of the virtual screen. The virtual hand was

realized by a realistic 3D model of a hand holding a stick, shown in

a pointing posture matching the real hand holding the manip-

ulandum handle in the hidden working area. This 3D device is

essential for a realistic feeling in the VR and for investigating

adaptation. Without a realistic feedback, only corrections based on

the consciously perceived pointing error might occur. The

rectangular frame was shown at zero disparity horizontally

centered around the target for allowing easy and successful fusion

in the VR.

The task for the subjects was to reach towards the target with a

pointing movement of the virtual hand under different viewing

conditions. The target was displayed on the screen, either on the

right side (original mapping) or on the left side (shifted mapping) of

the screen. To successfully reach the target, the required hand

movement was identical in all conditions. However, the mapping

between real and virtual space was changed between normal and

shifted viewing conditions. In the normal viewing condition, real

space was directly mapped to virtual space. In the shifted viewing

condition, shifts of about 170 or else 80 were applied in virtual

space, displacing both target position and virtual hand to the left.

This emulated the effect of wearing prism glasses which induce a

similar shift of a visual scene, while diminishing effects of error

correction caused by independent cues about real positions of

objects relative to the observer’s body.

Paradigm
The experimental task was the same for all subjects throughout

the whole experiment: pointing at a visually presented virtual

target. Whenever the subjects pressed the button at the starting

position with their pointing hand, a trial began and a pointing

target was presented on the screen until the end of the trial.

Movements began from this starting position directly in front of

the subject’s trunk, and ended around the virtual target. Subjects

were instructed to move fast but smoothly to the target with no

online error corrections, and to try to reach the target with the tip

of their right index finger as quickly as possible. They were told

that the virtual hand was at exactly the same position as their own

hand, and they did not expect any changes in this mapping

between real and virtual coordinates. During an initial period, the

virtual hand was permanently visible to establish a solid association

between the virtual hand and the subject’s real hand. During the

experiment, proper visual feedback of hand position (virtual hand

shown on screen) was provided only at the endpoint of each

movement (terminal feedback) for a short time interval (300 ms).

The endpoint of a movement was extracted from the recorded

trajectory when movement speed fell below a threshold (10 mm/

s). After receiving feedback, subjects moved back to the starting

position where the next trial started with the button press.

Each subject carried out 1215 movements in total: 15 in a

familiarization phase prior to the experimental blocks, 600 with

shifted mapping, and 600 with original mapping. During the

familiarization phase, subjects had time to get used to the

apparatus and task while pointing in the original mapping. In

the subsequent experimental blocks, the different mappings were

used in alternating blocks consisting of an adaptation (shifted

mapping) and re–adaptation (original mapping) phase each. The

number of blocks and phase lengths were varied between

experimental groups ranging from 5 blocks of 120 movements

each in adaptation and re–adaptation phases, up to 120 blocks of 5
movements in both phases. Figure 2 shows the complete

combination of number of blocks and phase lengths. Short breaks

were included in the procedure every 300 movements, resulting in

three breaks for all groups except for the group with 5 blocks of

120 movements per phase. This group had a break after each

block (every 240 movements), resulting in a total of four breaks.

Subjects were allowed to stand up and move around during the

breaks but stayed within the laboratory room. Each break usually

lasted only for a short time (*1 minute), but the subjects were free

to continue whenever they felt ready. Each combination of

number of blocks and phase lengths was tested in separate groups

with both, a large (*170) and small (80) visual shift. In total, ten

groups of five subjects each were tested.

Data analysis
From the pointing trajectories, off–target displacements x(m)

(figure 1), with m~f1,:::,MTg indexing the pointing movements

made by each subject were extracted. Displacement was defined as

the horizontal distance in degrees of visual angle from the pointing

location to the target in the coordinate system of the subject, and

corrected by the baseline extracted from the first 15 familiarization

trials. Displacement x(m) was measured for each observer, labeled

with index o, under one of the five experimental schedules

s~fI ,:::,Vg (see figure 2). These three indices are used to

unambiguously identify each measured displacement as xo,s(m).
For a small number of movements (v1%), the hand speed at the

end of the movement did not fall below the threshold for

automatic detection. In these cases, pointing error was extracted

manually from the pointing trajectory. One of the 50 observers did

not complete the experiment and was excluded from subsequent

analysis.

