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clinical etiologic diagnosis of
acute ischemic stroke and blood biomarker
discovery based on machine learning†

Jin Zhang, ‡a Ting Yuan,‡bc Sixi Wei,‡bc Zhanhui Feng,‡d Boyan Li *a

and Hai Huang*bc

Acute ischemic stroke (AIS) is a syndrome characterized by high morbidity, prevalence, mortality,

recurrence and disability. The longer the delay before proper treatment of a stroke, the greater the

likelihood of brain damage and disability. Computed tomography and nuclear magnetic resonance are

the primary choices for fast diagnosis of AIS in the early stage, which can provide certain information

about infarction location and degree, and even the vascular distribution of lesions responsible for

strokes. However, this is quite difficult to achieve in small clinics or at-home diagnoses. Hematology

tests could quickly obtain a large number of pathology-related indicators, and offer an effective method

for rapid AIS diagnosis when combined with the machine learning technique. To explore a reliable,

predictable method for early clinical etiologic diagnosis of AIS, a retrospective study was deployed on

456 AIS patients at the early stage and 28 reference subjects without the symptoms of AIS, by means of

the selected significant traits amongst 64 clinical and blood traits in conjunction with powerful machine

learning strategies. Five representative biomarkers were closely related to cardioembolic (CE), 22 to large

artery atherosclerosis (LAA), and 15 to small vessel occlusion (SVO) strokes, respectively. With these

biomarkers, different etiologic subtypes of stroke patients were determined with high accuracy of >0.73,

sensitivity of >0.73, and specificity of >0.70, which was comparable to the accuracy obtained in the

emergency department by clinical diagnosis. The proposed method may offer an alternative strategy for

the etiologic diagnosis of AIS at the early stage when integrating significant blood traits into machine

learning.
1. Introduction

Strokes are a leading cause of death and disability worldwide
from the viewpoint of clinical practice.1,2 They oen give rise to
a serious economic burden on patients and even society. Cere-
bral ischemia caused by atherosclerosis and/or vascular embo-
lism is the most common factor, which may result in ischemic
stroke. To date, more attention has been paid to ischemic stroke
due to the high incidence, high prevalence, high mortality, high
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recurrence rate, and high disability rate. Acute ischemic stroke
(AIS) is a syndrome related to several distinct pathologies. In
general, it includes ve subtypes, such as large artery athero-
sclerosis (LAA), small vessel occlusion (SVO), cardioembolic
(CE) stroke, stroke of other determined etiology (OC), and
stroke of undetermined etiology (UND), according to the Trial of
ORG 10172 in Acute Stroke Treatment (TOAST) criteria.3 Treat-
ment and prognosis outcomes for different subtypes are quite
variable. Specically, SVO stroke has shown the most favorable
prognosis, whereas CE stroke manifested the poorest. Anti-
platelet polytherapy was associated with a better prognosis than
monotherapy in LAA stroke, and intensive antithrombotic
strategies were better than antiplatelet monotherapy in CE
subtype. Also, the risk of death was higher with anticoagulant
therapy in patients with SVO subtype.4 Platelet activation and
coagulation play an important role in CE and LAA, but much
less in SVO. Antiplatelet therapy does not have a signicant
effect on SVO.5 Besides, clinical outcomes and stroke severity
may differ in different stroke subtypes. Kim et al. reported that
the difference between the previous antiplatelet users and
nonusers was signicant only in patients with LAA, yet not in
those CE and SVO.6 Therefore, understanding AIS in terms of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the subtypes and making an accurate prediction at early stage is
valuable for appropriate prognosis and management plans.

At present, computed tomography (CT) and nuclear
magnetic resonance (NMR) are the main means for clinical
diagnosis of AIS in the early stage, which provide rich infor-
mation not only for the detection of infarction, but also for the
determination of the location and degree, or the vascular
distribution of the lesions responsible for the stroke.7 For the
AIS patients, it is important to quickly determine the subtypes,
and then receive an effective thrombolytic therapy in time
because such a thrombolytic therapy must be rapidly initiated
within a narrow time window of a few hours. Studies have
shown that the thrombolytic time window should be within 4.5
hours of the onset of stroke symptoms in patients.8 A compre-
hensive examination, e.g., CT or NMR, could lead to an accurate
diagnosis of stroke, yet is costly and time-consuming. Most
importantly, it may result in delays in timely treatment.
Therefore, there is a strong need to explore new rapid and
effective alternative methods for facilitating the easy diagnosis
of strokes. By the methods, the stroke can be essentially ascer-
tained, so that appropriate treatment can be timely conducted,
and prognosis outcome forecast.

