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Metabolomic analysis of serum may refine 21-gene expression
assay risk recurrence stratification
Amelia McCartney1, Alessia Vignoli 2,3, Leonardo Tenori 3,4, Monica Fornier5, Lorenzo Rossi 1,6,7, Emanuela Risi1,
Claudio Luchinat2,3,8, Laura Biganzoli1 and Angelo Di Leo1

Despite recent refinements to the 21-gene g score, allowing a better identification of patients who may derive no benefit from the
addition of adjuvant chemotherapy to that of endocrine therapy, patients with early breast cancer still stand to be over-treated in
the setting of clinical and/or genomic uncertainty or discordance. Here we describe and demonstrate a potential approach of
further refining the OncotypeDX risk score by metabolomic analysis of serum. In a clinical dataset (N= 87), the risk of recurrence
was further sub-stratified by metabolomic signature, with an effective splitting of each Oncotype risk classification. A total of seven
recurrences were recorded, with metabolomic analysis accurately predicting six of these. Contrastingly, the genomic risk score of
the seven recurrences ranged across all three Oncotype classifications (one recurrence occurred in the “low”-risk group, three in the
“intermediate” group and three in the “high”-risk group).
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INTRODUCTION
In meeting its primary endpoint of distant recurrent-free survival,
the recently published TAILORx study demonstrated that adjuvant
endocrine therapy was non-inferior to chemotherapy plus
endocrine therapy in women with endocrine receptor-positive,
HER2-negative early breast cancer (eBC) whose OncotypeDX 21-
gene expression assay risk recurrence scores (RS) was between 11
and 25.1 Nevertheless, while many cases of eBC are cured by
surgery ± adjuvant endocrine therapy alone, a significant popula-
tion are still over-treated due to the fear of recurrent disease
established by clinicopathological and/or genomic risk factors.
Genomic analysis of centrally derived tumour tissue assesses the
potential, proportional benefit from adjuvant therapies, but
surgery physically removes the factor (i.e. the primary tumour)
upon which initial risk is estimated. Conversely, metabolomic
analysis of serum detects the presence of residual micrometastatic
disease, and is therefore a potential complementary tool with
which to estimate residual risk of recurrence.2–7

Metabolomics is the -omic science that deals with the
characterisation of the metabolome, in turn defined as the whole
set of metabolites in a certain biological system such as a cell, a
tissue, an organ or an entire organism.8 The two leading analytical
techniques used to perform metabolomics are mass spectrometry
(MS) and nuclear magnetic resonance (NMR) spectroscopy. Both
techniques have their own strengths and limitations. MS over-
shadows NMR in terms of the number of compounds resolved,
with a sensitivity in the range down to picomolar, requiring a very
small volume of biospecimen. However, reproducibility remains its

major limitation.9 Conversely, NMR analysis is high throughput
and produces data that are highly reproducible and intrinsically
quantitative, and thus more suitable for the fingerprinting analysis
described here.8,10 Our group has already established a repro-
ducible method of quantifying the individual metabolomic
fingerprint, and its ability to accurately discriminate between
advanced breast cancer and eBC2 Furthermore, we previously
demonstrated that the metabolomic fingerprint can be used to
predict the risk of disease recurrence in early disease,2–4 and that
subsequent recurrence is characterised by higher (adjusted
P < 0.05) serum levels of choline, phenylalanine, leucine, histidine,
glutamate, glycine, tyrosine, valine, lactate and isoleucine.4

In this study, we retrospectively coupled NMR metabolomic
predictions of recurrence with OncotypeDX RS in order to test the
hypothesis that metabolomic prediction of risk recurrence could
usefully split risk stratifications previously defined by
OncotypeDX alone.

RESULTS
Metabolomic analysis
NMR spectra derived from the sera of 87 patients with eBC were
compared with a matched population of 28 metastatic breast
cancer (mBC) patients, previously analysed in a preceding study.3