In order to quantify learning in our dual–adaptation experi-

ment, we focus on the direct effect, i.e. the error of the first

movements made in every block b indexed by b~1,2, . . .. Each

block consists of 2Ms movements, with the first Ms movements

made in the shifted mapping and the subsequent Ms movements

made in the original mapping. For each schedule s, the first

movement in block b is thus selected by the global movement

index mb~2Ms(b{1)z1. By averaging over the corresponding

displacements x(mb), we obtained the average direct effect

Es(b)~vxo,s(mb)wo. The average aftereffect Es
’(b), i.e. the mean

Figure 1. Virtual reality setup. A) A Subject sees the VR screen via a
mirror, and executes pointing movements with a manipulandum. A
head post constrains head movements of the subject, while wearing
shutter glasses for 3D perception. B) VR screen showing the virtual
hand, the target, and the frame.
doi:10.1371/journal.pone.0076601.g001
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error of the first movement made after the original mapping was

restored, was obtained by averaging displacements with global

movement indices mb
’~mbzMs.

For a better comparison of data from different schedules, we

apply a normalization procedure on average direct effect and

aftereffect, which show an exponentially decaying trend with a

visible final offset. This dynamics is similar to what is typically seen

during single adaptations to horizontal prism shifts [11]. To obtain

the normalization, a non–linear least squares fit of an exponential

decay plus an offset ÊEs(b)~ÊEoffs
s zÊE0

s exp {(b{1)=tsð Þ was

performed, where ÊEoffs
s stands for the estimated final offset, and

ÊE0
s for the estimated direct effect with ÊEoffs

s being removed. The

final offset is a constant off–target displacement, whose value is

typically larger than zero. The decay constant ts characterizes how

fast alternative mappings are learned. The experimental data are

normalized by removing the (estimated) offset, and by dividing by

the (estimated) direct effect of the first block,

Enorm
s (b)~(Es(b){ÊEoffs

s )=ÊE0
s . The inverse of the fitted ts provides

an estimate of the learning rate for the acquisition of each

mapping during dual prism adaptation. It gives the average

number of changes between conditions to reduce the initial off–

target displacement by *63%.

In order to investigate whether the speed of dual–adaptation is

determined by the number of changes between conditions or by

the number of executed movements, we analyzed the normalized

target deviation Enorm
s (b) in dependence on executed movements

mb. This is done by using the scaling introduced above, where

(b{1)~ 1
2Ms

(mb{1), leading to a rescaling of the adaptation

constants via t’s~2Msts. If adaptation speed would depend only

on the condition changes, ts would be constant for all schedules s.

Instead, if adaptation speed would depend only on the number of

executed movements, t’s would be constant for all schedules s.

Model
As an approach to understand the mechanisms of dual–

adaptation, we consider a structurally simple but biophysically

plausible adaptation model (see figure 3). Using an essentially one–

layered neural network, the model maps a spatially distributed

visual input into a reaching direction. Errors between intended

and actual hand position are used by a reinforcement algorithm

for adapting the parameters of the network, i.e. its synaptic

weights. We will first explain the model structure and its mapping

from the input to the output variables, and then describe its

adaptation/learning dynamics.

Structure and dynamics
We assume a minimal model with only two stages: An input

stage, where a target position is extracted from a spatial activation

profile, and an output stage, where the perceived position is

transformed into a pointing angle for a motor command. For

simplicity, we assume that the spatial activation profile is already

in a head–centered coordinate frame, where visual and proprio-

ceptive information (e.g. the actual retinal image and the viewing

direction) are already integrated.

Input stage. The one–dimensional activation profile x(w)
depends on the horizontal angle w. For the dual prism experiment

with one target localized at angle wT~300, activation is

represented by a Gaussian with length scale sw~100,

Figure 2. Experimental protocol for dual prism adaptation. Every group was confronted to a different schedule s[fI ,II ,III ,IV ,Vg which had
a different number of movements per phase Ms[f5,15,30,60,120g, respectively. The total amount of movements was MT~1200, resulting in varying
number of blocks MT=(2Ms) for all different groups s. All groups performed 15 initial setup familiarization movements.
doi:10.1371/journal.pone.0076601.g002

Figure 3. Layout of a perceptron–gain model. The network is able
to learn and store dual mappings, acquired during dual prism
adaptation with a single target. The Gaussian curve represents input
activations coding perceived target location. The spatial mapping is
modulated by an adapted gain factor which depends on prism
conditions.
doi:10.1371/journal.pone.0076601.g003
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xwT ,d(w)~
A

sw

ffiffiffiffiffiffi
2p
p exp {

w{wT{dð Þ2

2s2
w

 !
: ð1Þ

The variable d denotes a visual (horizontal) shift induced by

wearing prism glasses or by being subjected to a virtual

environment. In the normal viewing condition, d~0, and in the

rightwards/leftwards prism condition d~+150. A is a free

parameter which we have set to A~100. In the following, we

assume a discretized profile ~xx (figure 3) represented in a set of N
input channels (i.e. neuronal populations). We have chosen the

number of input populations to be N~15, spanning the

horizontal viewing angle from {1050 up to z1050. This provides

an angular resolution of 150, i.e. every input node j corresponds to

an angular location wj~½(j{1)150{1050�, with j[f1,:::,Ng.
Higher angular resolutions, up to 10 do not affect our main results.

