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Clinical sleep evaluations currently require multimodal data collection and manual review by human experts, making them
expensive and unsuitable for longer term studies. Sleep staging using cardiac rhythm is an active area of research because it can be
measured much more easily using a wide variety of both medical and consumer-grade devices. In this study, we applied deep
learning methods to create an algorithm for automated sleep stage scoring using the instantaneous heart rate (IHR) time series
extracted from the electrocardiogram (ECG). We trained and validated an algorithm on over 10,000 nights of data from the Sleep
Heart Health Study (SHHS) and Multi-Ethnic Study of Atherosclerosis (MESA). The algorithm has an overall performance of 0.77
accuracy and 0.66 kappa against the reference stages on a held-out portion of the SHHS dataset for classifying every 30 s of sleep
into four classes: wake, light sleep, deep sleep, and rapid eye movement (REM). Moreover, we demonstrate that the algorithm
generalizes well to an independent dataset of 993 subjects labeled by American Academy of Sleep Medicine (AASM) licensed
clinical staff at Massachusetts General Hospital that was not used for training or validation. Finally, we demonstrate that the stages
predicted by our algorithm can reproduce previous clinical studies correlating sleep stages with comorbidities such as sleep apnea
and hypertension as well as demographics such as age and gender.
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INTRODUCTION
About 50 to 70 million Americans suffer from sleep or wakefulness
disorders. As symptoms appear during sleep, they are not easily
apparent to patients and most sleep disorders remain undiag-
nosed1. Moreover, sleep deficiency and anomalies in sleep
architecture are linked to many chronic health problems, including
sleep apnea, diabetes, stroke, brain injury, Parkinson’s disease,
depression, and Alzheimer’s disease2–8. Therefore measuring sleep
behavior can diagnose sleep disorders and also lead to early
detection of other health conditions.
Currently, clinical sleep diagnosis requires polysomnography

(PSG) study to measure overnight electroencephalogram (EEG),
electrooculogram (EOG), electrocardiogram (ECG), airflow, and
other signals. Once the data are collected, scoring requires an
expert to spend up to 2 hours to analyze and manually annotate
each night. Therefore PSG studies are expensive and often only
used after significant progression of a patient’s symptoms1. These
studies may have other disadvantages as well. Laboratory PSG
studies can cause significant disruption to the patient’s sleep and
fail to capture a patient’s normal sleep patterns9. Manual scoring
also has considerable interscorer and intrascorer variability,
making its reliability and reproducibility questionable10. Multiple
machine learning algorithms have been devised to automate
sleep scoring and recent algorithms have reached near human
level scoring using PSG data11. While these can make clinical sleep
studies more cost efficient and consistent, the absence of an easily
accessible and reliable screening mechanism still leaves a large
diagnosis gap between doctors and patients. This gap has to be
bridged with a technology that can help a patient detect sleep
disorder symptoms with minimal disruption yet high enough
accuracy to recommend further treatment or consultation with a
physician.

Due to the cost and disruptive nature of clinical sleep studies,
today they are singular events performed for one night involving
subjects already known to be at a high risk of sleep disorders.
Such studies can diagnose chronic conditions such as apnea or
periodic limb movement which occur many times every night.
Even for these conditions, disease progression cannot be easily
monitored as it requires repeated studies. Many important
symptoms of sleep disorders such as insomnia, sleep fragmenta-
tion, rapid eye movement (REM) instability and inadequate deep
sleep only have one or few measurements per night which may be
insufficient to make conclusive diagnosis about individuals2. As a
result, despite a growing body of evidence linking sleep stages
with a large number of comorbidities2–8, most clinical analysis of
sleep stages are cross-sectional studies on populations rather than
on individual patients2,12. This limits the clinical utility of sleep
stages. Therefore, novel technology is required to enable low-cost
and accurate longitudinal sleep monitoring to determine if
patterns in sleep architecture can be used for reliable clinical
diagnosis on individuals as well as track disease progression
over time.
Cardiac rhythm or heart rate variability is well-known to be

modulated by sleep stages13–15. If clinically useful sleep scoring
can be performed using only cardiac rhythms, then the myriad of
existing medical and consumer-grade devices that can measure
signals such as ECG or photoplethysmogram (PPG) can fill the
diagnosis gap by enabling low-cost sleep evaluations without
requiring full PSGs. In this work, we develop a deep learning
algorithm which uses the instantaneous heart rate (IHR) time
series extracted from ECG as the sole input to predict the full sleep
architecture or hypnogram of the subject. A hypnogram can be
used to infer many of the key metrics required to diagnose a wide
variety of sleep disorders.
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RESULTS
We trained a fully convolutional neural network (CNN) which used
dilated convolutional blocks to learn both local and long range
features of the input (Fig. 1). The network takes as input the IHR
extracted from ECG R-wave timing and produces a four-class
probability distribution for every non-overlapping 30 s epoch of
the input corresponding to the probabilities of the epoch being in
one of four classes—wake, light sleep, deep sleep or REM (Fig. 2).
The largest probability is chosen as the network’s class prediction
and used to form the hypnogram.
We used data from two large public datasets for training,