Hematology testing is one of the fast, convenient, econom-
ical methods to understand the overall health status of patients,
and can be simply completed in nearly all primary hospitals
within half an hour. It has been proved that the hematology
traits discover very important information about how the stroke
progresses.9 For example, blood cell characteristics, coagulation
factors, platelet activation and aggregation pathways are related
to thrombosis. These biomarkers play an important role in
revealing the pathological mechanism of the occurrence and
development of stroke.10 However, the hematological traits are
probably inuenced by many factors, such as infection,
inammation, blood-clotting disorders, leukemia and the
body's response to chemotherapy treatments. Hence, it is still
challenging to diagnose stroke only by blood traits or identify
specic biomarkers in blood traits through conventional
statistical methods.

Machine learning (ML) is a powerful tool and commonly
described as a strategy or programme to relate multiple features
of the objectives under investigation. ML has been widely
applied in many scientic elds, such as chemistry,11,12

biology,13 medicine,14 and so on. MLmodels were established to
predict the composition of complex systems by using molecular
spectroscopy,15–18 or to explore any quantitative structure–
activity relationship through designing a large number of active
molecules for disease treatment.19 Recently, ML models were
yielded to address the problems in the subtypes of AIS,20

salvageable tissue lesion21,22 and outcomes,22 etc. The most
model outputs were likely desirable, however, failed to
substantially shorten the time from symptom onset to treat-
ment, since the models were commonly built upon neuro-
imaging data, which were relatively time-consuming to
acquire.23,24 To date, there is a lack of well-validated ML models
for ischemic classication based on blood traits.

In this work, AIS was investigated concerning its subtypes by
means of hematology traits and ML methods. For the clinical
© 2022 The Author(s). Published by the Royal Society of Chemistry
etiologic diagnosis of CE, LAA, and SVO strokes at early stage,
several machine learning models were built with typical blood
features. The results showed that different subtypes of stroke
patients were etiologically determined with high accuracy of
>0.73, sensitivity of >0.73, and specicity of >0.70. To our
knowledge, the study could be the rst report on well-validated
diagnosis models for AIS. The hematology biomarkers might
imply new root causes relating to the different subtypes of AIS.
Machine learning methods were suited to handle the imbalance
and missing values in clinical hematology trait data which
could probably hinder the proper stroke diagnosis.
2. Materials and methods
2.1 Patient

This retrospective study involved a total of 476 patients hospi-
talized in the Department of Neurology, the Affiliated Hospital
of Guizhou Medical University, China from July 2018 to January
2020. The study was reviewed and approved by the Ethic
Committee of the Affiliated Hospital of Guizhou Medical
University (Approval number: 2020104K). All the patients signed
off a necessarily informed consent form. The patients included
a total of 456 AISs at early stage and another 28 reference
subjects. For AIS, the inclusion criteria were that the patients
must meet the Diagnosis of the Chinese Guidelines for the
Diagnosis and Treatment of Acute Ischemic Stroke 2018. The
subtypes of AIS were determined by a medical professional
according to clinical diagnosis and neuroimaging data.
2.2 Clinical chemistry data

According to the TOAST criteria, 456 AISs were clinically diag-
nosed by comprehensive imaging evaluation and divided into
ve subtypes, i.e., 65 patients in CE, 157 in LAA, 165 in SVO, 44
in OC, and 19 in UND. Notably, two patients were specically
determined within two subtypes of CE and LAA strokes. Only
the three subtypes, i.e., CE, LAA, and SVO strokes, were signif-
icantly considered for diagnosis modelling. There were 64
clinical and blood features/variables collected for the individual
patients, including 10 general information, 3 blood routine
indicators, 5 blood coagulation factors, 42 biochemical indica-
tors, 3 myocardial markers, and one immune indicator (see
details in the given Table S1† in the ESI). The general infor-
mation was generated by a face-to-face survey. The blood
routine indicators were measured on an XN2000 automatic
blood routine analyzer (Sysmex, Japan). The blood coagulation
factors were conducted on an automatic coagulation analyzer
(STA-R-EVOLUTION, French). The biochemical indicators were
produced on an E602 automatic biochemical analyzer (Cobas,
Switzerland). The myocardial markers were acquired on an
E702 automatic biochemical analyzer (Cobas, Switzerland). The
immune indicator was obtained by using an IMMAGE800
automatic specic protein analyzer (Beckman Coulter,
American).

