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Almost 70 years after establishing the concept of primary immunodeficiency disorders

(PIDs), more than 320 monogenic inborn errors of immunity have been identified

thanks to the remarkable contribution of high-throughput genetic screening in the last

decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory

symptoms as the primary clinical manifestation instead of infections. These PIDs are now

recognized as diseases of immune dysregulation. Loss-of function mutations in genes

such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous

gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these

disorders. Identifying these syndromes has considerably contributed to expanding our

knowledge on the mechanisms of immune regulation and tolerance. Although whole

exome and whole genome sequencing have been extremely useful in identifying novel

causative genes underlying new phenotypes, these approaches are time-consuming and

expensive. Patients with monogenic syndromes associated with autoimmunity require

faster diagnostic tools to delineate therapeutic strategies and avoid organ damage.

Since these PIDs present with severe life-threatening phenotypes, the need for a

precise diagnosis in order to initiate appropriate patient management is necessary. More

traditional approaches such as flow cytometry are therefore a valid option. Here, we

review the application of flow cytometry and discuss the relevance of this powerful

technique in diagnosing patients with PIDs presenting with immune dysregulation. In

addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently

uncovers new immunopathological mechanisms underlying monogenic PIDs.
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INTRODUCTION

An effective immune response is required for defending
the host from infections as well as playing a fundamental
role in physiological homeostasis (1–9). In this context, the
investigation of inborn errors of immunity leading to primary
immunodeficiency diseases (PIDs) has considerably expanded
our understanding of how the immune systemworks to eliminate
infections while avoiding autoimmune diseases (10–17). The first
PID was identified in 1952 by Ogden Bruton who reported a male
patient with agammaglobulinemia who suffered from recurrent
bacterial infections (18). By 2003, mutations in approximately
100 genes were found to cause molecularly defined PIDs (19).
The introduction of next-generation sequencing (NGS) (e.g.,
whole exome sequencing or WES; whole genome sequencing or
WGS) led to the discovery of ∼120 new genes by 2015 (20–23).
The most recent International Union of Immunological Societies
(IUIS) report lists more than 320 monogenic causes of PID (24).

The longitudinal observation andmolecular evaluation of PID
patients revealed that the phenotype of PID patients comprises

FIGURE 1 | Timeline depicting the discovery of genetic defects that cause PIDs associated with immune dysregulation. Genes are shown above the timeline by year

of first reported mutation. The graphic below the timeline shows the cumulative increase of PIDs with immune dysregulation that were genetically characterized. The

Y-axis represents the 40 genes associated with diseases of immune dysregulation that were discovered between 1990 and 2017 when the last IUIS phenotypic

classification for PIDs was published (shown in the X-axis). The image was created using Time.Graphics (30).

not only the susceptibility to bacterial, fungal, and viral infections
diseases, but also autoinflammatory and autoimmune disorders
as well as an increased incidence of malignancies (15, 16, 25–
28). The group of PIDs associated with inflammation and
autoimmunity has been recognized by the IUIS Phenotypic
Classification Committee for PIDs as “diseases of immune
dysregulation” (24). The prototype for this group is the syndrome
of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-
linked (IPEX) (29) caused by mutations in the Forkhead Box
P3 (FOXP3) gene that results in the defective development of
CD4+CD25+ regulatory T cells (Tregs). To date, mutations
in some 40 genes have been identified that can present with
symptoms of immune dysregulation [Figure 1; (24)]. Patients
suspected to have one of these disorders require a rapid and
precise diagnosis for prognostic and therapeutic considerations.

Although WES and WGS are powerful tools that have
improved the genetic characterization of patients with undefined
PIDs, these are laborious, time-consuming, and expensive tests.
Flow cytometry, which is readily available in most laboratories,
represents a useful low cost and rapid technology for the
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investigation of PIDs, including patients with symptoms of
immune dysregulation. This tool can identify not only the
abnormal expression of extra- and intracellular molecules but
can also be used to assess functional responses of specific
subpopulations of lymphocytes. Flow cytometry-based assays
have the advantage of being more quantitative, widely available
and relatively easier to perform in a diagnostic laboratory setting
compared with other techniques such as western blot analysis,
fluorescent and confocal microscopy.

The advantage of using flow cytometry for the diagnosis
of PIDs, in general, has been extensively discussed (31–36).
Here, we review the progress made in using flow cytometry
for the diagnosis of PIDs associated with immune dysregulation
and its contributions for a better understanding of disease
immunopathology. Although the genetic dissection of several
PIDs have provided relevant insights into molecular pathways
associated with host defense and immune tolerance (24, 37–43),
we discuss here only the inborn errors of immunity presented by
the last IUIS phenotypic classification for PIDs in 2017 (44).