validation and testing of the algorithm, the Sleep Heart Health
Study (SHHS)16 and Multi-Ethnic Study of Atherosclerosis Study
(MESA)17. Another independent dataset of 993 nights (993 sub-
jects) from the Physionet Computing in Cardiology (CinC)
dataset18 was used exclusively as a test set.

Model performance
On the held out test set of SHHS dataset of 800 nights
(561 subjects), the overall 4-class accuracy was 77% and Cohen’s
kappa was 0.66. On the Physionet CinC dataset of 993 nights
(993 subjects), the overall 4 class accuracy was 72% and Cohen’s
kappa was 0.55. The dataset sizes and the model’s overall
accuracies and confusion matrices on SHHS and CinC are
tabulated in Fig. 3.
On the held out SHHS dataset, the mean per night accuracy was

77.3% (+/−8.8%) and kappa was 0.65+/−0.14. On the Physionet
CinC dataset, the mean per night accuracy was 72.2% (+/−11.2%)
and kappa was 0.53 (+/−0.17). The night by night accuracy
histograms are shown in Fig. 4a, b.
The per-class performance (recall, precision) of the algorithm

was wake-(0.80, 0.86), light-(0.82, 0.74), deep-(0.49, 0.68), REM-
(0.81, 0.76) on SHHS and wake-(0.74, 0.61), light-(0.76, 0.79), deep-
(0.48, 0.67), REM-(0.76, 0.66) on CinC.
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Fig. 1 Neural network architecture for sleep stage classification. Instantaneous heart rate, resampled to 2 Hz and padded to 72000 samples
(10 h) is used as input. 1200 overlapping patches containing 256 samples each are created, one for every 30 s epoch of the input.
Convolutional layers are used to extract local features from each patch to an 128-node embedding layer. The local features are then
concatenated to form a vector time-series of length 1200 and depth 128. Next, dilated convolutional layers are used to extract long range
temporal features across the length of the vector. Finally, an output convolutional layer is used to output 1200 four-class probability
distributions.
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For comparison, the previously published best 4 class accuracy
(kappa) on these datasets was 66% (0.47) on SHHS and 65% (0.31)
on CinC using ECG-derived signals19.
The best published per-class performance (recall, precision) on

these datasets was wake-(0.75, 0.73), light-(0.62, 0.84), deep-(0.59,
0.13), REM-(0.61, 0.39) on SHHS19.
Figure 4a, e demonstrate that the model’s per night accuracy is

high both on the dataset it was trained on and a new independent
dataset. For both these datasets, we then further separate the
subjects by gender, age and apnea status. Figure 4b, f show that
for both SHHS and CinC test datasets, the model’s performance
did not differ between males and females. Figure 4c, g show that
the model’s performance decreases on older subjects. Finally, Fig.
4d, h show that the model’s performance does not differ between
healthy subjects versus subjects with AHI > 5. Thus the model can
be seen to generalize well across different subject populations.

Clinical outcomes correlation analysis
To demonstrate the clinical efficacy of our model, we show that
the stages predicted by our model can reproduce the findings of
previous clinical studies2,12 which use the expert scored PSG sleep
stages. In this section, we summarize the results of our analysis as
performed on the held-out test cohort of SHHS dataset. Detailed
description of the statistical test and multivariate regression can
be found in the “Methods” section.
Gender—Redline et al.12 investigated the variations in expert-

labeled PSG sleep stages and their correlation with independent
clinical and demographic measures. In their report, men had
significantly higher percentage light sleep (N1/N2), had lower
percentage deep sleep (N3/N4), percentage REM sleep, and sleep
efficiency than women. In our test cohort, there are 360 nights of
male subjects and 440 nights of female subjects. We are able to
reproduce all the correlations on the test cohort using the sleep
stages produced by our algorithm (Fig. 5a–d). We note that the
magnitude of the effect on deep sleep is weaker with predicted
stages than with reference stages as our algorithm underestimates
deep sleep in women.