A transformation f from wT into an encoded perceived target

location angle is achieved by computing a scalar product between

activation profile~xx and a positive weight vector ~ww. The encoding is

denoted by b~~ww~xx, and could be realized by a neuronal

population receiving feed–forward inputs from a sensory–integra-

tion layer (linear perceptron). By construction, negative neuronal

responses do not occur in this model. Assuming that this stage

operates in an approximately linear regime, leads us to the

expression:

b(w)~f~ww(wT ,d) : ~~ww~xxwT ,d : ð2Þ

Output stage. The perceived target angle encoded in b is

mapped to a pointing angle a for the execution of the hand

movement. For small wT and d as in the actual experiment, a

required mapping g from b to a is almost linear (see Discussion

and appendix S1), and thus we can write

a~gwc ,a0
(b,xc)zft : ~(1{wcxc)b{a0zft : ð3Þ

The parameter wc and the variable xc will be explained below.

The constant angle a0~1150 serves to convert the always positive

neuronal signal b to a pointing angle which can take both positive

and negative values. ft is optionally included as a temporally,

statistically independent and zero mean noise source, for a

biologically plausible simulation of uncontrolled motor fluctuations

and/or uncertainty in neural signaling.

Cognitive input. In the dual–adaptation paradigm, the

switch between the normal and shifted viewing conditions is

accompanied by an apparent change in target position, whose

physical location in real space never changes. Subjects might use

this indirect information, even prior to experiencing the suddenly

large error in their pointing movements, for switching from one

learned mapping to a second learned mapping [23,24]. This

cognitive cue processing is here modeled as an adaptive gain

mechanism via a second input xc, which can be used to

instantaneously switch between two gain factors, without requiring

to re–learn the spatial mapping embedded in ~ww. The reason for

choosing a multiplicative gain instead of an additive shift will be

discussed later. We set xc~0 in the normal mapping (prisms

OFF), and xc~0:05 in the shifted mapping (prisms ON). The

parameter wc scales the cognitive input and must be learned in

order to be able to compensate the visual shift.

Dual–adaptation. For a correct pointing movement towards

the target, it is required that a~g(f (wT ))~wT . Mathematically,

this means that the following two equations must be satisfied,

assuming that the target is always presented at wT~0:

gwc,a0
(f~ww(wT~0,d~0),xc~0) : ~0 for normal viewing, ð4Þ

gwc,a0
(f~ww(wT~0,d=0),xc=0) : ~0 for shifted viewing: ð5Þ

Using our definitions for g and w, the following equations are

obtained:

~ww:~xx0,0{a0 : ~0 for normal viewing, ð6Þ

~ww:~xx0,d(1{wcxc){a0 : ~0 for shifted viewing, ð7Þ

Equations 6 and 7 are trivially fulfilled for wT~const:, making it

possible to acquire a ‘perfect’ dual mapping. However, it will not

lead to perfect dual mapping acquisition for target positions wT

which span the full viewing axis.

Learning
We propose a reinforcement learning mechanism: A reward or

punishment signal is received from interaction with the environ-

ment after stochastic exploration of the system’s inner parameters

has taken place. For instance, adaptation can be achieved by

correlating a global signal, which is fed back to the system, with

controlled local fluctuations of synaptic connections. The inherent

stochasticity of synaptic transmission might serve this purpose

[22,25].

In our paradigm, synaptic fluctuations produce subsequent

output fluctuations, e.g. fluctuations of the pointing error. These

error fluctuations are taken as the reinforcing global signal. Such a

procedure can implement a stochastic gradient learning algorithm

[26], thus driving all involved synaptic strengths to an optimum set

for realizing the required dual mapping.

The error function is defined as E
p
quad~(ap{(wTzd))2, where

the supra index p stands for the two possible prism conditions, ON

or OFF. When wearing prisms for the first time, the first direct

effect will be related to the difference between pointing movement

aON and actual target position wT displaced by the visual shift d.

After being adapted to prisms and taking them off, the first

aftereffect will be simply related to the difference between pointing

movement aOFF and target location wT . To find an optimum set of

synaptic weights, they should be slowly varied towards the

direction opposite to the gradient on the error function, as

performed by equation 8 (gradient descent),

wj Dmz1~wj Dm{gj

LEquad

Lwj

� �
Dm , ð8Þ

where index j runs along all synaptic weights contained in f~ww,wcg,
and gj is a small factor to control the learning rate of each synaptic

weight. For all ‘spatial’ weights ~ww, the learning rate is gw, and for

the cognitive weight wc, it is gwc
. Choosing different values for gwc

and gw may be required if two distinct neural substrates with

different error sensitivities and information acquisition rates are

Modeling Dual-Adaptation
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involved [21,27]. Index m indicates the ordering of the pointing

movements as introduced in the Data Analysis section.