In order to build a statistical model able to predict recurrence risk
in eBC patients, 26 samples from patients with recurrence-free eBC
and all mBC patients (training set) were compared using a
Random Forest (RF) classifier. This model discriminated eBC with
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respect to mBC patients with an area under the receiver-operating
characteristics (ROC) curve (AUC) of 0.732 (Fig. 1a), allowing us to
obtain an RF risk score for each eBC patient. This model was tested
by analysing all remaining eBC patients (validation set: 54 relapse-
free patients and 7 with relapse), hypothesising that a metabo-
lomic signature similar to that of mBC patients would be
predictive of cancer recurrence. In the validation set, eBC patients
without relapse were clustered with respect to relapsed patients
with an AUC of 0.762 (Fig. 1b), demonstrating the predictive
strength of our statistical model. Furthermore, analysing the RF
risk score of all eBC (both training and validation) with
Kaplan–Meier curves (Fig. 1c), a clear discrimination is evident
between patients without disease recurrence and those with
relapse, demonstrated by a P value of 0.001 and a hazard ratio
(HR) of 14.3.
The metabolomic RF risk score was then combined with the

predictive strength of the OncotypeDX assay, with the hypothesis
that the metabolomic score could sub-classify each Oncotype-
defined risk class into two subgroups: low and high risk, according
to the threshold (RF ≥ 53) determined in our previous study.3

Furthermore, by utilising RF >69, an optimised threshold for this
new dataset, improved results were obtained in the low and
intermediate Oncotype risk classes (Fig. 2). In line with the
landmark TAILORx study,1 the classification ranges of RS defined
by that study are reported here.
The metabolomic RF risk score successfully split each Oncotype

risk level, consequently refining genomic risk prediction. In the

genomic “low-risk” group (defined by a RS ≤10), all patients with a
corresponding low RF risk score were disease free at follow-up.
Among the seven patients classified as high risk by RF, one relapse
occurred. Within the Oncotype “intermediate-risk” class (RS
11–25), two relapses occurred in the “high-risk” RF subgroup
and one in the “low-risk” subgroup. Notably, metabolic RF scores
within the Oncotype “intermediate” group were heterogeneously
distributed, suggesting variability in risk existing within that
otherwise uniform stratification. In the “high-risk” Oncotype group
(RS ≥ 26), all relapsed patients were correctly classified at “high
risk” by metabolomic RF score.

DISCUSSION
The TAILORx trial protocol conservatively enriched one-third of its
“intermediate” RS group (deemed by investigators as a RS
between 11 and 25) by including 2373 patients defined as being
at low risk of recurrence by classical OncotypeDX parameters
(“low” risk is expressed by OncotypeDX as a RS <18). Furthermore,
patients who fell into the top end of OncotypeDX-defined
“intermediate-risk” group (RS 26–30) were allocated to the
TAILORx-redefined “high-risk” group. It is perhaps therefore
unsurprising that TAILORx found no additional benefit for
chemoendocrine therapy in the revised “intermediate/mid-range”
group, as a significant proportion of those assigned likely never
stood to benefit from chemotherapy. An additional consequence
of shifting patients with a RS between 26 and 30 to a “high-risk”

Fig. 1 Summarised results obtained by nuclear magnetic resonance (NMR) metabolomics: a area under the receiver operating characteristics
curve (AUC) for the Random Forest (RF) model discriminating 26 early breast cancer (eBC) patients free from cancer recurrence at follow-up
and 28 metastatic breast cancer (mBC)-matched patients (training set). The score plotted is the RF risk score that expresses the probability that
each sample included in the model has been classified correctly as eBC, or misclassified as mBC. b AUC for RF risk score of the validation set
constituted by 7 eBC patients who developed recurrent disease and 54 eBC patients without recurrence. High RF risk score is deemed to
represent a high risk of recurrence, as it means that the metabolomic fingerprint of an eBC patient is more closely resembles that of mBC. c
Overall eBC patients, plotting actual disease-free survival over time (measured in years) according to estimated metabolomic risk score
(Kaplan–Meier curves). “Low” (LR) and “High” (HR) RF risk patients are significantly clustered with a P value of 0.001 (calculated with log-rank
test) and a hazard ratio of 14.3. Censored events represent either the time of last recorded clinical follow-up or time of disease recurrence.
Timing of recurrent disease events is separately presented in the lower-most risk table
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group (all of whom received protocol-mandated chemoendocrine
therapy) was the loss of any chance of detecting a subgroup
within that classification who might safely avoid chemotherapy.
Exploratory analyses of patients aged ≤50 suggested there may be
benefit from chemotherapy if the RS was at the upper end of the
TAILORx “mid-range” (RS 16–25), although this may be possibly
attributed to the secondary ovarian suppression effected by
chemotherapy in a largely pre-menopausal cohort, rather than a
direct benefit of cytotoxic therapy itself. TAILORx did not identify
any other factors that stratified risk of recurrence within the
Oncotype-defined “intermediate-risk” group. Harnessing metabo-
lomic analysis may potentially further this endeavour.
While exploratory in nature, this analysis represents a new