Age—To study age correlation, we use the same four age
groups defined by Redline et al.12 which yield 164 nights of
subjects aged <55-years old, 168 nights of subjects aged 55–60
years old, 198 nights of subjects aged 61–70 years old, and 270
nights of subjects above the age of 70. Redline et al.12 report that
percentage light sleep was increased in older individuals along
with a corresponding decrease in deep and REM sleep percentage.
Sleep efficiency also decreased significantly with increasing age.
Once again, we are able to reproduce the expected effects from
our predicted stages (Fig. 5e–h). We also see that even though the
absolute values of deep sleep are underestimated by our
algorithm, the relative effect on predicted deep sleep across age
quartiles is significant and comparable to the effect on reference
sleep stages.
Sleep Apnea—We divide the subjects into four classes based on

apnea severity as measured by the clinical AHI scores—364 nights
with AHI score between 0 and 5 (Healthy), 314 nights between 5
and 15 (Mild), 65 nights between 15 and 30 (Moderate) and 57
nights with AHI score greater than 30 (Severe). Bianchi et al.2

observe a significant trend of decreasing deep and REM sleep
percentage with increasing apnea severity. We also report these
effects in both the expert labeled and algorithm predicted sleep
stages (Fig. 5i–l). The effects persisted even after adjusting for age
and gender.
Bianchi et al.2 further identify a novel signature of apnea in

sleep stages using stage bout durations. They show that
increasing apnea severity in three cohorts, the healthy, mild,
and severe apnea cohorts, increased stage transition rate between
REM and NREM stages which can be measured as a decrease in
mean durations of REM sleep bouts. We find the same effect with
our predicted stages (Fig. 5q). We also find that the moderate
apnea cohort does not follow the same pattern with the reference
PSG stages and our predicted stages correctly identify this
behavior. As anticipated by Bianchi et al.2, the effects persisted
even after adjusting for age and gender.
Hypertension—Redline et al.12 reported that subjects with

hypertension have lower sleep efficiency than subjects without
hypertension. They also report that after adjusting for age, sex and

Fig. 2 Example of Inputs, labels and predictions. Hypnogram of a healthy subject shows typical 60–90min sleep cycles with more deep
sleep in the first half of the night and more REM in the second half. The predicted stages track the reference very well and are also “smooth”
compared with the reference, i.e they have fewer rapid stage bouts that only last 1 or 2 epochs.
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sleep disordered breathing, they find no significant effects of
hypertension on light, deep and REM sleep percentage. In our
analysis, we used 436 nights from healthy subjects and 364 nights
from subjects with a history of taking hypertension medication.
We find significant effects on all sleep stage percentages and
sleep efficiency using unadjusted algorithm outputs (Fig. 5m–p).
The effect on light and deep sleep disappears when adjusted for
age, sex and apnea. The effects on REM percentage and sleep
efficiency persisted after adjustment.

DISCUSSION
Patterns in heart rate have long been known to be strongly
correlated with sleep cycles13–15. The most predictive cardiac
features are complex features such as spectral band power ratios
and variability measures, which unlike EEG-based features cannot
be determined solely by visual inspection, necessitating the use of
statistical models. The accuracy of automated cardiac rhythm

based sleep staging has been increasing with advances in
mathematical and computational techniques as well as cardiology.
An important development was made in the field when it was
found that the heart rate variability patterns seen during REM
often began several minutes prior during NREM and continued
well after the REM stage ended15. Therefore, temporal context is
required to accurately detect sleep stages from cardiac rhythm.
The current state-of-the-art results extract dozens, if not hundreds,
of expert-informed engineered features from physiological signals
such as ECG/PPG and then use these as inputs to complex
machine learning models to predict sleep stages19–22. The models
either use features of neighboring time epochs explicitly to
predict the stage for each time epoch19 or use implicitly temporal
models such as recurrent neural networks (RNNs)20. Such models
have two important drawbacks that we address with our novel
architecture:

1. While hundreds of cardiac features have been developed, it
is not clear how to find new features, especially since the

Dataset
Training nights 

(Number of 30 second 
epochs)

Validation nights 
(Number of 30 second 

epochs)

Testing nights 
(Number of 30 second 

epochs)

Overall 
Accuracy 
(kappa )

SHHS 6705 (7.1 million) 794 (0.8 million) 800 (0.8 million) 78% (0.67)

MESA 1619 (1.9 million) 220 (0.3 million) 194 (0.2 million) 80% (0.69)

CinC n.a. n.a. 993 (0.9 million) 72% (0.55)

(a) (b)

(c) (d)

(e)

Fig. 3 Overall model performance. Confusion matrix for the SHHS dataset (a) normalized and (b) full counts. Confusion matrix for the CinC
dataset (c) normalized and (d) full counts. (e) Dataset sizes and overall accuracy.
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strength of the correlation is between cardiac features and
PSG sleep stages it is not known a priori. In this work, we do
not engineer any features, instead we use convolutional
layers to let the network learn local cardiac features.
Showing that these networks can exceed the performance
of known features can spur research into interpretation of
these learned features and their correlation with physiolo-
gical states.