The above rule is a theoretical approach to find the optimal

weights. A biologically realistic implementation consists in

correlating synaptic fluctuations with their impact on the error

function, e.g. through some bio–chemical concentrations available

to the synapse. Combining these two signals at each synapse allows

to estimate the gradient on the error/reward (see [28] for the proof

of an alternative mechanism based on the same principles). If a

stochastic fluctuation dwj led to a smaller error, a small proportion

of it will be expressed as a synaptic change. Instead, if the

fluctuation increased error, then a synaptic change in the opposite

direction will be taken.

The adaptation procedure is identical for both viewing

conditions, which only differ in the values of d and xc provided

as input variables:

N Synaptic weights ~ww and wc are varied stochastically

wj?wjzdwj with each fluctuation dwj drawn from a

Gaussian distribution N (0,s), with either s~sw or s~swc

respectively. Since synaptic weights must remain positive, they

are clamped to zero if a too large negative fluctuation occurs.

N Synaptic fluctuations lead to output fluctuations dap, and

therefore to error fluctuations dE
p
quad . In the experiment, the

simultaneously displayed final positions of virtual hand and

target are part of this information available to the subject.

N Error fluctuations are fed back to the system to be used as

global evaluation signals, i.e. either reward or punishment.

N Correlations between synaptic fluctuations and error fluctua-

tions are used to update synaptic weights, according to a

stochastic learning rule

wj Dmz1~wj Dm{gj dwjdE
p
quad

� �
Dm : ð9Þ

This learning rule realizes a stochastic gradient descent on the

error surface over the space of possible synaptic weight patterns.

Prior to dual–adaptation we let the model learn weights that

map each visual stimulation to its correct motor response under

normal viewing conditions: We have randomly chosen targets

from a uniform distribution over positions in ½{900,z900� (with

above mentioned resolution 150) and let the stochastic rule update

all synaptic weights. We set a0~1150. Since d~0 and xc~0, no

updates on wc are at this stage relevant for the model’s output.

Each target was presented for 100 iterations of the learning rule.

Learned synaptic weights stabilized after about 260 targets.

Weights ~ww were initialized from a uniform random distribution

within ½0,30� prior to training. After training, we took the average

final weights v~ww�w among 100 simulations as starting values for

the actual dual–adaptation experiment (we also tried non–

averaged initializations which could explain some part of observer

variability in the real experiment, but of course yielded a higher

noise level impairing the subsequent data analysis).

After acquiring normal mapping, a dual–adaptation schedule as

in our experiment was realized. When the shifted viewing

condition is presented for the first time, the direct effect is

‘perceived’ and fed back to the model. This direct effect must be

gradually corrected in order to achieve adaptation. Once

adaptation is completed and the normal viewing condition is

restored, the model ‘experiences’ an aftereffect. The old mapping

must be recovered by a similar adaptation process. In total, the

model has two pairs of parameters for controlling the error decay

rates, fgw,swg and fgwc
,swc
g.

Results

Human observers
Pointing errors for both, direct effect and aftereffect, were

averaged over observers and fit by an exponentially decaying

function with offset (see Methods). Fig. 4 summarizes the results

and fits for the time constants t (in units of phase changes, Fig. 4A)

and t’ (in units of movements, Fig. 4A). Table 1 and Table 2

summarize the numerical values for the time constants together

with the quality of the fit (R2) for the small visual shift and large

visual shift, respectively. In general, the fits for the small visual shift

are not very good – indicating both, a high noise level comparable

to the size of the actual visual shift, and the fact that a large

proportion of subjects did not adapt very well or even did not

perceive this small shift in the virtual environment.

Focusing on the conditions with large visual shifts (right columns

of panels A and B in Fig. 4), it is obvious that t changes much

more drastically than t’. This holds for both, direct effect and

aftereffect. Assessment of the goodness–of–fit (red error bars) of

each condition reveals no significant difference between the values

of t’. This indicates that adaptation depends mainly on the

number of movements made, regardless of their distribution along

prism phases. In other words, comparing learning rates for dual–

adaptation among experimental schedules reveals no clear

evidence of faster acquisition of the dual mapping when changes

of prism conditions occur more or less often (see Fig. 5 for the

experimental data). When plotting direct effect versus phase

changes, the decay rates spread according to the scaling between

ts’ and ts (see Methods). This suggests once more that dual–

adaptation depends mainly on the total number of movements,

regardless of their distribution along prism phases.

