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Abstract

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data
from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials
and protocols. We report here the launching of Minimal Information for Chemosensitivity Assays (MICHA), accessed via
https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools,
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MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds,
2) samples, 3) reagents and 4) data processing methods. For example, MICHA provides an integrative web server and
database to obtain compound annotation including chemical structures, targets and disease indications. In addition, the
annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually
curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle
(Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide
FAIRified protocols from five major cancer drug screening studies as well as six recently conducted COVID-19 studies. With
the MICHA web server and database, we envisage a wider adoption of a community-driven effort to improve the open access
of drug sensitivity assays.
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Introduction
Drug sensitivity or chemosensitivity assay is an important tool
to measure cellular response to drug perturbation, which has
been increasingly used for preclinical drug discovery and clin-
ical trial optimization. However, poor inter- and intralaboratory
reproducibility has been reported when comparing batches that
differ at assay conditions [1–3]. Central to improving the data
reproducibility is the standardization of material and method
descriptions, summarized as protocols, which should be suffi-
ciently annotated and easily comparable. To make the assay pro-
tocols FAIR (Findable, Accessible, Interoperable and Reusable), a
large variety of efforts to define the minimal information (MI)
for specific assay types have been developed. In total, Mini-
mum Information for Biological and Biomedical Investigations
has reported 40 MI-based initiatives [4]. Among these, proto-
cols for common omics assays include Minimal Information
About Microarray Experiment, Minimum Information About a
Next-generation Sequencing Experiment, Metabolomics Stan-
dards Initiative and Minimum Information About a Proteomics
Experiment. For bioactivity assays in general, Minimum Infor-
mation About Bioactive Entity (MIABE) has been widely used
[5]. However, MIABE does not include specific guidelines for
annotating drug sensitivity assays. Furthermore, like many other
MI efforts, there is a lack of data integration tools to facilitate its
implementation.

With an increasing number of drug sensitivity studies, effi-
cient experimental annotation is critically needed to ensure the
accessibility and reuse of the data. The solution we present
here, MICHA (https://micha-protocol.org/), includes a guideline
to annotate the MI for four major components of a drug sen-
sitivity assay, including 1) compounds, 2) samples, 3) reagents
and 4) data analysis. Furthermore, to make the annotation as
efficient as possible, MICHA provides an integrative web tool
that allows a user to retrieve the information about these assay
components from public databases by standardized identifiers
and ontologies. Without MICHA, a user would need to annotate
a drug sensitivity experiment by retrieving multiple databases
separately, which is often time-consuming and error prone. With
the help of MICHA, we have catalogued the major drug sensitiv-
ity screening protocols in cancer and COVID-19 that may help
users assess the FAIRness of existing experiments as well as
inform the design of new experiments.

Materials and methods
Workflow

Using MICHA, users can upload their compounds, samples
and experimental design information (Figure 1). To start, users

need to upload the names and InChiKeys for the compounds,
after which MICHA will automatically extract primary and
secondary target information, physiochemical properties and
disease indications. This information will help users annotate
the mechanisms of action of the compounds. After obtaining
the compound annotations, users may continue filling in the
other experimental details, such as sample (cell lines or patient-
derived samples) information and assay conditions. For cell
lines, only the names of the cell lines are required, as the
other information will be retrieved automatically from internal
databases. For annotating assay protocols, we derive a consensus
on the MI that is needed, including assay format, detection
technology, end point mode of action, experimental medium,
plate type, cell density, time for treatment, dilution fold, vehicle
of compound, dispensation method and volume per well. These
terms are defined in Supplementary File 1 as well as in the
‘Glossary’ tab at the MICHA website. Most of the terms are
linked with the BioAssay ontology [6], which is commonly used
for high-throughput chemical biology experiments [7]. Next,
users are directed to a web form to report data processing
information, including minimal and maximal concentrations
of the compounds, publication references and drug response
metric types such as IC50 or area under the dose–response curve
(AUC). Finally, a tabular report can be generated according to
the user’s input augmented with information retrieved from
public resources (Supplementary File 2). In addition, MICHA
provides a checklist of annotation items (Supplementary File 3).
When preparing a manuscript, it is recommended to use the
checklist to confirm the MICHA compliance, so that journals
and reviewers can evaluate the FAIRness of the experiment more
easily and more systematically. The Supplementary File 4 shows
example template for FAIRified data that should be requested
from the authors by the journals or reviewers.