2. RNN models have a recurrent structure which allows its
parameters to be dependent on adjacent parameters,
making them very good for representing temporal or
otherwise ordered structure in data. However, RNNs, even
the so-called long short-term memory or LSTM RNNs, have a
fairly short but high fidelity “memory”. They are great for
language models where each word may contain a lot of
information, but there are not many words in a sentence. In
machine learning terms, the number of tunable parameters
of an LSTM model scales as N x L, where N is the number of
layers and L is the length of the timeseries. Our hypothesis is
that cardiac rhythm time-series are not as densely packed
with information at every 30-s intervals, but they do contain
long range temporal context, e.g., 90-min-long sleep cycles.
Thus, we estimate that LSTM models are likely to over-
emphasize short range noise and fail to capture many of the
long range correlations. Dilated CNNs address both of these
deficiencies.The number of parameters in dilated CNNs
scales as N, i.e independent of L23,24. Our dilated layers have
a field of view ranging from 6 to 90min with all layers using
the same number of parameters. Thus dilated layers are
great for capturing long range correlations with far fewer
parameters than RNNs.

Therefore our choice of network architecture (local CNN+
dilated CNN) is strongly motivated by the characteristics of the
problem.
Though the use of additional signals such as airflow, thoracic

excursions or more ECG features could potentially have improved
accuracy further, we intentionally use only IHR for its practical
viability. Specifically, the IHR can be derived from a variety of
wearable or passive monitoring sensors such as ECG, wrist-worn or
camera-based pulse PPG, bed sensor ballistocardiography (BCG)
and potentially others. Many of these sensors are cheaper to
produce and far easier to administer than full PSG and some are
already used in consumer devices. Therefore if IHR-based sleep

staging can be reliable, accurate and can generalize well to new
populations, it can unlock access to sleep disorder diagnosis
for all.
In this work, we show that our model cannot only achieve high

accuracy, but also generalize across multiple datasets, including
datasets that were never exposed to the model during training
and validation process. We also demonstrate the model’s
performance is not biased by gender or presence of apnea in
the subjects, and decreases only slightly with increasing age. The
datasets we use to demonstrate our results are among the largest
used in any previous sleep study, totaling nearly 1987 nights (1748
unique subjects) used for testing.
We also further investigate the potential clinical efficacy of our

work by comparing the sleep measures derived from algorithmi-
cally determined sleep stages with those derived from the expert-
annotated PSG reference stages. We can see that for most of the
sleep metrics, our predicted measures closely match the PSG
based measures. The algorithmically predicted sleep measures are
also able to reproduce all but one clinical effect shown by the
reference measures, including null effects.
We hope that these results will help to build more trust in

automated heart rate based sleep staging and encourage further
research into its clinical application in screening and diagnosis of
sleep disorders. Low cost, high efficacy devices which can be used
in longitudinal studies on large populations can lead to break-
throughs in clinical applications of sleep staging for early
diagnosis of chronic conditions, novel care and treatment
endpoints, and improved outcomes for patients.
As mentioned above, our algorithm uses only IHR as input

because it can be extracted from a wide variety of medical and
consumer devices. Here, we limit our work to heart rate extracted
using Pan-Tompkins algorithm from ECG. We note that using
alternative sensor input signals (such as PPG) or alternative
algorithms for IHR extraction may result in slightly different IHR
characteristics. Further analysis is required to quantify the
comparative performance of our model on heart rate derived
using other signals and algorithms.
We also expect that adding more signals, such as motion and

breathing, can increase the accuracy. These signals are usually
highly characteristic of the measuring device and its placement on
the body. Therefore we hope that our algorithm will serve as a
basis for future research involving medical devices that are able to

Fig. 4 Night by night accuracy distributions on SHHS and CinC datasets. a, e Histogram of all nights. The black lines mark the 10th, 25th,
and the 50 percentile of nights. b, f Probability density distribution of nightly accuracy split by gender. c, g Probability density distribution of
nightly accuracy split by age quartiles. d, h Probability density distributions of nightly accuracies split by presence of apnea.
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achieve PSG-level sleep staging using cardiac rhythms and other
device-specific signals.
Another limitation of our work is that it cannot be used for real-

time sleep stage detection, as the model requires a full night of
data as an input, prior to quantification.
As noted, our model performs slightly worse on older subjects.