integration of prognostic information derived centrally from the
primary tumour, with aberrant metabolomic signalling from the
periphery, which persists in the presence of micrometastatic
disease. OncotypeDX RS stratifications were split further by
metabolomic analysis, with all-but-one recurrences falling in
“high-risk” metabolomic sets. The only patient with subsequent
recurrence who was incorrectly classified by metabolomic analysis
as having a “low risk” of recurrence developed cutaneous
metastases ~8.5 years after initial diagnosis, on a background of
having completed adjuvant anthracycline and taxane-containing
chemotherapy and 5 years of endocrine therapy. This raises the
question as to whether metabolomic analysis of specimens
collected at the time of initial diagnosis may be limited in
detecting signals of micrometastatic disease with a long lead time
to clinical manifestation, or if more indolent subtypes of
metastatic disease may evade metabolomic detection. The
strength of this approach may be underestimated by this study,

given the small number of disease recurrence events observed in
the studied cohort, which was largely comprised of patients with
luminal A-like disease, which often relapses beyond 5 years of
completing adjuvant therapy.11 More relapses may yet occur in
time, particularly in those patients whose metabolomic score
placed them at higher risk of doing so. The results of this study
require validation in a larger patient cohort.

METHODS
Patient data and sample collection
Serum samples were selected from a breast cancer biobank belonging to
Memorial Sloan Kettering Cancer Center (MSKCC), derived from patients
with eBC who provided prospective written informed consent for the
collection of serum and clinical information for future research purposes.
Approval was obtained according to a protocol ratified by the ethics
committee of MSKCC. Samples were collected post-operatively, between
June 2007 and December 2009, with a mean follow-up from diagnosis of 7
years (range, 1–9 years). MSKCC maintained a database of all clinico‐
pathological data and clinical outcomes, which was provided in de-
identified form to the collaborating group in Italy. Study serum samples
(500 μl) were maintained at −80 °C from collection until transfer over dry
ice from MSKCC to Italy, where they were again stored at −80 °C until
analysis. Serum samples were anonymised prior to transfer.
Of the entire MSKCC dataset (N= 139), all available samples from

patients with early oestrogen receptor-positive/progesterone receptor-
positive (PR+)/HER2-negative disease were selected for analysis. In the
interests of examining as homogeneous a population as possible, samples
from patients with PR-negative disease were excluded. Similarly, as
OncotypeDX is not validated in patients with HER2-positive disease,
HER2-positive samples were not included in this analysis. To reduce the risk
of detecting a metabolomic “false-positive” signal, samples from patients

Fig. 2 OncotypeDX score plotted against metabolomic Random Forest (RF) score. The predicted outcome based on the TAILORx-defined
recurrence score classification (low/intermediate/high), sub-stratified by nuclear magnetic resonance (NMR) metabolomic RF risk score (low/
high), compared to actual patient outcomes (recurrences denoted in red). The dashed line represents the cut-off for the metabolomic RF score
optimised in this dataset
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who developed subsequent second primary malignancies, or a second
primary breast cancer, were also excluded. The baseline characteristics of
the patients (N= 87) included in this analysis are presented in
Supplementary Table 1.12 Just under one-half (48%) of subjects were
aged 50 years or less. Primary tumours measuring between 1.1 and 2 cm
(T1c) represented 48% of the studied cohort. Although 87% of samples
were from patients with node-negative disease, 80% had primary disease
pathologically classed as either grade 2 or 3.

1H-NMR sample analysis
Samples were prepared following the standard protocols detailed by
Bernini et al.13 Frozen serum samples were thawed at room temperature
and shaken before use, then a total of 350 µL of a sodium phosphate
buffer (10.05 g Na2HPO4·7H2O; 0.2 g NaN3; 0.4 g sodium trimethylsilyl
[2,2,3,3-2H4]propionate in 500mL of H2O with 20% (v/v) 2H2O; pH 7.4) was
added to 350 µL of each serum sample, and the mixture was homogenised
by vortexing for 30 s. A total of 600 µL of this mixture was transferred into a
5.0 mm NMR tube for the analysis.
One-dimensional 1H-NMR spectrum for all samples of eBC patients were