Data integration tools

Three types of datasets are retrievable via data integration tools
in MICHA:

FAIRified protocols

A prime objective for MICHA is to provide a pipeline for the FAIR-
ification of drug sensitivity assays, such that these established
protocols can be well documented with enhanced visibility to
the research community. To initiate such an effort, we have
FAIRified drug screening protocols from major cancer studies
including GDSC (345 compounds and 987 cell lines) [8], CCLE (24
compounds and 504 cell lines) [9] and CTRPv2 (203 compounds
and 242 cell lines) [10]. Furthermore, we have provided drug
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Figure 1. User interface and workflow of MICHA. Users start with compound annotation by uploading a list of compounds with names and standard InChiKeys. MICHA

will return the pharmacological (drug targets, disease indications) and physiochemical properties of the compounds via an integrative web server and database, available

under the ‘Compounds’ tab. Users then may click on Samples, Reagents or Data processing tabs to annotate their drug screening protocols. Auto suggestions are provided

to avoid spelling mistakes or terminology conflicts. Finally, users can download the summary reports containing input data as well as integrated information provided

by MICHA.

sensitivity screening protocols extracted from six recent COVID-
19 antiviral studies (5525 compounds and 2 cell lines) [11–16]. On
the other hand, we have provided an example of protocols estab-
lished at the research institution level (528 compounds and 4 cell
lines utilized at the high-throughput Drug-Screening Unit at the
Institute for Molecular Medicine Finland, University of Helsinki).
These FAIRified protocols can be freely obtained at http://mi
cha-protocol.org/protocols/. With more protocols annotated via
MICHA, the drug discovery and translational medicine commu-
nity shall be better informed on the variations on the experimen-
tal condition across different studies and institutions. Table 1
shows an overview of the FAIRified protocols by MICHA.

Compound target profiles

Compound–target profiles are integrated from the most compre-
hensive drug–target databases including DrugTargetCommons
(DTC) [19] [20], BindingDB [21], ChEMBL [22], GtopDB [23], DGiDB
[24] and DrugBank [25]. The first four databases (DTC, BindingDB,
ChEMBL and GtopDB) contain quantitative bioactivity data,
whereas DGiDB and DrugBank contain unary drug–target
information. We have focused on the primary and secondary
targets of a compound, defined as those displaying binding
affinities ≤ 1000 nM from the bioactivity databases, or those
that are recorded in the unary databases. We have integrated
drug targets for 277K chemicals from DTC, 513K from ChEMBL,
258K from Binding DB, 4.8K from GtopDB, 7.6K from DGiDB and
6.8K from DrugBank. Furthermore, we have merged overlapping
targets across these databases to avoid duplications, resulting
in high-quality target profiles for >800K chemicals. Such a data
integration provides one of the most comprehensive compounds
collection along with their potent primary and secondary
targets.

Compound properties, cell line and assay information

Compound physiochemical properties and structures for 1.9
million compounds are obtained from the ChEMBL database.
Furthermore, we have integrated disease indications and clin-
ical phase information for 3600 clinical drugs from the DTC
database. This information together with the drug–target pro-
files will be retrieved for user-uploaded compound list. When
users annotate the cell lines, the majority of cell line information
can be retrieved automatically from Cellosaurus [26], which is
a comprehensive knowledge database on cell lines. For assay
annotation, commonly used techniques will be provided for
users to choose from to ease the burden of manual editing.

Added values by MICHA
Comprehensive compound–target profiles

For annotating the mechanisms of action of compounds,
MICHA integrates compound–target profiles from various
databases, ranging from quantitative bioactivity values to unary
drug–target hits. For instance, DrugBank, GtopDB and DGiDB
are mainly focused on approved compounds with putative
target information, whereas ChEMBL, BindingDB and DTC
include bioactivity values for more versatile investigational
and preclinical chemicals. In MICHA, we have improved
target coverage across the druggable genome by integrating
nonoverlapping data points from the latest releases of these
databases. As shown in Figure 2, the average number of targets
for 2993 approved drugs (and salts) in MICHA is 7.33, as
compared with that from ChEMBL (5.5), DGiDB (4.71), DrugBank
(3.56), BindingDB (2.74) and GtopDB (0.96). Similarly, for 1992
investigational compounds (defined as those in clinical trials),
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Table 1. FAIRified protocols by MICHA

Protocol
name

Type Comp-
ounds

Cell
lines

Detection technology Dilution
fold

Plate type Min con-
centration
(nM)

Max con-
centration
(nM)