Model simulations
We performed simulations of the model under similar

adaptation schedules as used in the experiment. To reduce

variability, 100 instances of the model were simulated and results

averaged over this ensemble. As stated above, the previously

learned starting weights v~ww�w were optimal for the normal

mapping. The cognitive weight wc was, however, initialized

randomly, from a uniform distribution within ½0,30�. The prism

OFF condition was realized by setting xc~0 and d~0, while the

prism ON condition was set with values xc~0:05 and d~150.
In the model, each learning step relates to one pointing

movement. We used experimental data of only one of the five

schedules (s~I ) to adjust all parameters to reproduce the learning

dynamics (gw~0:06, gwc
~0:01, sw~0:05 and swc

~0:05). Once

fixed, these parameters were also used for simulating adaptation in

all other schedules s~fII ,:::,Vg. Simulated data were treated

identically to experimental ones (see figure 5). As in the

experiment, the direct effects from all schedules decay practically

with the same rate, depending only on the number of pointing

movements.

Aftereffects from experiment and model were also analyzed

following our procedure. Figure 6 shows a direct comparison of

decay rates among adaptation schedules, according to their

number of phase changes. The aftereffect decays slower than the

direct effect, and the decay rates also show a dependency on the

number of movements only. Again we find a good quantitative

match between model and experiment.

The exploration parameters sw and swc
can be varied (within

an order of magnitude) around the values given above and still
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produce similar results for the average dual–adaptation (learning)

curves. They influence the fluctuations in the movements of a

single simulated subject. In order to achieve learning, the size of

these fluctuations must overcome any other non–controlled source

of noise, said ft. Examples of that would be fatigue of muscles or

unreliable neural responses. Once sw and swc
are fixed, learning

constants gw and gwc
can be chosen to set the time course of

adaptation: If gw&gwc
, learning affects mainly the stage where a

spatial activity distribution is converted into an angle, thus

producing a localized adaptation. If gw%gwc
, learning mainly

changes the slope of the input–output gain function, and thus

affects mapping on a global scale, even when adaptation itself takes

place only locally. We will focus on this interplay between different

adaptation processes in the next paragraphs.

Spatial transfer and generalization
Spatial transfer and generalization of mappings once adapted

on single targets have been extensively investigated [4,6,29,30]. In

these studies, subjects typically adapt first to a single target.

Subsequently, transfer and generalization of the adaptation are

tested by letting subjects point to different target positions for both,

direct effect and aftereffect. Results indicate the existence of a

rapid local, combined with a slower global process of adaptation.

Furthermore, comparing generalization effects for targets left and

right to the position of the target used for adaptation reveal

Figure 4. Time constants of exponential fit for the direct effect in adaptation and re–adapation. A) Time constants are displayed in units
of phase changes. Red lines indicate the confidence intervals (pv0:05) of the exponential fits (due to some very large values, some confidence
intervals have been clipped at the graphs’ borders). B) Same data, now plotted in units of movements.
doi:10.1371/journal.pone.0076601.g004

Table 1. Time constants for exponential fits for 8o of visual
shift.

schedule s direct effect aftereffect

5 movements t’s~176,R2~0:70 t’s~376,R2~0:51

15 movements t’s~179,R2~0:64 t’s~96,R2~0:47

30 movements t’s~1127,R2~0:76 t’s~244,R2~0:71

60 movements t’s~304,R2~0:63 t’s~434,R2~0:66

120 movements t’s~7,R2~0:76 t’s~288,R2~0:50

Units for ts’ are number of movements.
doi:10.1371/journal.pone.0076601.t001

Table 2. Time constants for exponential fits for 17o of visual
shift.

schedule s direct effect aftereffect

5 movements t’s~285,R2~0:52 t’s~113,R2~0:07

15 movements t’s~362,R2~0:93 t’s~598,R2~0:80

30 movements t’s~247,R2~0:91 t’s~456,R2~0:84

60 movements t’s~384,R2~0:97 t’s~401,R2~0:88

120 movements t’s~404,R2~0:98 t’s~307,R2~0:88

Units for ts’ are number of movements.
doi:10.1371/journal.pone.0076601.t002
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spatially asymmetric transfers: The effect is stronger on one side as

compared to the opposite side, and depends on the direction of the

applied visual shift [31,32].

Spatial transfer and generalization can also be analyzed in our

model, in which local transfer of adaptation occurs due to synaptic

changes in ~ww, and global transfer due to changes in wc. At any

point in time during adaptation, the learned synaptic weights can

be used to predict pointing errors to different target positions left

or right from the adaptation target.