acquired using a Bruker 600MHz spectrometer (Bruker BioSpin) operating
at 600.13 MHz proton Larmor frequency and equipped with a 5 mm PATXI
1H-, 13C-, 15N- and 2H-decoupling probe, including a z-axis gradient coil, an
automatic tuning matching and an automatic and refrigerated (6 °C)
sample changer (SampleJet). A BTO 2000 thermocouple served for
temperature stabilisation at the level of ~0.1 K at the sample. Before
measurement, samples were kept for at least 5 min inside the NMR
probehead, for temperature equilibration at 310 K. Water-suppressed
Carr–Purcell–Meiboom–Gill (CPMG)14 spin echo pulse sequence (RD-90°-
(τ–180°-τ)n-acq) with a total spin echo (2nτ) of 80 ms was used in order to
obtain one-dimensional 1H-NMR spectra in which broad signals from high-
molecular-weight metabolites are attenuated. Eighty FIDs were collected
into 73,728 data points over a spectral width of 12,019 Hz, with a relaxation
delay of 4 s and acquisition time (acq) of 3.1 s. One-dimensional 1H-NMR
CPMG spectra of serum samples from patients with metastatic hormone
receptor-positive, HER2-negative breast cancer were retrieved from a pre-
existing MSKCC cohort analysed in a previous study already published by
our group.3

Free induction decays were multiplied by an exponential function
equivalent to a 1.0 Hz line-broadening factor before applying Fourier
transformation. Transformed spectra were automatically corrected for
phase and baseline distortions and calibrated (anomeric glucose doublet
at 5.24 ppm) using TopSpin 3.2 (Bruker Biospin srl).
Each 1D spectrum in the range 0.2–10.00 ppm was segmented into

0.02 ppm chemical shift bins and the corresponding spectral areas were
integrated using the AMIX software (version 3.8.4, Bruker BioSpin). Binning
is a means to reduce the number of total variables, to compensate for
subtle signal shifts and to filter noise in the spectra, making the analysis
more robust and reproducible.15,16 The region between 4.0 and 6.0 ppm
containing the residual water signal was removed and the dimension of
the system was reduced to 356 bins. Total area was used as normalisation
method on the data prior to pattern recognition.

Statistical analysis
Data analyses were performed using the open source software R. The
statistical approach successfully utilised in our previous papers3,4 to predict
the risk of disease recurrence was again applied in this study. The NMR
data of the groups of 87 eBC and 28 mBC patients was randomly split into
two independent cohorts: a training set consisting of 26 eBC patients
recurrence free after a mean of 7 years of follow-up, and all mBC patients,
plus a validation set consisting of all remaining eBC patients (54 free of
recurrence and 7 with recurrent disease).
The initial analysis was restricted to the training set, with the first step to

confirm that metabolomic fingerprints could distinguish between eBC
patients without recurrence and mBC patients. For this purpose, a RF
classifier17 was built. RF is a classification algorithm that uses an ensemble
of unpruned decision trees (forest), each of which is built on a bootstrap
sample of the training data using a randomly selected subset of variables
(bins).18,19 The percentage of trees in the forest that assign one sample to a
specific class can be inferred as a probability of belonging to a given class.3

In our case, each tree was used to predict whether a sample represents
early or metastatic disease. For each eBC patient, a score was created that
expresses the extent to which the serum metabolomic profile appeared to
be similar to the profile of a confirmed metastatic sample, designated as

the “RF risk score.” This score is based on the percentage of trees in the
ensemble that misclassify a sample from a patient with eBC as belonging
to the cohort of mBC patients. For all calculations, the R package “RF”17 was
used to grow a forest of 500 trees, using the default settings, and ROC
analysis was used to evaluate the performance of the model.
The final step was to test the hypothesis that a metabolomic signature

similar to that of mBC patients would prove truly predictive of cancer
recurrence. Using ROC analysis, the performance of the RF risk scores was
compared with actual clinical outcome.12 To delineate metabolomic high
risk of relapse, the cut-off for the RF score optimized in our previous
study3 (RF ≥53) was adopted. It is worth of noting that using RF >69
improved results can be obtained in the “low” and “intermediate”
Oncotype risk classes, this optimised threshold for this new dataset was
determined using the function “coords” of the R package “pROC” that
maximised the Youden’s J statistic.20 The ability of the RF risk score to
predict breast cancer recurrences was also assessed using Kaplan–Meier
curves, with additional calculation of the HR and P value assessed by log-
rank test.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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