Flow Cytometry for Diseases of Immune
Dysregulation
Since the first attempt by Cooper et al. to provide a classification
for PIDs in 1973 (45), the number of PIDs have exponentially
increased asmost recently summarized by the IUIS Inborn Errors
of Immunity Committee classification [Figure 1 (24)]. The first
PIDs with features of immune dysregulation appeared in the
IUIS Phenotypic Classification for Primary Immunodeficiencies
in 1999 (Wiskott-Aldrich syndrome, PNP deficiency, selective
IgA deficiency, early complement component deficiencies, and
ALPS) (46). In subsequent reports, increased numbers of PIDs
with features of immune dysregulation were reported, currently
comprising a total of 40 monogenic diseases of immune
dysregulation (Figure 2), divided into two main groups labeled
“Hemophagocytic Lymphohistiocytosis (HLH) & Epstein-Barr
virus (EBV) susceptibility” and “Syndromes with Autoimmunity
and Others” (Figure 3). We use this classification throughout
this article. The genes causing these disorders are listed in
Figure 4 (HLH and EBV susceptibility) and Figure 7 (syndromes
with autoimmunity).

With a few exceptions, the flow cytometry contributions for
the characterization of diseases of immune dysregulation are
discussed below and summarized in Tables 1, 2. We have not
included the Fanconi anemia-associated protein 24 (FAAP24)
(91) and Itch E3 ubiquitin ligase (ITCH) (92) deficiencies, which
are molecules that play a critical role in DNA repair (91, 93) and
the negative regulation of T cell activation (92, 94). There are only
single reports (91, 92) of these deficiencies and flow cytometry
methods for the characterization of their immunopathological
mechanisms are not available. This is also the case for prolidase
D (PEPD) deficiency (95), which has been associated with the
development of systemic lupus erythematosus (SLE) (96), and
zeta chain of T cell receptor-associated protein kinase 70 (ZAP-
70) (97) and nuclear factor of activated T cells 5 (NFAT5)
deficiencies (98). Only two ZAP-70-deficient siblings have been
reported with combined hypomorphic and activation mutations,

FIGURE 2 | Network of 40 genes that cause PIDs associated with immune

dysregulation. The interactive circular graph illustrates the connections (e.g.,

physical interaction, common signaling pathways, co-localization.) between

the causative genes and was developed using the GeneMANIA Cytoscape

plugin (47). The genes were provided as a query and are represented by the

blue nodes while their connections are represented by the gray lines. Related

genes are closer together in the network and have more connecting lines

among them.

and flow cytometry was only used to analyze T cell activation by
measuring CD69 expression on activated T cells. Only a single
patient with NFAT5 deficiency was reported, for whom flow
cytometry was used mainly for immunophenotyping and cell
death analysis (98).

Flow Cytometry Guidelines
Before reviewing the contribution of flow cytometry to the
characterization of PIDs with immune dysregulation, we
emphasize that in order to perform molecular characterization
of inborn errors of immunity in diagnostic laboratories, one
needs to become familiar with the flow cytometry guidelines
and parameters, which have been previously reported (31, 99–
104) They were discussed in detail with focus on technical
flow cytometry aspects. For example, flow cytometry parameters
of general importance are the determination and validation of
flow cytometry positive controls (e.g., fluorescence compensation
controls as well as resting and activation controls in the
case of inducible molecules), the establishment of appropriate
cutoffs (e.g., by defining the 10th percentile of normal controls
as a center-specific lower limit of normal), and avoiding
misinterpretation of results due to inter-laboratory variability,
specificity, and sensitivity, particularly in patients with low
peripheral blood lymphocyte counts. Another important issue is
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FIGURE 3 | Diagram of the 40 genes that cause PIDs associated with immune dysregulation. The genes are classified according the 2017 IUIS phenotypic

classification for PIDs (24).

that some functional assays have a time frame (normally within
24 h after venous puncture) within the test must be performed,
due to changes in cell viability or the activation of affected
cell pathways during blood shipment. Thus, it is important to
obtain blood from healthy controls at the same time of patient
sampling and ship them together for flow cytometry screening
tests (49, 105). In cases that the cells obtained from the same-day
healthy control show results outside the normal range, i.e., not
expressing or overexpressing a specific molecule, which is used
as experimental readout such as in degranulation assays (49),
the shipment and test have to be repeated. Altogether, the above
mentioned factors as well as other experimental procedures such
as correct definition of instrument setup and evaluation of cell
viability prior to the experiment are of major importance for
the proper execution of diagnostic flow cytometry. Importantly,
following the initial flow cytometry screening tests, there is
a significant amount of work to be performed by functional
validation studies (e.g., by combining site-directed mutagenesis
combined with flow cytometric assays) when identifying new
molecular defects.

HEMOPHAGOCYTIC
LYMPHOHISTIOCYTOSIS AND EBV
SUSCEPTIBILITY

HLH is a hyper-inflammatory syndrome directly linked
to abnormalities in cytotoxicity as a result of defective
degranulation. This syndrome is characterized by prolonged
fever and massive hepatosplenomegaly associated with

laboratory findings such as cytopenia, hypertriglyceridemia,
hypofibrinogenemia, and NK cells and cytotoxic (CD8+) T
lymphocytes (CTLs) exhibiting reduced cytotoxicity (24, 106).
Clinical and immunological features of FHL syndromes have
previously been reviewed in detail (107, 108). Natural killer
(NK) and cytotoxic T cells from these patients show an
impaired capacity to control viral infections. The unique curative
therapy for HLH is hematopoietic stem cell transplantation
(HSCT) (109–111).