While the median accuracy of the oldest cohort was only
marginally lower, the fraction of nights with accuracy less than

0.6 is significantly higher in this cohort, especially in the CinC
dataset. This could be caused by a variety of reasons—presence of
multiple disease confounders, poorer compliance/data quality,
lower reference inter-rater reliability—all of which are likely to
affect older subjects more. Further research is required to
compare the factors affecting sleep studies on different age
groups. We hope that our work leads to technologies that make
such sleep studies easier and cheaper to administer.

Fig. 5 Distributions of sleep metrics derived from PSG reference and model predicted stages. The test population is split into groups by
the clinical measures marked in the x-axis. The y-axis shows the values of sleep metrics—points represent the mean value of the metrics and
the bars represent the standard deviations. The distributions calculated using the PSG reference stages and the algorithmically predicted
stages show excellent concordance for fraction of REM during sleep and sleep efficiency. Deep sleep is underestimated by our model in favor
of light sleep, yet the qualitative effect of clinical states on light and deep fractions is consistent between reference and predicted stages. a–d
stage fractions and sleep efficiency with gender. N= 360, 440. e–h stage fractions and sleep efficiency with age. N= 164, 168, 198, 270. i–l
stage fractions and sleep efficiency with apnea severity. N= 364, 314, 65, 57. m–p stage fractions and sleep efficiency with presence of
hypertension. N= 436, 364. q mean REM bout lengths with apnea severity. The mean REM bout durations calculated from algorithmically
predicted stages are higher than the PSG reference stages because the predicted stages are “smoother”, i.e., contain fewer stage bouts that last
only 1 or 2 epochs interrupting larger stage bouts. Despite this effect, the increase in REM instability seen in apneic subjects is evident. N=
364, 314, 65, 57.
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Our model shows good performance on wake, light and REM
sleep, but underestimates deep sleep compared with reference
stages. One possible reason could be that the inter-rater reliability
of expert raters is lowest on deep sleep and is known to vary
significantly with age and gender10,25. Another possible reason is
that the expert scoring for the SHHS dataset was done using the
Rechtschaffen and Kales (R&K) scoring guidelines while the MESA
and CinC datasets were scored using AASM guidelines16–18. The
two scoring conventions agree on most epochs but do have some
disagreements, especially on light and deep sleep26. We chose to
use MESA for training and CinC for testing because AASM scoring
is the current standard used by sleep physicians. However, SHHS is
the largest available PSG dataset with clinical measures and our
model gains significant generalizability from training on SHHS and
MESA combined. Our strong results despite our model having to
generalize across both scoring guidelines demonstrates the
capacity of our novel architecture and training strategy. Future
efforts can improve upon our results by using new PSG datasets
exclusively annotated using AASM guidelines.
Our clinical analysis dataset was limited to the randomly

predetermined test split without matched controls. Therefore, we
do not attempt novel discoveries with this analysis, we simply
demonstrate that our algorithm can reproduce previous investiga-
tions that were only accessible using full PSG studies. Furthermore,
while we show that we can reproduce the effects of certain clinical
conditions on sleep, there are many clinical conditions which are
not present in our selected datasets. Further studies will be
required to test whether our algorithm can make robust sleep
stage predictions in the presence of those conditions.
Finally, an important limitation of our algorithm’s clinical

application arises from the lack of explainability of deep neural
networks. Traditional machine learning models use engineered
features informed by domain expertise as input to simple models
making it possible to explain and understand these models’
behavior. Even so, we note that the recent advances in automated
sleep scoring have been made using complex models such as
Random Forest or LSTM which despite using engineered features
are also hard to explain. In this work, we do not explicitly use any
engineered features. The algorithm “learned” the features present
in raw sequences of heart rate implicitly; therefore it is possible
that the algorithm has learnt features previously unknown to or
ignored by humans. It would be beneficial to be able to
understand these features, however a full understanding of the
precise features learnt by deep neural nets is still beyond reach
and an active area of research. Though we have not conducted an
exhaustive analysis of every aspect of our neural network
architecture, several insights such as convolutions to improve
training speed over recurrent designs and dilated convolutions to
increase the receptive field are consistent with those in prior
published work24. We hope that our empirical validation puts our
work on strong foundation and encourages further research into
interpretation and understanding of deep neural networks.

METHODS
Datasets
Both SHHS and MESA have been archived by the National Sleep Research
Resource27,28 with appropriate de-identification. Permissions and access
for these datasets were obtained via the online portal: www.sleepdata.org.
8299 nights from SHHS and 2033 nights from MESA datasets were
processed and used to build and validate the model. The two datasets
were mixed and the subjects were randomly separated into training,
validation and test sets in ~80:10:10 ratio. The training and validation sets
were used to develop the model, while the test set was never exposed to
the algorithm during development. Care was taken to ensure that no
subjects were shared between the test and training/validation datasets.
The Physionet CinC is archived and available at www.physionet.org,

released as part of the Computing in Cardiology Challenge 201818.