Metric References

GDSC Cancer 345 987 Fluorescence 2 384 and 96 0.03 4000 000 IC50 [10]
CCLE Cancer 24 504 Luminescence 3.16 1536 2.5 8000 IC50, EC50 [9]
CTRPv2 Cancer 203 242 Luminescence 2 384 0.56 592,000 IC50 [8]
FIMM Cancer 528 4 Fluorescence 10 384 0.0 1000 000 DSS [17]
Mario Negri Cancer 1 16 Spectrophotometry,

luminescence
10 96 0.0 10 000 AUC [18]

NCATS COVID-19 5430 1 Luminescence 2–5 384 0.0 120 000 AC50 [15]
Ellinger et al. COVID-19 103 1 Label free 3.33 384 20 20 000 IC50, CC50 [16]
Gordon et al. COVID-19 73 1 Spectrophotometry 96 1 10 000 IC50 [12]
Jeon et al. COVID-19 43 1 Microscopy 2 384 50 50 000 IC50 [14]
Touret et al. COVID-19 83 1 qPCR 2 96 600 40 000 EC50 [13]
Weston et al. COVID-19 43 1 Luminescence 2 96 50 5000 IC50 [11]

Figure 2. Average number of targets for compounds in multiple databases. (A) Approved drugs. (B) Investigational compounds.

the average number of targets per chemical is higher in MICHA
as compared with other databases. Secondly, MICHA provides
efficient Application Programming Interface (API) for retrieving
comprehensive target profiles, available at: https://api.micha-
protocol.org (Supplementary File 5). We believe that the API for
compound–target information will further boost the usability
of MICHA by programmatically integrating compound–target
profiles with other related tools and shall open new applications
for drug discovery researchers for training their compound–
target machine learning models [27–29] as well as providing
more insights on the network modeling of mechanisms of action
[30, 31].

Systematic comparison of drug sensitivity screening
protocols

We have FAIRified the screening protocols for three major can-
cer drug studies including CCLE, GDSC and CTRPv2 (Table 1).

FAIRification of these protocols is performed using MI-based
information as mentioned in checklist available at the home
page of MICHA (as well as in Supplementary File 3). These drug
screening studies share similar objectives of linking genetic
features of cancer cell lines to small-molecule sensitivity to
accelerate drug discovery. Note that MICHA focuses on the anno-
tation of drug screening protocols while the actual data points
are available in their corresponding databases. Here we report
the comparison of the major components in the assay protocols
(Table 2).

Both GDSC and CTRPv2 used common experimental plate
type i.e. 384 wells, whereas CCLE compounds were tested on
1536 well plates. In GDSC, two different experimental mediums
including DMEM and RPMI were tested for the 987 cancer cell
lines, whereas the CTRPv2 cell lines were tested for many more
different mediums as listed in Table 2. In contrast, we could not
find experimental medium information for CCLE. On the other
hand, both CCLE and CTRPv2 have used Cell-Titer-Glo (Promega),
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Table 2. Comparison between protocols of CCLE, GDSC and CTRPv2

CCLE GDSC CTRPv2

Plate types 1536 384, 96 384-Opaque white
Experimental mediums NA DMEM, RPMI ALPHAMEM, DMEM, DMEMF, EMEM, HAMSF, IMDM,

L15, McCoys5A, MCDB, MEM, RPMI, Waymouth, WilliamsE
Detection technology Luminescence Fluorescence Luminescence
Cell density 250 NA 500, 1000, 2000, 3000, 5000, 10 000
Treatment time (h) 72–84 72 72
Analysis metrics IC50, EC50 IC50 IC50

Compounds 24 345 203
Number of cell lines 504 987 242

NA indicates that the information is unavailable.

Figure 3. Overlapping data between CCLE, GDSC and CTRPv2 database. (A) Overlapping compounds. (B) Overlapping cell lines.

a luminescence-based assay to measure the levels of ATP as a
surrogate to cell viability, whereas GDSC has used based nucleic
acid staining syto60 (Invitrogen) for adherent cells and resazurin
(Sigma) for suspension cells. All the three screening studies
have used at least 72 h of treatment, after which the IC50 or
EC50 concentrations were determined from the dose–response
curves.

Figure 3 shows the overlapping chemicals and cell lines
tested across CCLE, GDSC and CTRPv2 studies, after excluding
those chemicals for which proper chemical names or identifiers
were missing to assure high-quality data in MICHA. Only two
chemicals are shared across the three studies including selume-
tinib and tanespimycin (Figure 3A). Selumetinib (AZD6244) is a
MEK (kinase) inhibitor used for treating neurofibromatosis type
I in children [32], whereas tanespimycin is a Hsp90 inhibitor [33]
that has been studied for the treatment of leukemia or solid
tumors, especially kidney tumors. In contrast, more overlap was
found for the cell lines, with 112 cell lines in common across the
three studies (Figure 3B).