Several different genetic disorders are associated with an HLH
phenotype and are classified as HLH with hypopigmentation
or without hypopigmentation (familial hemophagocytic
lymphohistiocytosis syndromes or FHL). Secondary HLH,
generally seen in older children and adults without a known
genetic defect, are triggered by viral infections such as EBV
(most commonly), cytomegalovirus, and herpes simplex virus,
or by hematologic malignancies, rheumatologic conditions, or
tuberculosis (112). The 19 causative genes associated with the
HLH and EBV susceptibility group are summarized in Figure 4

as well as a summarized guideline is shown in Figure 5, which
describes the flow cytometric assays required to diagnose patients
with syndromes that present with autoimmunity.

Hypopigmentation Syndromes
Four different inborn errors of immunity causing HLH
with hypopigmentation/albinism have been described: Chediak-
Higashi syndrome, genetically characterized by mutations in the
lysosomal trafficking regulator (LYST) gene (50, 51); Griscelli
syndrome type 2 due to mutations in Ras-Related Protein Rab-
27A (RAB27A) (52); and Hermansky-Pudlak syndrome type 2
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FIGURE 4 | Inborn errors of immunity that cause increased susceptibility to Hemophagocytic Lymphohistiocytosis (HLH) & Epstein–Barr virus (EBV)*. Illustration of

mutated genes associated with HLH and increased susceptibility to EBV are shown with colored backgrounds. To allow a better comprehension of signaling pathways

involved, other molecules (Fas, Trail, MHC, NFκB, 2BA, CD48, CD28, CD80, CD86, and BCR) not associated with HLH and EBV susceptibility are shown in the white

background. *Named according to the 2017 IUIS phenotypic classification for PIDs (24). The illustration was constructed using Motifolio Drawing Toolkits (48).

and type 10 caused by mutations in the adaptor related protein
complex 3 beta 1 (AP3B1) (53) and adaptor related protein
complex 3 delta 1 (AP3D1) (54), respectively. These diseases
generally manifest as hypopigmentation, immunodeficiency,
neutropenia, or decreased NK and cytotoxic T cell activity, and
bleeding tendency. However, a few cases of patients with Griscelli
syndrome type 2 with biallelic mutations in RAB27A have been
reported with normal pigmentation (113).

Interestingly, the overlapping clinical features shown
by inborn errors of immunity causing HLH with
hypopigmentation/albinism might be explained by defects
in the molecular machinery responsible for the biogenesis and
transport of secretory lysosome-related organelles in different
cell types (54). These physiologic processes are essential for

production and secretion of perforin and granzyme by NK
cells and cytotoxic CD8+ T lymphocytes (54, 55), as well as
secretion of melanin by melanosomes (114, 115) and release of
small molecules by δ granules from platelets during blood vessel
damage, which facilitates platelet adhesion and activation during
coagulation (114).

Since there is no specific flow cytometry approach established
to detect the expression of LYST, RAB27A, AP3B1, or AP3D1,
the differential diagnosis of these syndromes, based on flow
cytometry, is not possible and thus the diagnosis relies on
biochemical and molecular criteria (50, 109, 116). A few specific
features differentiate these disorders, such as the presence of
large inclusions (lysosome) in white blood cells from patients
with Chediak Higashi syndrome (49, 50, 116), specific hair shaft

Frontiers in Immunology | www.frontiersin.org 5 November 2019 | Volume 10 | Article 2742

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cabral-Marques et al. Flow Cytometry for Diseases of Immune Dysregulation

TABLE 1 | Summary of flow cytometry contributions for the immunopathological characterization of Hemophagocytic Lymphohistiocytosis (HLH) and Epstein–Barr virus

(EBV) susceptibility.

HLH and EBV susceptibility Flow cytometric (FC) application and immunopathological mechanisms identified Genetic defect

(References)

Inheritance

Hypopigmentation Syndromes

Chediak Higashi sd Reduced degranulation based on the surface up-regulation of CD107a (49) in Natural killer (NK)

cells and cytotoxic T lymphocytes (CTLs)

LYST (50, 51) AR

Griscelli sd type 2 Reduced degranulation based on the surface up-regulation of CD107a (49) in NK and CTLs RAB27A (52) AR

Hermansky-Pudlak sd type 2 Reduced degranulation based on the surface up-regulation of CD107a (49) in NK and CTLs AP3B1 (53) AR

Hermansky-Pudlak sd, type 10 Reduced degranulation based on the surface up-regulation of CD107a (49) in NK and CTLs AP3D1 (54) AR

Familial HLH

Perforin deficiency (FHL2) Perforin expression in NK cells and CTLs

Normal CD107a expression in NK and CTLs

PRF1 (55) AR

UNC13D or Munc13-4

deficiency (FHL3)

Munc13-4 expression in NK cells, CTLs, and platelets. UNC13D (56) AR

Syntaxin 11 deficiency (FHL4) STX11 expression not available by FC (no antibody validated).

Reduced CD107a expression in NK and CTLs

STX11 (57) AR

STXBP2 or Munc18-2 deficiency

(FHL5)

STXBP2 expression by FC not available (no antibody validated).