Close inspection of the data indicated that only 36 features of
the total 64 ones were complete and the remaining 28 features
contained many missing values up to a pretty large percentage
RSC Adv., 2022, 12, 14716–14723 | 14717
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of 20.94%. Fig. 1a shows the distribution of missing values in
the data along with the columns in clinical features, of which
the corresponding values were scaled to the range of 0–1 for
clarication. One can observe that the most missing value
occurred in the personal general information, a-HBDH, TG, TC,
HDL-C, LDL-C, RC, LP(a), Hcy, ApoA1, ApoB, ApoA1/ApoB, hs-
CTnT, NT-proBNP, Mb and RF, respectively. As is known, all
these features were relevant to AIS to a certain extent. Therefore,
the missing values should be carefully treated in the data
analysis.

The clinical data comprised of only 36 complete features of
all the patients were initially run with the principal component
analysis (PCA), and three principal components (PCs) were
used. As a consequence, a random normal distribution can be
seen from the resultant PC scores (Fig. 1b). No obvious
difference appeared in these scattering scores among the
subtypes. It may suggest that the blood routine indicators
contain poor etiologic information about AIS, and it is difficult
to achieve a reliable diagnostic model of AIS only by a single
routine blood trait combined with conventional statistical
methods.
2.3 Machine learning

Herein, ML method may be efficient for diagnosing AISs
because it could deal with multiple features, rather than relying
on just one or two factors, to make judgments in traditional
clinical practice.
Fig. 1 (a) Clinical data with missing values, (b) distribution of PCA
scores obtained from the 36 complete features of all the patients.
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2.3.1 Data cleaning and missing value imputation.Missing
values are common in a retrospective study due to uncertain
diagnosis or irresistible causes. Sometimes, data cleaning with
respect to outlier detection also results in some missing values.
The data far away from the mean value were considered as
outliers and had to be removed. However, missing values are
challenging to most ML methods which cannot directly handle
the data unless the values can be reasonably compensated.
Trimmed scores regression (TSR)25 has been regarded as
a powerful tool for missing value imputation. Based on the
prediction from the known values, missing values can be calcu-
lated iteratively. Herein, TSR was used to impute the missing
values caused by the uncertain diagnosis and data cleaning.

2.3.2 Feature selection. The fact that practical data are
generally redundant or there exist a lot of uninformative features
in the data oen makes a multivariate calibration model fail to
predict new objects. Feature (or variable) selection has been
proved critical to enhancing the model prediction performance
in our previous studies.16–18 In this study, the rank feature for
classication using minimum redundancy maximum relevance
(MRMR)26 was employed to spot the most representative blood
features and meanwhile reduce the redundancy of data. The
algorithm was performed by compensating the redundancy and
relevance goals with specied parameters.

2.3.3 Multivariate calibration. Decision tree was employed
for building the diagnosis model in the study. In a decision tree,
a hierarchical tree structure was simulated, of which the leaves
represent class labels and branches symbolize the conjunctions
of features linking to those class labels. However, there was
a strong class imbalance in the real clinical data, and a regular
decision tree showed a poor performance in prediction. Thus,
we resorted to the hybrid data sampling/boosting (RUSBoost)
algorithm,27 which is an efficient algorithm for dealing with
data with a certain imbalance dataset. RUSBoost was executed
in a random under-sampling (RUS) and boosting procedure
with the weighted average of multiple weak learners generated
by the decision tree. That is, using RUS on the original data with
imbalance class in calculation, many sub-data can be hence
produced with balance class, and weak learners generated by
the decision tree. Then, based on these weak learners an
ensemble model can be averaged with the weight determined by
maximization prediction accuracy. The number of weak
learners is the key parameter for trading off the efficiency and
overtting of the assembled model. This decision tree could
largely enhance the performance of machine learning model in
prediction.