We compared model predictions to data from the experiment

by Bornschlegl and Wischhusen [31,32], where first adaptation to

a shifted viewing condition was performed by pointing to a fixed

target position. Subsequently, generalization of the adaptation was

tested by rotating the subject’s trunk clockwise or anti-clockwise

and recording the resulting pointing error. In our model, this setup

is equivalent to adapting to a single target and measuring the

direct effect by pointing to test targets leftwards or rightwards from

that adapted target. Specifically, every leftward/rightward body

rotation configuration in the above mentioned experiment can be

represented by a testing target right/left from the training target in

our model (figure 7). It turns out that the direct effect has a local

minimum (dip) at the trained position, superimposed on a global

scaling reducing the direct effect for negative angles, and

increasing it for positive angles.

The width of the local dip in figure 7 (B) is determined by the

scale sw of the input activation, which becomes imprinted in the

spatial weights ~ww when adaptation at a single target position takes

place (see also scheme 8 for a graphical explanation). Outside this

range, the direct effect becomes larger and makes place for a

global gain modulation (changes in wc). By definition, this gain

adaptation causes larger pointing errors on one side of the ‘gaze–

motor mapping’ (left side in figure 8), and smaller pointing errors

on the other side (right side in figure 8). Thus, the direct effect is

enhanced on the side contrary to prism shift (or as in the

mentioned experiment, body rotations towards prism shift), and

suppressed on the other side (for extension of this result to an

agonist/antagonist scheme, see figure 11, and the explanations in

appendix S1). The combination of these local and global

adjustments results in an asymmetric transfer, as observed in

prism adaptation paradigms with human subjects [6,31–33].

Generalization of prism adaptation is described in [6] where

recalibration (remapping of spatially coded movement to rapidly

reduce error) and realignment (transformation of spatial maps to

bring origins of coordinate systems into correspondence) are

proposed [21]. In our model the local and global transfer of

adaptation could resemble, at least on a short time scale, those

recalibration and realignment mechanisms.

Discussion

In summary, we investigated dual prism–adaptation in a single

target pointing task by combining experiments with neural

modelling. The experiments revealed that subjects adapt to the

two environments with an exponentially decaying error in the

direct effect and aftereffect. This decay mainly depended on the

number of movements made, and was only weakly influenced by

the learning schedule, i.e. the number of phase changes during a

fixed number of movements. The model quantitatively reproduced

the experimentally observed dynamics (i.e. the learning curves) of

both, direct effect and aftereffect. Acquisition of dual mappings

resulted independently of the particular learning schedule. In our

model, dual–adaptation is a process based on reinforcement

learning. The error decay constant of this process only weakly

depends on initial conditions, while mainly on the parameters gw,

gwc
, sw and swc

. This implies that the sequence of learning steps

Figure 5. Baselined and normalized direct effect versus index
of pointing movement. A) Experiment: Average out of 5 subjects
for each adaptation schedule with left visual shift 16:70. B) Model:
Average out of 100 simulations for each adaptation schedule with right
visual shift 150 .
doi:10.1371/journal.pone.0076601.g005

Figure 6. Decay constants ts of experimental and simulated
direct effect and aftereffects. Values are presented according to
their number of phase changes. The diagonal represents perfect
agreement between experiment and model predictions.
doi:10.1371/journal.pone.0076601.g006
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performed under both prism conditions is irrelevant for the final

result. In consequence, also the decay constants of direct effect and

aftereffect inherit this property and do not depend on the

particular learning schedules, thus providing an explanation for

our main experimental result.

The combination of a local and a global adaptation mechanism

in the model explains spatial generalization of prism adaptation as

observed in independent experiments in a qualitative manner.

Taken together, our model provides a unifying, neurally plausible

approach for adaptation in a variety of settings. In the following,

we will discuss extents and limitations of our model.

Dual–adaptation learning speed
A previous work reports different decay rates of the pointing

error during prism adaptation, reflecting different available

sources of information [34]. On the basis of our results, we argue

that at least the information about phase change is largely

irrelevant for the average decay speed of the pointing error during

dual–adaptation. Instead, we recognize the pointing movement

with terminal visual feedback as the main regulator of dual–

adaptation. This suggests that learning proceeds practically

without loss between periods of prism wearing, and achievements

are preserved over the breaks between prism sessions. Learned

skills can be stored over long periods of inactivity. This means: at

least some new sensori–motor maps are acquired by practicing

them in any order, and they are not easily unlearned [2].

In addition, we find that in the model, learning speed after the

first movement in one condition is constant and does not increase

with the number of phase changes. This result is consistent with

the behaviour of more abstract ‘state–space’ models [5,35,36].

From our experimental data, we were not able to determine if

learning speed within a phase increases or stays constant over the

sequence of phase changes, because the noise level turned out to

be too high.

It has also been observed that random schedules, i.e.

unpredictable changes between prism conditions, improve consol-

idation and retention of the different mappings (e.g., [23]). In our

experiment, the changes were predictable, at least in those

conditions with a large number of phase changes. However, many

subjects did not report having consciously perceived the changes

between conditions when they were questioned after the exper-

iment. Therefore we expect that our results generalize well to

situations with random changes.