Reduced CD107a expression in NK and CTLs

STXBP2 (58) AR

Susceptibility to EBV infections

RASGRP1 deficiency Reduced cell proliferation using fluorescent cell staining dye; impaired T cell activation by

measuring CD69 expression; defective CTPS1 expression; reduced intracellular expression of

active caspase 3; reduced T cell apoptosis using annexin V/propidium iodide staining, all in

response to CD3/TCR activation

RASGRP1

(59–63)

AR

CD70 deficiency CD70 expression on phytohaemagglutinin (PHA)-stimulated T cells; binding of a CD27-Fc

fusion protein on T cells

CD70 (64) AR

CTPS1 deficiency Defective cell proliferation using fluorescent cell staining dye CTPS1 (65) AR

RLTPR deficiency RLTPR expression in adaptive (B and T lymphocytes) and innate (monocytes and dendritic

cells) immune cells. Reduced phospho-nuclear factor (NF)-κB P65-(pS259) expression and

inhibitor (I)κBα degradation in CD4+ and CD8+, specifically after CD28 co-stimulation; CD107a

expression after K562 stimulation

RLTPR or

CARMIL2 (66)

ITK deficiency ITK expression by FC not available (no antibody validated). Reduced T cell receptor

(TCR)-mediated calcium flux; absence of Natural Killer T (NKT) cells determined as TCR Vβ11

and TCR Vα24 double-positive cells

ITK (67) AR

MAGT1 deficiency MAGT1 expression by FC not available (no antibody validated). Reduced CD69 expression in

CD4+ T cells after anti-CD3 stimulation. Low CD31+ cells in the naïve (CD27+, CD45RO−)

CD4+ T cell population. Impaired Mg influx using Mg2+-specific fluorescent probe MagFluo4.

Reduced NKG2D expression in NK cells and CTLs

MAGT1 (68) XL

PRKCD deficiency Increased B cell proliferation after anti-IgM stimulation; resistance to PMA-induced cell death;

low CD27 expression on B cells

PRKCD (69–71) AR

XLP1 SH2D1A expression, low numbers of circulating NKT cells (Vα24TCR+/Vβ11TCR+). Impaired

apoptosis.

SH2D1A (72) XL

XLP2 XIAP expression, low numbers of circulating NKT cells (Vα24TCR+/Vβ11TCR+). Enhanced

apoptosis

XIAP (73) XL

CD27 deficiency CD27 expression on B cells CD27 (74) AR

Diseases are classified as reported by the 2017 IUIS phenotypic classification for PIDs (24). AP3B1, Adaptor Related Protein Complex 3 Beta 1; AP3D1, Adaptor Related Protein Complex

3 Delta 1; AR, Autosomal recessive; CD27, Cluster of Differentiation 27; CD70, Cluster of Differentiation 70; CTPS1, Cytidine triphosphate synthase 1; FHL, familial hemophagocytic

lymphohistiocytosis; ITK, IL2 Inducible T Cell Kinase; LYST, Lysosomal Trafficking Regulator; MAGT1, Magnesium Transporter 1; PRF1, Perforin 1; PRKCD, Protein Kinase C Delta;

RAB27A, Ras-Related Protein Rab-27A; RASGRP1, RAS guanyl-releasing protein 1; RLTPR, RGD motif, leucine rich repeats, tropomodulin domain and proline-rich containing; sd,

syndrome; SH2D1A, SH2 Domain Containing 1A; STX11, Syntaxin 11; STXBP2, Syntaxin Binding Protein 2; UNC13D, Protein unc-13 homolog D; XL, X-linked; XIAP, X-linked inhibitor

of apoptosis protein.

anomalies, and the detection of a platelet storage pool deficiency
characteristic of Hermansky-Pudlak syndrome (54). However,
flow cytometry has been used successfully as a screening tool
for primary (i.e., genetic) degranulation defects. The approach
relies on measuring the up-regulation of CD107a on NK
cells (with/without K562 stimulation) (49) and cytotoxic T
lymphocytes (with/without anti-CD3 stimulation) (54). CD107a
is a lysosomal protein that co-localizes with perforin and

granzyme in cytolytic granules (117, 118) and is expressed
on the cell surface upon activation-induced degranulation
following the engagement of T cell receptor (TCR) and NK cell
activating receptors (119, 120). This assay has been performed
in parallel with a cytotoxicity assay using K562 or P815
target cells to functionally confirm the degranulation defect
suggested by a reduced CD107a expression following 48 h
with phytohemagglutinin (PHA)/IL-2 or anti-CD3/anti-CD28
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TABLE 2 | Summary of flow cytometry contributions for the immunopathological characterization of Syndromes with autoimmunity.