2.3.4 Figure of merits. Herein, the gure of merits (FOMs)
in terms of accuracy, sensitivity and specicity28 were adopted
for evaluating the performance of the model. The FOMs are
commonly dened as follows:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

Sensitivity ¼ TP

TPþ FN
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Specificity ¼ TN

FPþ TN

where TP, TN, FP and FN represent the number of true positive,
true negative, false positive and false negative patient samples
predicted by the model, respectively. A large accuracy value
suggests a satisfactory prediction for all the patients, while large
sensitivity and specicity mean a promising prediction for
positive and negative samples, respectively.

Receiver operating characteristic (ROC) curve has been also
commonly used to validate the efficiency of classication
models. ROC curve was created by plotting the true positive rate
(TPR) against false positive rate (FPR) at various thresholds. The
area under ROC curves (AUC) provided a measure of the model
efficiency, ranging from 0 to 1. The larger the AUC is, the closer
the model to a perfect classier.

Before calibration, the patients were randomly divided into
a calibration set and a validation set with a split ratio of 4 : 1.
Consequently, 381 patient samples in the calibration set were
used for establishing the machine learning models, and the
validation set was comprised of the remaining 95 patient
samples, and utilized for validating the prediction efficacy of
the calibration models. The AIS subtypes, CE, LAA and SVO
were mainly considered for modelling, whereas SUD and OC
were ignored because of the lack of diagnosis patients. Fig. 2
represents the schematic diagram illustrating the strategy for
clinical etiologic diagnosis of AIS and blood biomarker
discovery.
3. Results and discussion
3.1 Data processing

Data cleaning was rst conducted along with the columns for
cleaning the unreliable records or measurements from the
clinical variables. As a result, 323 outlying records or
measurements were detected and replaced with missing
values. These outlying records or measurements had values
Fig. 2 Schematic diagram of strategy for clinical etiologic diagnosis of
AIS and blood biomarker discovery.

© 2022 The Author(s). Published by the Royal Society of Chemistry
that exceeded the mean absolute deviation away from the
mean value.

TSR was then implemented to complete the imputation of
missing values among the clinical data. Note that the key
parameter of iteration number was set to an empirical value of
2000 in request. PCA was also run in the regression steps to
reduce the data redundancy, with only two PCs. Fig. 3a delin-
eates the clinical data with all the missing values imputed.
Particular attention should be given to the 11–46 columns on
account of the replacement of outlying values. Compared with
the original data in Fig. 1a, one can see that the gaps caused by
missing values were now lled with proper gures in the range
of 0 up to 1.

Aerwards, PCA was rerun on these data aer the missing
value imputation, with three specied PCs. The distribution
of the resulting PC scores of 64 features of all the patients
clearly shows two distinct clusters along with the 3rd prin-
cipal component (Fig. 3b). The correlation coefficients
between the scores and subtypes of AISs were also calculated,
and a slight increase can be observed aer missing value
imputation (see details in the given Table S2† in the ESI).
This implies that additional information with respect to the
etiologic diagnosis of stroke among the patients was
discovered and the data imputation of missing values was
necessary.
Fig. 3 (a) Clinical data with missing values imputation, (b) distribution
of PCA scores obtained from 64 traits of all the patients after data
imputation.

RSC Adv., 2022, 12, 14716–14723 | 14719
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3.2 Blood biomarker discovery