MICHA has not only FAIRified cancer-related drug screening
studies but also annotated six recent studies on COVID-19, a
virus that causes ongoing pandemic with limited drug treatment
options. From these studies, we have identified 5525 chemicals
tested across two cell lines including Vero E6 and Caco-2. The
annotations of these compounds, cell lines as well as the exper-
imental information and data analysis methods can be easily
retrieved at http://micha-protocol.org/covid19.

In total, Figure 4A shows the clinical phases of the com-
pounds FAIRified by MICHA, whereas Figure 4B shows the

distribution of FAIRified cell lines from different tissue types.
These statistics show a broad coverage of cell lines and
compounds. We believe that with the FAIRification of more
protocols, MICHA has the potential to become a standard
workflow for annotating and cataloguing chemosensitivity
experiments.

With the help of MICHA platform, all these COVID-19- and
cancer-related drug screening protocols are freely accessible
to the users (Findable and Accessible). Moreover, these proto-
cols can be accessed programmatically using MICHA API, which
makes it possible for in silico models to programmatically access
MICHA to obtain compound information such as protein targets
and physiochemical properties and use this information for
novel drug–target predictions (Interoperable). The MICHA drug
screening protocols can be considered as a reference for the
experimental design of future drug screening studies as well as
serve as a source of information to evaluate the experimental
reproducibility (Reusable). MICHA is also indexed at https://fai
rsharing.org/ to be accepted as a potential tool for chemosensi-
tivity data FAIRification.

Conclusion
Chemosensitivity assay screening has been increasingly utilized
for preclinical drug discovery and clinical trial optimization.
However, chemosensitivity assays often lack sufficient anno-
tation to make the data FAIR, which has become a limiting
factor for supporting its clinical translation. To improve the assay

http://micha-protocol.org/covid19
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Figure 4. (A) Clinical phase of FAIRified compounds. (B) Tissue types for FAIRified cell lines.

annotation, web portals that facilitate information retrieval from
different assay components are critically needed. To address this
issue, we have recently launched MICHA as a web server for the
annotation of chemosensitivity screens that covers critical infor-
mation including 1) compounds 2) samples 3) reagent protocols
and 4) data processing methods.

The novelty of MICHA is 2-folds. First, it provides a protocol
for defining MI for annotating drug sensitivity assays. Second,
it provides software tools to implement such a protocol. To
enable an effective data annotation pipeline, comprehensive
compound–target profiles are deposited to the MICHA database
for more than 800K compounds. These high-quality pharmaco-
logical data shall help improve the annotation on the mecha-
nisms of action not only for approved drugs but also for inves-
tigational and preclinical compounds. Furthermore, the target
profiles at the druggable genome scale provide more information
on the polypharmacological effects, which might lead to new
opportunities for drug repositioning [34]. To facilitate the data
retrieval, the API in MICHA is highly optimized such that it
can return target profiles for hundreds of compounds within
seconds.

With the MICHA web portal, we have FAIRified major drug
sensitivity screening protocols from five cancer studies and
six recent COVID-19 studies, serving as the first instances of
the catalogue. Comparing these deeply curated assay protocols
should allow a more systematic analysis of data reproducibility.
With the FAIR-compliant data resources and tools to deliver

content standards and ontology services, MICHA will ensure the
characterization of critical assay components, allow the FAIRi-
fication and cataloguing of drug sensitivity studies and support
the downstream analysis toward clinical translation. We invite
the drug discovery community to use MICHA for annotating
their drug sensitivity assays to improve the knowledge sharing,
which shall ultimately lead to a bigger impact in translational
medicine.

Key Points
• We proposed a novel workflow called MICHA (https://

micha-protocol.org) for the FAIRification of drug sen-
sitivity screening protocols.

• MICHA provides an integrated platform to obtain drug
screening assay annotations, drug–target profiles and
other pharmacological information in an easy and fast
manner.

• MICHA FAIRified drug screening protocols related to
cancer and COVID-19, which are made comparable
and informative for designing new experiments.

Supplementary data
Supplementary data are available online at Briefings in
Bioinformatics.
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Data availability statement
FAIRified protocols by MICHA are freely accessible using MICHA
API as well as using a standalone file at https://micha-protocol.o
rg/download/index. Compound–target profiles can be retrieved
by the MICHA annotation pipeline or programmatically using
the API. Furthermore, compound–target profiles can also be
downloaded as a standalone file at https://micha-protocol.org/
download/index.
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