Syndromes with autoimmunity Flow cytometric (FC) application and immunopathological mechanisms identified Genetic defect

(References)

Inheritance

Syndromes associated with increased TCRα/β DN T cells

ALPS-FAS FAS expression, reduced T cell apoptosis TNFRSF6 (75) AD/AR

ALPS-FASLG FASL expression, reduced T cell apoptosis TNFSF6 (76) AD/AR

ALPS-Caspase8 Reduced T cell apoptosis CASP8 (77) AR

ALPS-Caspase 10 Reduced T cell apoptosis CASP10 (78) AD

FADD deficiency Reduced T cell apoptosis FADD (79) AR

LRBA deficiency Reduced T regulatory (T reg) cells, low CTLA4 and Helios; Increased B cell apoptosis and low

levels of IgG+/IgA+ CD27+ switched-memory B cells; reduced B proliferative capacity, and

impaired activation (using CD138 staining)

LRBA (80) AR

STAT3 gain-of-function (GOF)

mutation

Delayed de-phosphorylation of STAT3; diminished STAT5 and STAT1 phosphorylation; which is

in line with the role in the negative regulation of several STATs162. High levels of Th17 cells;

reduced FOXP3+CD25+ Treg population; decreased FASL-induced apoptosis

STAT3 (81) AD

Defective regulatory T cells

IPEX Decreased or absent FOXP3 expression by CD4+CD25+ regulatory T cells FOXP3 (82) XL

CD25 deficiency Impaired CD25 expression; defective proliferative responses following anti-CD3 or PH;

defective NK cell maturation increased (CD56brightCD16hi and reduced CD56dimCD16hi NK

cells in peripheral blood); increased degranulation by elevated CD107a expression and higher

perforin and granzyme B expression in NK cells;

CD25 or IL2RA

(83)

AR

CTLA4 haploinsufficiency CTLA4 expression, trafficking, binding to its ligand, and CTLA4-mediated trans-endocytosis CTLA4 (84) AD

BACH2 deficiency Reduced BACH2 expression in T and B lymphocytes, decreased FOXP3 expression by

CD4+CD25+ regulatory T cells, reduced total and class-switched memory B cells, increased

T-bet expression

BACH2 (85) AD

Normal regulatory T cell function

APECED Expression of IL-17A, IL-17F, and IL-22 by PBMCs. AIRE expression by FC is not available (no

antibody validated)

AIRE (86) AR

Tripeptidyl-Peptidase II deficiency Lymphocytes expressing high levels of major histocompatibility complex (MHC) class I

molecules, a predominant T CD8+CD27−CD28−CD127− phenotype; increased percentage of

IFN-γ and IL-17 positive T cells; high expression of T-bet and perforin. Defective proliferation

lymphoproliferation and increased susceptibility to apoptosis; increased levels of CD21low B

cells

TPP2 (87) AR

JAK1 GOF Increased JAK1, STAT1, and STAT3 phosphorylation JAK1 (88) AD

Immune dysregulation with early onset Colitis

IL-10 deficiency No FC assay available. Normal STAT3 phosphorylation in response to IL-10 IL-10(89) AR

IL-10RA deficiency IL-10RA expression; defective STAT3 phosphorylation in response to IL-10. Normal STAT3

phosphorylation in response to IL-23

IL-10Ra (90) AR

IL-10RB deficiency IL-10RB expression; defective STAT3 phosphorylation in response to IL-10. Normal STAT3

phosphorylation in response to IL-23

IL-10Rb (90) AR

Diseases are classified as reported by the 2017 IUIS phenotypic classification for PIDs (24). AD, Autosomal dominant; ALPS-FAS, Autoimmune lymphoproliferative syndrome-Fas cell

surface death receptor; ALPS-FASLG, Autoimmune lymphoproliferative syndrome FAS ligand gene; APECED, Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy; AR,

Autosomal recessive; BACH2, BTB Domain And CNC Homolog 2; CASP8, cysteine-aspartic acid protease 8;CASP10, cysteine-aspartic acid protease 10; CD25 or IL2RA, Interleukin 2

Receptor A; CTLA4, cytotoxic T-lymphocyte-associated Protein 4; DN, double negative; FADD, Fas Associated Via Death Domain; IL-10, Interleukin-10; IL-10Ra, Interleukin-10 Receptor

alpha; IL-10Rb, Interleukin-10 Receptor beta; IPEX, Immune dysregulation; polyendocrinopathy; enteropathy; XL, X-linked; JAK1, Janus Kinase 1; LRBA, LPS Responsive Beige-Like

Anchor Protein; NFAT5, Nuclear Factor Of Activated T Cells 5; STAT3, signal transducer and activator of transcription 3; TPP2, Tripeptidyl Peptidase 2.

beads stimulation (49, 109, 112, 121). This degranulation assay
allows the differentiation between primary and secondary HLH.
The latter express CD107a normally upon cell activation (49).
Furthermore, as elegantly reported by Bryceson et al. (49),
the analysis of CD107a expression by flow cytometry has the
advantage of being a sensitive assay even when patients receive
immunosuppressive therapy or have very low numbers of T/NK
cells. Detailed methodological information about the detection
of T and NK cell degranulation by flow cytometry can be found
elsewhere (36, 122).