Expert scoring labels
All the datasets used for training, validation and testing were part of full
PSG studies. The signals recorded included multi-channel EEG, EOG,
electromyogram (EMG), ECG, thoracic and abdomen excursions, airflow
and finger pulse oximetry. Each night was then scored for sleep stages and
breathing disorders by a sleep expert using full PSG data. Every 30 s is
assigned one of 5 classes—wake, N1, N2, N3, and REM. In this work, we
group N1 and N2 classes into one class that we call light sleep. We also
denote N3 as deep sleep. In SHHS, we have an additional stage N4, which
we combine with N3.
For training and testing, we consider the associated labels for each night

as the truth reference for the corresponding datasets. Since the datasets
were scored by different groups of experts, we must account for the inter-
rater accuracy of these labels when judging the performance of the model.
We defer to the prior work done to quantify the inter-rater reliability of
licensed experts10,25,26. Here we simply note two observations. First, many
different studies have independently found that human expert inter-rater
reliability on the 4-class sleep staging is around 88%10,25. Second the
above reliability is achieved using full PSG data (i.e., EEG, EOG, EMG,
airflow, and others). Therefore our heart rate based model accuracy is not
directly comparable to this scoring accuracy. Therefore we benchmark our
model against previous efforts to score sleep stages without EEG/
EOG data.

Input features
The heart rate in this effort was extracted from ECG. First we normalize the
ECG signal and perform R-wave detection using a Pan-Tompkins based
algorithm29. The time differences between consecutive R locations is the
inter beat interval (IBI) time series. The IBI time-series is then filtered by
removing anomalous values >5 standard deviations that are caused by
missed or spurious peak detection. The IHR is calculated as simply the
reciprocal of the IBI values. This heart rate time-series is independently
normalized for each night by subtracting the mean and dividing by the
standard deviation of the night. Finally the time-series is resampled with
linear interpolation to a 2 Hz sampling rate and padded with zeros to a
constant size corresponding to 10 h or 72,000 elements.

Algorithm
We used a fully convolutional deep neural network algorithm (Fig. 1). The
network can be divided into two distinct parts. The first part employs a
CNN which extract local features from the input. The input heart rate time-
series (of length 72,000) is broken up into 1200 segments each of length
256 and centered around every 30-s label epoch. All the segments are fed
to the convolutional network which is made up of three sequential blocks.
Each block is made up of 2 1-D convolutional layers with kernel size 3,
dilation rate 1 and leaky RELU activation followed by a maxpool layer of
stride 2. Thus after each block the input is downsampled by a factor of 2.
The input of each convolutional block is downsampled and added to the
output of the block as a residual connection. The output of the final block
is flattened and reshaped into a vector of constant length, 128, and then
the 1200 segments are concatenated back to an embedding of size 1200 ×
128.
The second part of the network employs atrous or dilated convolutional

blocks23,24 to extract long range features from the input. A dilated block is
made of 5 1-D convolutional filters with kernel size 7 each of which is
followed by a leaky ReLU activation. The five convolutional layers employ
progressively increasing dilation rate of 2, 4, 8, 16, and 32 which are
responsible for increasing the network’s field of view. A dropout layer was
used after each dilated convolutional block and a residual connection from
the input of the block was added to the output of the dropout layer. We
use two such dilated convolutional blocks without any pooling layers.
Therefore the size of the time axis of the embedding vector remains
unchanged at 1200. Finally, a convolutional layer with kernel size 1, dilation
rate 1 and 4 filters makes the final output a vector of size 1200 × 4.

Training
Regularization in the form of L1 weight decay on all convolutional layers
and dropout was used to make the model robust to noise in the input.
Batch normalization was an optional addition before all convolutional
layers, but was not used in the final model configuration. The 1200 × 4
vector is interpreted as 1200 consecutive 4-class probability distributions,
one for every 30 s epoch. Loss is calculated as the mean cross entropy loss
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of the epoch probability distribution vector versus the corresponding label
annotated by human experts. The epochs corresponding to the zero
padded region of the input are discarded for the loss calculation. The exact
values of the hyperparameters such as the number of convolutional blocks,
batch size, learning rate, decay rate and dropout rate were chosen based
on hyperparameter search. We searched through 1000 configurations of
the hyperparameters evaluating the performance of each configuration on
the validation set. The best performing model was trained for 1 million
steps using a batch size of 2, learning rate of 1e-4, weight decay rate of
0.25, dropout rate of 0.2 with the architecture described above. This
configuration was used to train the final model and only this model was
evaluated on the test set.