In the model, we also tested how learning speed depends on

uncertainty/noise in representation of the target (parameter sW). If

sW was increased, we observed also an increase in the adaptation

time constant t. This finding is consistent with experimental data

[18]. As sW determines also the width of local spatial generaliza-

tion, the model thus predicts a larger range of the local transfer if

the representation of the target is subject to a larger amount of

noise.

Adaptation takes also much longer when the model learns to

represent two shifted conditions (e.g., to +7.5 and 27.5 degrees

shifts) as compared to learning one ‘normal’ and one shifted

Figure 7. Spatial transfer of adaptation. A) Experiment: After
single target adaptation, the direct effect was tested for different body
to head rotations (after [31,32]). Data include left and right shifting
prisms. Rotations towards prism visual shift led to a monotonously
increasing direct effect, and against prism shift to a shallower trend with
a light bump. B) Model: Simulation of single target adaptation (right
shift). The direct effect is tested rightwards and leftwards from adapting
target. Testing rightwards from adapting target is equivalent to testing
at the same target once the body is rotated leftwards. Asymmetric
spatial transfer of the direct effect is commonly observed in experiment
and model.
doi:10.1371/journal.pone.0076601.g007

Figure 8. Spatial transfer of adaptation. Around wT , the normal
map is enabled when xc~0. Adaptation HR matches the shifted map at
the same target when xc=0. On the side contrary to visual shift (head
rotation against it or trunk rotation towards it), the direct effect is larger
than on the other side, since error corrections made by the gain factor
are smaller.
doi:10.1371/journal.pone.0076601.g008
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condition of the same absolute angle difference (e.g., to 0 and +15

degrees shifts).

Subject variability and fitting biases
Our analysis of dual–adaptation was focused on the average

learning speed in model and experiment under particular

adaptation schedules. In our experiment, initial amplitudes of

pointing error, adaptation rates and final offsets varied from

subject to subject. In contrast, no statistically significant variation

of noise level among the different scheduled groups can be

observed.

The learning speed is identical for all instantiations of the model

(i.e., initialization of weights), but single simulations display much

noise and need averaging for a proper estimation of learning rates.

The noise level becomes important when estimating adaptation

rates for different training schedules, which provide different

amounts of data points to be fitted (shorter period lengths provide

fewer data points per period). Especially when adaptation is still

not complete after performing all movements of each period, there

is a systematic bias towards slower decay rates for fewer available

data points, because it is more difficult to estimate the final offset.

This trend is seen in the experimental data, and confirmed by tests

with surrogate data (not shown).

Direct effect versus aftereffect
One observation in dual prism adaptation is the difference in

decay rate between direct effect and aftereffect. Data from our

experiment, as well as from other studies [2,11], show that the

aftereffect decays slower than the direct effect. Furthermore, while

manipulating experimental conditions during the adaptation to the

prism ON condition drastically modulates the dynamics of the

direct effect, the aftereffect remains unaffected by those manip-

ulations [23,37]. A possible explanation of these findings is that

certain mechanisms, which are enabled during adaptation in the

prism ON condition, might not take place during adaptation in the

prism OFF condition. This is the case in our model, where during

re–adaptation phases, the cognitive input is disabled (xc~0). Thus

changes in the cognitive weight wc become irrelevant for the

system’s output ((1{wcxc)b~b) and fluctuations in wc decorr-

elate with the reinforcement signal. In consequence, re–adaptation

exploits only spatial weight changes D~ww, while prism ON

adaptation exploits changes both in ~ww and wc, thus speeding up

learning and reproducing the experimental observations (figure 6).

Size of first pointing error
In most prism adaptation experiments, the initial size of

pointing errors is clearly smaller than the actual prism shift

[12,38–40]. Non–controlled independent cues have been proposed

as the cause of this effect. For example, geometrical hints in

rectangular rooms, alignments of the experimental setup and a

strong prior of an artificially induced visual shift can indicate the

real target location and counteract its optical shift. However, it has

been found that this effect is also present in virtual reality setups

[18], where suppression of those independent cues is much easier.

In our experiment, the change from the non–shifted to the shifted

mapping could be inferred by the subjects from the accompanying

shift of the target and shift of the frame within their visual field.

In our model, the size of the initial pointing error depends only

on the mean value of the randomly initialized cognitive weight

SwcT. Specifically, if SwcT~0, the initial direct effect equals the

induced visual shift. If SwcTw0, the initial direct effect becomes

smaller, as observed in humans. Such a non–zero wc can be

interpreted as a prior on the magnitude of a compensatory input

necessary to counteract a visual shift. Hence, this free parameter

SwcT can be set to reproduce this feature from the initial direct

and aftereffect. Since humans must adapt to environmental

perturbations every time and at anytime, having a prior gain

‘ready’ for cognitive or contextual cues about a perturbation might

prove useful. It improves the response to large perturbations by

starting with an initial correction, hence reducing learning effort

and time.