Familial Hemophagocytic
Lymphohistiocytosis (FHL) Syndromes
FHL is a life-threatening autosomal-recessive inherited hyper-
inflammatory syndrome that usually develops within the first
2 years of age (56). FHL syndromes are caused by mutations
in perforin-1 (PRF1), designated as FLH2, accounting for 30–
50% of known cases (105, 108), or proteins involved in perforin
secretion: protein unc-13 homolog D (UNC13D) (56), Syntaxin-
11 (STX11) (57), and Syntaxin Binding Protein 2 (STXBP2)
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FIGURE 5 | Flowchart depicting the immunophenotypic analysis used to define the molecular genetic defects of patients with hemophagocytic lymphohistiocytosis &

EBV susceptibility, with flow cytometry. In those cases with normal protein by flow cytometry, if there is a strong clinical indication for a specific immune dysregulation

disease, it is recommended to perform gene sequencing to exclude missense mutations that do not impair protein expression. While it has been estimated that PRF1

deficiency accounts for 30–60% of known FHL cases and UNC13D deficiency for up to 20% of FHL cases, the frequency for most of the other immune dysregulation

syndromes remains unknown. *Flow cytometry assay validated in HepG2 cells, but remains to be tested with cells from PID patients. Bold and italic texts are

disease-specific and non-disease specific flow cytometry tests, respectively.

(58), known as FHL3, FHL4, and FHL5, respectively. The gene
responsible for FHL1 has not yet been identified (107).

Defective perforin expression by NK cells
(CD3−CD56+CD16+) and cytotoxic T lymphocytes
(CD3+CD8+) can be detected by flow cytometry and has
been used as a screening approach for FHL2 (34). Likewise,
patients with UNC13D deficiency, which accounts for up to 20%
of FHL cases, can be identified by decreased UNC13D expression
using flow cytometry. Usually, UNC13D expression is assessed
on NK cells and T lymphocytes. Since patients with UNC13D
deficiency frequently present with significantly reduced
leukocyte counts (pancytopenia), UNC13D expression can
instead be analyzed on platelets (CD41a+) (34, 105, 123), since
platelets express UNC13D more abundantly than peripheral
blood leukocytes (105).

There is no specific or commercially available antibody
for flow cytometry to screen patients with STX11 and
STXBP2 deficiencies. Therefore, these two deficiencies have been
identified indirectly by measuring CD107a expression, or by the
exclusion of defective PRF1 and UNC13D expression.While cells
from patients with FHL3-5 present reduced CD107a expression
on the surface of NK cells and CTLs, CD107a expression is
normal in subjects with PRF-1 deficiency (49, 58, 123). This
phenomenon is explained by the fact that perforin constitutes
part of the lytic granule content, but in contrast to UNC13D,
STX11, and STXBP2, it is not essential for the transport of
secretory lysosome-related organelles (55, 58, 106, 107, 124, 125).

Susceptibility to EBV Infection
More than 90% of the global population are EBV-seropositive,
with the majority being asymptomatic or manifesting a self-
limiting disease (126). Patients with inborn errors of immunity
that result in susceptibility to EBV may develop severe or fatal
mononucleosis, B cell lymphoma, lymphoproliferative disease,
or HLH (67, 127–129). Mutations in at least 11 genes (four of

them with EBV-associated HLH) are known to cause increased
susceptibility to EBV (24), demonstrating the non-redundant
role of signaling pathways that generate EBV-specific immunity,
and the pivotal role of continuous immune surveillance to ensure
virus-host homeostasis (129, 130). The signaling pathways and
outcomes involved in the immunopathogenesis of severe EBV
infections (129) are summarized in Figure 4.

Notably, T cell proliferation by patients with susceptibility
to EBV can be reduced, normal or even increased (Table 3);
however, some subjects belonging to the same PID subgroupmay
display variable proliferation results where some patients with
CTPS1 (65, 131) and CD27 (74, 134) deficiencies have reduced
T cell proliferation and others do not. Moreover, the abnormal
proliferative responses might be stimulus dependent. For
instance, patients with ITK deficiency may demonstrate reduced
T cell proliferation in response to CD3/CD28 stimulation, but
normal proliferation in response to PHA stimulation (132).
Therefore, in addition to be a non-specific assay to screen
different PIDs, the analysis of T cell proliferation from patients
with susceptibility to EBV needs to be carefully scrutinized as a
screening flow cytometry tool to direct the definitive diagnosis of
these PIDs.

RASGRP1 Deficiency
RAS guanyl-releasing protein 1 (RASGRP1) is a guanine
nucleotide exchange factor and activator of the RAS-MAPK
pathway initiated by diacylglycerol following TCR signaling
(129). Mutations in RASGRP1 have been found in patients
with a combined immunodeficiency (a ALPS-like disease)
(59) presenting with recurrent respiratory infections in
association with EBV-induced lymphoproliferative disease,
chronic lymphadenopathy, hepatosplenomegaly, autoimmune
hemolytic anemia, and immune thrombocytopenia (59–63). In
addition to its availability as a screening tool to establish the
diagnosis of RASGRP1 deficiency (59), flow cytometry has been
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TABLE 3 | T cell proliferation response of PIDs with susceptibility to EBV.