Performance evaluation
The trained neural network generates four values for every 30-s epoch,
corresponding to the probabilities of that epoch belonging to each of the
four classes (wake/light/deep/REM). The performance is measured using
the 4-class accuracy and Cohen’s kappa metric considering each epoch as
an independent prediction and the expert labeled annotations as the
reference labels (Fig. 3). Histograms and distributions considering the
accuracy of each night as independent statistics are used to determine the
bias (or lack thereof) of the model to datasets or patient clinical measures
(Fig. 4).

Statistical analysis
For measures of overall performance (accuracy, kappa and 4-class
confusion matrix), the sample sizes are so large that CIs are expected to
have a width of <0.5%. Therefore, the CIs are not reported due to the high
precision of the values. We report the mean accuracy and mean kappa of
the per-night statistics with their respective standard deviations.
The nightly accuracy distributions were stratified by age, gender and

presence of apnea and the distributions were compared using pairwise
Wilcoxon rank tests without Bonferroni correction. On the SHHS test set,
we found no significant difference between the nightly accuracy
distribution of male vs female (p-value= 0.64) subjects and between
healthy vs apneic subjects (p-value= 0.68). Increasing age corresponded to
a significant decrease in staging accuracy. Comparing the 4 age cohorts, 0
for age <55, 1 for age between 55 and 60, 2 for age between 61 and 70
and 3 for age >70, mean accuracy statistic differed as following—0~1 (p-
value= 0.3); 0, 1 > 2, 3 (p-value < 0.001); 2 > 3 (p-value= 0.04).
For clinical measure covariate analyses, we tested the correlation of four

sleep metrics—light, deep and REM fraction, and sleep efficiency—against
four covariates —age, gender, apnea severity and presence of hyperten-
sion. First, each sleep metric was tested separately across the binary
covariates (gender and hypertension) using Wilcoxon rank test and across
the polychotomous covariates (age and apnea) using Kruskal–Wallis test.
We report as significant the measures for which the p-values were below a
significance threshold of 0.05 with Bonferroni correction. Plots show the
means and standard deviations of each metric-covariate pair where

metrics are calculated using both the expert-annotated PSG stages and our
algorithm predicted stages (Fig. 5).
Next, multivariate ordinary least squares linear regression was used to

quantify the contribution of various covariates. First, age and gender were
entered as independent variables in one model with the sleep metrics as
the dependent variable and their significant coefficients were noted.
Gender was entered as a binary integer with females as 0 and males as 1.
Age was entered as a categorical integer—0 for age < 55, 1 for age
between 55 and 60, 2 for age between 61 and 70 and 3 for age > 70. Then
the sleep metrics were adjusted for the contribution of age and gender
and again used as the dependent variable against the independent
covariate apnea severity. Apnea severity was entered as a categorical
integer—0 for AHI < 5, 1 for AHI between 5 and 15, 2 for AHI between 15
and 30 and 3 for AHI > 30. Finally, the sleep metrics were adjusted for age,
gender and apnea severity and used as dependent variables against the
presence of hypertension, which was entered as 0 for absence of
hypertension and 1 for presence. For each metric-covariate pair,
coefficients from the regression model were reported only if both the p-
values of the significance test and the regression crossed the significance
threshold of 0.05 after Bonferroni correction, the rest were reported as not
significant (Fig. 6).
Finally a fifth sleep metric, mean REM bout duration, was regressed

against apnea severity. Subjects from three apnea cohorts, mild, moderate,
and severe, were considered. Once again, first, age and gender were
entered as independent variables with mean REM duration as the
dependent variable in a linear regression model. Age was found to have
no significant effect, while gender was found to have a strong effect with
women having longer REM bout durations with p-value= 0.005. Subse-
quently, mean REM durations were adjusted for the effect of gender and
then regressed against apnea severity which was entered as a categorical
integer—0 for AHI < 5, 1 for AHI between 5 and 15, and 3 for AHI > 30. This
coefficient was found to be significant, with p-value= 0.012, implying REM
bout durations decrease with increasing apnea severity.

Inter-beat interval quality
As seen in the per night accuracy histogram, 10% of the nights are found
to have accuracy less than 0.6. We tried to identify the reason why some
nights performed worse than others. Upon visual inspection, some of these
nights were found to have poor IBI quality (example shown in Fig. 7).
However we perform no filtering or exclusion of records based on quality.
The reason is twofold: (a) there does not exist a widely accepted criteria of
IBI quality that we could use to exclude certain records, and (b) it is
possible that poor ECG quality in these studies could be correlated with
certain health conditions. Further studies are required to create robust
measures of IBI quality and determine if there exists a significant
correlation between model performance and IBI quality without con-
founding it with other comorbidities.