MRMR was carried out to identify signicant clinical features
that were desired to enable to discriminate of the subtypes of
CE, LAA, and SVO of strokes. For this purpose, a new strategy
was taken in a Monte Carlo sampling protocol.29 With a strin-
gent 80% sampling ratio, the entire calibration set was
randomly split into a subset that comprised 305 patients. The
feature selection was subsequently implemented on such
a calibration subset, and feature scores were calculated for the
use of measuring the importance and uncertainty of each
feature. This procedure was repeated in 100 runs. Conse-
quently, 100 independent calibration subsets were individually
produced. The mean value and standard deviation of all the
feature scores were computed for each of the 64 clinical and
blood features using the 100 individual runs, say mean � std, n
¼ 100. Fig. 4a displays the obtained feature scores in descend-
ing order for diagnosis of CE strokes. One can observe that at
the beginning both the mean value and standard deviation of
the scores were pretty large. As the feature number increased,
there appeared a sharp drop. From the 5th feature onwards, the
decreasing trend became slow and down to a at. Therefore, the
rst ve features were determined as the signicant ones which
could discriminate the CE from other strokes. These ve
signicant clinical features pointed to NT-proBNP, BUN, PLT,
GLB and PA in order (Table 1). The rst important feature, N-
terminal B-type natriuretic peptide precursor (NT-proBNP) is
a neurohormonal peptide secreted by atrial and ventricular
myocytes. The level of serum NT-proBNP level is a critical
indicator useful for assessing the risk of stroke or death in
patients with atrial brillation receiving anticoagulant
therapy.30 The determination of serum NT-proBNP level during
Fig. 4 Feature selection for calculating the importance of 64 clinical
and blood traits for the subtypes of (a) CE, (b) LAA and (c) SVO. Error
bars represent the standard deviation in n ¼ 100 sampling runs.
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hospitalization can predict the prognostic outcome of patients
with heart failure.31 The two features of BUN32 and PA33 are both
related to myocardial infarction. PLT plays an important role in
the process of thrombosis.34 CE is a mural thrombus in the
heart that enters the cerebral artery with the blood ow and
blocks the blood vessel, thus is an important complication of
heart disease. It is primarily associated with atrial brillation
regarding le atrial thrombosis, heart valve disease, articial
heart valve, cardiomyopathy, and heart failure. Moreover, CE is
closely related to le ventricular thrombosis of myocardial
infarction.35 Therefore, the joint detection of these indicators
can help identify the subtype of CE on its occasions.

As for the subtype of LAA, the signicance of 64 features, in
terms of feature scores obtained during the feature selection
implementation, was presented in Fig. 4b. The descending
curve suggested that the rst 22 features were important for
classifying the LAA subtype. They were in order from the 1st

hypertension up to the 22nd a-HBDH (Table 1). It was found in
clinical studies that the development of atherosclerosis is
ascribed to several classical risk factors including age, gender,
hypertension, dyslipidemia (e.g., either the TC and LDL-C
increase or the HDL-C decrease) and diabetes.36 Besides, high
homocysteine,37 low bile acid,38 high cystatin C,39 low albumin,40

high uric acid41,42 and low bilirubin43 in their levels are all
relevant symptoms of the development of atherosclerosis.
ApoA1 has an anti-atherosclerotic effect, and ApoB has the
opposite effect.44 Therefore, the decrease in the ratio of ApoA1/
ApoB is related to the formation of atherosclerosis. Athero-
sclerosis caused by intracranial and extracranial arteries or their
cortical branches to cause obvious vascular stenosis (>50%) or
vulnerable plaque is an important mechanism of LAA.45,46 The
factors that generally promote the development of atheroscle-
rosis may play a considerable part in the development of LAA.
For example, cTNT and a-HBDH in the endogenous coagulation
pathway are signicantly related to the occurrence and devel-
opment of LAA,5 though the mechanism is unclear. Hence, they
may become a new biomarker of LAA formation.

Likewise, 15 traits were found to be dedicated to the diag-
nosis of SVO, as shown in Fig. 4c. Table 1 listed these traits in
order. About a quarter of arteriolar occlusive strokes have been
caused by small vessel disease, including hyalinosis of small
arteries at the end of the perforator and atherosclerosis of the
main perforator, supported by a history of hypertension and
diabetes. The factors leading to atherosclerosis, hypertension,
and diabetes may be important to the occurrence and devel-
opment of SVO. This result indicated that sex is another
important feature for SVO. The possible reason may be that
estradiol has a specic neuroprotective effect on young
females.47 Furthermore, the increased ratio of blood urea
nitrogen-to-creatinine in patients with AIS is associated with
venous thromboembolism.48 Serum creatine kinase can
promote the development of arterial hypertension to a certain
extent.49 The increase of RBCs, adenosine diphosphate released
by RBC, blood viscosity and the slowdown of blood uidity can
cause and/or increase the aggregation of PLT and thrombosis.49

AST, LDH, CK, CK-MB and a-HBDH are the myocardial zymo-
grams for detecting/testing cardiac function. They are widely
© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 1 Significant clinical and blood traits identified for diagnosing the CE, LAA and SVO strokes

Subtypes of
AIS Identied traits

CE NT-proBNP, BUN, PLT, GLB and PA
LAA Hypertension, PT, ApoA1/ApoB, TC, HDL-C, diabetes, age, INR, TT,