Susceptibility to EBV

Deficiency RASGRP1 CD70 CTPS1 RLTPR ITK MAGT1 PRKCD XLP1 XIAP CD27

T cell proliferation Reduced Reduced Reduced Reduced Reduced Reduced Normal Increased Reduced Reduced

References (60) (64) (65, 131) (66) (132) (68) (70) (133) (73) (74, 134)

widely applied to evaluate functional defects resulting from
RASGRP1 mutations. For instance, this approach can be used
to detect reduced T cell expansion by a cell proliferation kit
(e.g., CellTrace), impaired T cell activation by CD69 staining,
and markedly reduced phosphorylation of ERK. Diminished
intracellular expression of active caspase 3 in lymphocytes
associated with reduced apoptosis using annexin V (AV) and
propidium iodide (PI) staining has been observed (59–61).

CD70/CD27 Deficiencies
Disorders of T cell co-signaling pathways such as those caused by
deficiencies in CD40L, SAP, OX40, or CD70/CD27 highlight the
critical role of co-stimulation for host defense (135–137). Patients
with mutations affecting the co-stimulatory molecules CD70 and
CD27 (Figure 4), which are expressed on the surface of T, B
and NK cells (138–140) present with similar clinical phenotypes.
These patients exhibit impaired effector CD8+ T cell generation,
hypogammaglobulinemia, lack of memory B cells, and reduced
cytolytic and proliferative responses of T cells resulting in
chronic EBV infections (EBV-associated lymphoproliferation,
EBV-associated HLH, and B cell lymphoma). Additionally,
affected patients might develop severe forms of other viral
infections including influenza, herpesviruses (e.g., varicella-
zoster virus), and cytomegalovirus (CMV) (64, 74, 134, 141–143).
Cell-surface expression of both CD70 and CD27 are assessed by
flow cytometry using specific monoclonal antibodies. Similar to
other combined deficiencies, it is possible that a mutated non-
functional protein is expressed on the cell surface (144, 145) in
which case it is possible to analyse the ability of a CD27Fc fusion
protein that binds to CD70, by flow cytometry (64).

RLTPR Deficiency
The RLTPR (RGD motif, leucine-rich repeats, tropomodulin
domain, and proline-rich containing) is a scaffold protein
that bridges CD28 located on the cell-surface to the cytosolic
adaptor called Caspase Recruitment Domain Family Member
11 (CARD11), enabling proper activation of the TCR-induced
NF-κB signaling pathway (146, 147). Although human CD28
deficiency has not yet been characterized, RLTPR deficiency
was recently reported as an autosomal recessive combined
immunodeficiency highlighting the critical role of the CD28
pathway for T- and B-cell activation (66). RLTPR-deficient
patients present with low numbers of memory CD4+ T cells,
reduced numbers of T helper (Th)1, Th17, and T follicular
helper cells, as well as reduced memory B cells, and show
poor antibody responses to vaccines (67, 148). RLTPR deficiency
causes susceptibility to a variety of pathogens, including bacteria,
fungi, and viruses (e.g., EBV). RLTPR expression can be detected

by flow cytometry in adaptive (B and T lymphocytes) and innate
(monocytes and dendritic cells) immune cells. Moreover, NF-
κB signaling defects (149, 150) in CD4+ and CD8+ T cells
from patients with RLTPR mutations have been characterized
by flow cytometry, primarily manifested by reduced NF-κB
P65 phosphorylation and IκBα degradation following anti-CD28
stimulation (66). In this context, there is a debatable paradigm
that CD28 co-stimulation is not necessary for the activation of
memory T cells. In agreement, flow cytometric analysis of T cell
proliferation has shown that the lack of RLTPR only impairs
the proliferation of naïve, but not memory T cells (66). Flow
cytometric analysis also points out a critical role of RLTPR in NK
cells, since their degranulation capacity is impaired after K562
stimulation, depicted by reduced CD107a expression (151).

CTPS1 Deficiency
The cytidine nucleotide triphosphate synthase 1 (CTPS1) is a
molecule involved in DNA synthesis in lymphocytes (152) and
therefore plays a central role in lymphocyte proliferation (65,
131). Loss-of-function homozygous mutations in CTPS1 cause
a combined immunodeficiency characterized by the impaired
capacity of activated T and B cells to proliferate in response
to antigen receptor-mediated activation (65). CTPS1-deficient
patients are susceptible to life-threatening bacterial and viral
infections, including those caused by EBV (e.g., EBV-related B-
cell non-Hodgkin lymphoma). Flow cytometry has only been
used to evaluate T lymphocyte proliferation in response to an
anti-CD3 antibody or anti-CD3/CD28 coated beads, as well
as B cells in response to anti-BCR plus CpG, which were
found to be defective (65). However, patients with normal
lymphoproliferative response have also been reported (131).
There is no anti-CTPS1 fluorochrome-conjugated antibody
commercially available. Therefore, CTPS1 expression is analyzed
by western blot (65). CTPS1 expression by flow cytometry has
been validated in HepG2 cells through incubation of primary
unconjugated antibody followed by a dye-conjugated secondary
antibody staining (153). This staining strategy represents a
potential approach to screen patients with CTPS1 deficiency by
flow cytometry.