Regression coefficient (with 95% CI) of metric (column) dependence on covariate (row)

Light percentage Deep percentage REM percentage Sleep efficiency

Age + 1.2 (0.6, 1.8) - 2.1 (-2.5, -1.7) - 1.5 (-1.8, -1.1) - 2.4 (-3.0, -1.6)

Gender - 3.3 (-4.6, -1.9) + 4.2 (3.3, 5.0) + 1.6 (0.7, 2.5) + 2.5 (0.9, 4.1)

Apnea + 1.7 (1.0, 2.5) - 1.1 (-1.6, -0.7) - 1.1 (-1.6, -0.7) NS

Hypertension NS NS - 1.2 (-2.0, -0.4) - 2.5 (-4.0, -1.0)

Percentage variability of metric (column) explained by covariate (row) (with p-values) 

Light percentage Deep percentage REM percentage Sleep efficiency

Age 1.8 ( < 0.001) 12 ( < 0.001) 6.8 ( < 0.001) 5.1 ( < 0.001)

Gender 2.7 ( < 0.001) 9.2 ( < 0.001) 1.5 ( < 0.001) 1.0 ( 0.002)

Apnea 2.4 ( < 0.001) 2.7 ( < 0.001) 2.6 ( < 0.001) NS

Hypertension NS NS 0.9 (0.005) 1.2 (0.001)

(a)

(b)

Fig. 6 Sleep covariate regression analysis. The tables below show results of regression analysis with the covariates on each row as
independent variables and our algorithm predicted sleep metrics on each column as the dependent variable. The metrics are adjusted for age
and gender before regressing on apnea, and adjusted for age, gender and apnea before regressing on hypertension. Boxes where the
covariate was a significant predictor are filled with values, the rest are filled with “NS”. Boxes colored in green are those where our results
qualitatively agree with a previous study12 done using on PSG reference stages. Boxes colored in red are those where the previous study12 and
our results disagree. N= 800. a Regression coefficients with 95% confidence intervals. b Percentage of variance of sleep measure explained by
covariate calculated as 100 * R-squared along with p-values.
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Demonstration on wrist-worn PPG
PPG from wrist-worn devices is one of the most common signals that has
found widespread adoption in consumer devices that can yield an
accurate IHR signal which has already been shown to be useful for sleep
staging22. We do not have access to a dataset with PPG data and PSG
reference labels for a comprehensive analysis, therefore as a demonstra-
tion, we tested our algorithm using a wrist-worn PPG device and ZMachine
Insight+, an EEG based automated staging device. We found that the
hypnograms predicted by the algorithm using IHR extracted from PPG
peaks qualitatively agree with the hypnograms generated by the single-
channel EEG-based algorithm developed by ZMachine; an example is
shown in Fig. 8. Further studies are required to assess our model’s
generalizability to PPG and other signals.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
SHHS and MESA have been archived by the National Sleep Research Resource27,28

with appropriate de-identification. Permissions and access for these datasets were
obtained via the online portal: www.sleepdata.org. The Physionet CinC is archived
and available for download at www.physionet.org, released as part of the Computing
in Cardiology Challenge 201818.

CODE AND SOFTWARE AVAILABILITY
The code used for training the models has a large number of dependencies on
internal tooling, infrastructure and hardware, and therefore releasing a binary or
working code is not feasible. However, we have detailed all experiments and
implementation details in sufficient detail in the “Methods” section to allow
independent replication with non-proprietary libraries. The algorithmic components
of our work use software that are available in open source repositories: Python 2.7
packages Numpy and Scipy was used for feature extraction and preprocessing.
Tensorflow 1.13 was used to build, train and test the model. Python 3.4 packages
Numpy, Scipy, Statsmodels, Pandas, Seaborn and Matlplotlib were used to create the
plots and statistical analysis.

Fig. 7 More example hypnograms. a Hypnogram of an apneic subject (AHI= 70). Hypnogram shows similar 60–90min sleep cycles but the
cycles often contain significant wake periods. b Hypnogram with poor input data quality. Predicted hypnogram gets some of the structure
correct but incorrectly classifies many deep and REM epochs.

Fig. 8 Demonstration on wrist-worn PPG. Example of a hypnogram predicted by our algorithm using heart rate extracted from wrist-worn
PPG device compared with the hypnogram predicted by an EEG based automated sleep scoring device.
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