APTT, sex, Hcy, cTNT, DB, TBA, g-GGT, DBP, TP, Cys-C, ALB, UA, and a-
HBDH

SVO Sex, BUN/Cr, ALB, AST, TBA, NT-proBNP, a-HBDH, CK-MB, DB, Na+,
RBC, HCO3–, LDH, BUN, and PA

Paper RSC Advances
used as indicators of myocardial damage caused by SVO.
However, the role of the Na+, HCO3

�, BUN and PA in the
occurrence and development of SVO is unclear. These blood
features may be new indicators for the occurrence and devel-
opment of SVO. The blood features ascertained in this study
apart from classical ones could be inspiring indicators for
helping discriminate AISs, and may provide a new insight into
the disease from a viewpoint of chemical analysis.
3.3 Etiologic diagnosis of strokes

With the signicant blood features ascertained in the feature
selection step, RUSBoost was undertaken to establish the
diagnosis models of strokes by using the calibration set. The
optimal number of weak learners was determined for the indi-
vidual CE, LAA, and SVO strokes by carrying out a 10-fold cross-
validation. Meanwhile, the FOMs values were calculated for
model evaluation. The details of the resultant models together
with the FOMs values were summarized in Table 2.

From the table, one could observe that for the diagnosis of
CE strokes, 62 weak learners were trained and assembled into
a nal calibration model. The model showed pretty good
accuracy, sensitivity, and specicity with all their FOM values
equal to 0.99, which approached a best maximum limit of 1.00.
At the same time, high FOM values were obtained for the vali-
dation stroke patients, as were 0.86, 0.73, and 0.88, respectively.
This result was very comparable to the literature studies with
genetic biomarkers.50 It implied that such a model with the
easily acquired blood traits could provide another tool for
accurate etiologic determination.
Table 2 Model performance for diagnosing the CE, LAA and SVO
strokes by use of significant traits

No. of learners Accuracy Sensitivity Specicity

CE
Calibration 62 0.99 0.99 0.99
Validation 0.86 0.73 0.88

LAA
Calibration 79 0.93 0.93 0.92
Validation 0.77 0.76 0.77

SVO
Calibration 60 0.94 0.95 0.94
Validation 0.73 0.77 0.70

© 2022 The Author(s). Published by the Royal Society of Chemistry
With 79 weak learners, a second model was established for
the LAA stroke diagnosis. All three FOM values were larger than
0.92 for the calibration of 128 patients. While those obtained
from 29 LAA stroke patients in the validation set were at least
greater than 0.76. This seemed fairly satisfactory in that to our
knowledge there was no similar validating work undertaken in
previous stroke studies, which mostly focused on calibration
modelling either due to the lack of representative patients or the
overtting problem of the models.

For the 130 SVO strokes, 60 weak learners could lead to an
acceptable diagnosis model. The resulting FOMs were well
acceptable, above 0.94 for the calibration patients and 0.70 for
the validation comprised of 35 SVO stroke patients, respectively.
The overtting might account for this slight difference between
them, and this issue could be solved through a possible
enlargement of SVO stroke patients.

Fig. 5 showed the ROC curves of the models obtained with
the validation set. One can observe that the results seemed
acceptable, as the three curves were far from the diagonal line.
The models of CE and LAA were slightly superior to that of SVO
on account of larger AUC, but for SVO the AUC also reached
a value of 0.78, which is comparable to the accuracy in the
emergency department by clinical diagnosis.51 This demon-
strated that the models were acceptable for the prediction of
unknown patients in practical applications. A signicant
difference of the present work to those published lied in that: (1)
the calibration data were mainly comprised of 64 clinical traits
collected from 456 AIS patients, and this was quite easy and fast
Fig. 5 ROC curves of external validation for clinical etiologic diagnosis
of AIS subtypes.

RSC Adv., 2022, 12, 14716–14723 | 14721
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to acquire; (2) the diagnosis models were developed for three
individual subtypes of AIS, and the performance seemed
acceptable; and (3) the models were well-validated by indepen-
dent data.

4. Conclusions

This study demonstrated that using the hematology traits of
patients in conjunction with powerful machine learning
methods, one could generate effective diagnosis models for
easily discriminating AISs either in LAA, SVO, or CE subtypes,
and discover blood biomarker amongst the 64 clinical and
blood features. The hematology traits proved to be highly
informative and useful for this purpose once signicant traits
were picked up from 64 features. It offered a new strategy for the
etiologic diagnosis of AISs illustrated with the schematic
diagram and was completely different from the neuroimaging
test.
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