Model limitations and extensions
First stage: Spatial mapping. In our experiment and in

[31,32], the retinal image is almost independent of the experi-

mental condition, as subjects always fixate the target before

performing a pointing movement. In our model, however, we

provide a head– (or body–) centered representation of visual space

as input to the first stage. We assume that this representation is not

directly derived from retinal activation, but occurs at a later

cortical stage, where visual inputs (retinal images) along with

proprioceptive signaling (eye muscles) are already integrated

[17,41]. There is some evidence for such ‘gain fields’ in certain

brain areas (for an overview, see [42]). It is straightforward to

extend the model and to incorporate such a stage; the most simple

realization would be to assume a spatially distributed visual input

as the one on the retina from which a target angle is derived, and

then a stage where proprioceptive feedback is integrated by e.g.

removing the eye position from the computed angle. It is also easy

to extend the model to cover adaptation in other actuators (see

explanations in appendix S1, and the figure S2).

The resolution of the spatial representation can be refined up to

*10. Learning steps and learning parameters must then be re–

configured to achieve similar results. To reproduce the exper-

imental data, it is not necessary to perform exactly one learning

step after one movement. Specifically, k learning steps per

movement can be performed, as long as (5,15,30,60,120)|k
iterations of the learning rule are performed per prism condition

for the different schedules. The absolute scale A of the spatial

representation is arbitrary, as it becomes normalized by the mean

of the synaptic weights, which is adjusted by the learning

procedure.
Second stage: Gain mechanism. Instead of a gain mech-

anism, a global additive shifting would also solve the local dual–

adaptation problem, transfer the shift to the surrounding locations,

and thus provide a perfect generalization. The reason to chose the,

at first sight, much more inappropriate gain mechanism was

motivated by the observation of an asymmetric spatial transfer,

when humans adapted to a single target. We indeed found that a

global shift can account for the identical decay constants in all

schedules, but can not explain the asymmetric spatial transfer (data

not shown).

For simplicity, we neglected the size of the human body and

assumed that a change db in target position would require an

equal change da in pointing direction. This is approximately

correct if the ratio of head’s pivot to shoulder distance over arm’s

length is relatively small (* 1
5
). For all angles of the perceived

target we have that wT&b{const:, and so, the required hand

movement angle a will approximately linearly depend on b.

However, there exists a non–linear correction with an upper

bound of &110 due to the mentioned ratio of 1
5

(see appendix S1

for the derivation, and figure S1 for illustration). Due to the noise

in the experimental data, deviations of the model caused by these

geometric factors are difficult to investigate.

More importantly, experimental evidence from [31,32] might

indicate the existence of both, agonist and antagonist mechanisms

for adjusting the output gain. Depending on the direction of the

visual shift, only one of these parts is subject to adaptation, at least
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on time scales relevant for the situations explained by our model.

However, for every particular subject, the visual shift during the

experiment was always into the same direction. No subject was

exposed to different visual shifts. Therefore, we could simplify this

situation by incorporating only one gain factor, hereby avoiding to

introduce a further control mechanism for differentially activating

learning of these two gain factors depending on the situation (see

also appendix S1 and the illustration in figure S3).

Finally, we must point out the simplicity of the global gain

adaptation implemented in our model. The question about the

range of spatial transfer and generalization is still under discussion

[5,43]. A possible refinement of our model would be to implement

a less global adaptive gain mechanism wc, still with a wider

effective range than adaptation on the spatial mapping ~ww, whose

length scale is determined by sw.

Supporting Information

Appendix S1 Additional information for the model
setup and generalization of results.

(PDF)

Figure S1 Top–down perspective of the head, body,
eyes, prisms, arm and target configuration. A sketch of

the proposed reference frame to measure and relate all involved

angles and lengths during target fixation and pointing movements.

(TIF)

Figure S2 Flowchart of the combination of angular
variables for target, prisms and body parts. Adaptation

individually modifies the execution of a trained actuator, while

other untrained actuators are minimally affected.

(TIF)

Figure S3 Spatial transfer of adaptation. The antagonist

version bL of the mapping bR presented in the main text is here

depicted. If modeling left visual shifts, the normal left map would

be a reflection of the right one. However, it would be adapted with

a similar gain modulation (1{wcxc). As in the agonist version,

around wT , the normal map is enabled when xc~0. Adaptation

HL matches the shifted map at the same target when xc=0. On

the side contrary to visual shift (head rotation against it or trunk

rotation towards it), the direct effect is larger than on the other

side, as observed in experimental data [31,32].

(TIF)
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