ITK Deficiency
Mutations in the IL-2-inducible T cell kinase (ITK) causes a life-
threatening syndrome of immune dysregulation and therapy-
resistant EBV-associated lymphoproliferative disease (154–156).
ITK is a signaling molecule located proximal to the TCR
(Figure 4). ITK is expressed in thymocytes and peripheral T
cells, regulating the thresholds of TCR signaling and specific
development of CD8+ T cells (131). Flow cytometry analysis
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has shown that ITK deficient patients exhibit a reduced TCR-
mediated calcium flux in T cells (67) and an absence of NKT
cells as determined by the lack of TCR Vβ11 and TCR Vα24
double-positive cells (156).

MAGT1 Deficiency
In addition to its essential role as a co-factor for nucleic
acids and metabolic enzymes (157, 158), a critical role
of magnesium ion (Mg2+) in immune responses has been
demonstrated by disease-causing mutations in the magnesium
transporter 1 gene (MAGT1). Li et al. (68) reported Mg2+ as
an intracellular second messenger following TCR activation in
patients with an X-linked inborn error of immunity characterized
by CD4+ T cell lymphopenia, severe chronic viral infections
(e.g., EBV infection associated with lymphoproliferative disease
or lymphoma), and defective T lymphocyte activation. Flow
cytometry was used by the authors to characterize several
immunological defects, but not the expression of MAGT1,
which was investigated by Western blots. A reduced CD69
expression by CD4+ T cells after anti-CD3 stimulation was
identified, while the response to phorbol 12-myristate 13-acetate
(PMA) plus Ionomycin was normal, thus suggesting a specific
defective TCR signaling that was confirmed by impaired NF-
κB and NFAT nuclear translocation using confocal microscopy.
Reduced levels of naïve CD4+ T cells (CD27+, CD45RO−)
expressing CD31, a cell surface marker of naive TREC-rich T
cells, suggest a diminished thymic output (159–161). Kinetic
analysis by flow cytometry also revealed abrogation of TCR-
induced Mg2+ influx, which can be detected by the Mg2+-
specific fluorescent probe, MagFluo4 (68). Another immunologic
feature of the disease is the impaired cytotoxic function of NK
and CD8+ T cells. Chaigne-Delalande et al. (162) elegantly
demonstrated that decreased intracellular free Mg2+ causes
impaired expression of the natural killer activating receptor
NKG2D in NK and CD8+ T cells, impairing cytolytic responses
against EBV.

PRKCD Deficiency
Protein kinase C delta (PKCδ) (69–71, 163) belongs to a
family of at least 11 serine/threonine kinase members involved
in several pathological conditions (164, 165). Mutations in
this gene cause a monogenic disease that presents either
as SLE-like disease or as autoimmune lymphoproliferative
syndrome (ALPS)-like disorder. PKCδ deficiency is associated
with uncontrolled lymphoproliferation and chronic EBV
infection. Immunologically, human PKCδ deficiency results
in a B cell disorder characterized by B cell resistance to
apoptosis, B cell hyperproliferation, increased production of
autoantibodies, and decreased numbers of memory B cells
(69–71, 163). A similar phenotype has been identified in PKCδ

knockout mice (166–168), demonstrating the essential role
of PKCδ in B cell tolerance. Flow cytometry applications
to investigate this disease are designed to demonstrate
increased B cell proliferation after anti-IgM stimulation,
resistance to PMA-induced cell death (70), and the almost
absence of CD27 expression on B cells (69), i.e., absence of
memory cells.

X-Linked Lymphoproliferative Syndromes
X-linked lymphoproliferative syndrome (XLP) is a PID
that presents with severe or fatal EBV infection, acquired
hypogammaglobulinemia, malignant lymphoma, and HLH
(72, 169). Most XLP cases are due to mutations in the SH2
domain protein 1A (SH2D1A) gene (XLP type 1), which
encodes the signaling lymphocytic activation molecule (SLAM)-
associated protein (SAP) (72). SAP is an adapter molecule that
controls several signaling pathways involved in lymphocyte
activation, proliferation, cytotoxicity, and also promotion
of apoptosis [Figure 4; (170–172)]. The defect in antibody
production exhibited by SH2D1A-deficient patients probably
arise from impaired CD4+ T cell interaction with B cells rather
than an intrinsic B cell failure (169, 173).

Mutations in the gene encoding the X-linked inhibitor
of apoptosis (XIAP), which inhibits caspase-3,−7, and−9 by
direct binding (174), are responsible for XLP type 2 syndrome
(73).The clinical phenotype and the disease pathogenesis have
been reviewed and compared in detail elsewhere (129, 172,
175, 176). Flow cytometry can be used to evaluate apoptosis,
in order to distinguish both XLP forms. Due to the distinct
physiological roles of SH2D1A and XIAP, enhanced apoptosis
of T lymphocytes is observed in patients with XIAP-deficiency,
while the absence of SAP in SH2D1A deficiency is consistently
associated with impaired cell apoptosis (133, 170, 172). This
might explain why cytopenia is common in XIAP but not
in SH2D1A deficiency (129). The EBV-associated immune
dysregulation in XIAP deficiency might, in part, be due to
the combination of an intrinsic exacerbated proliferation of
immune cells plus the incapacity to respond to EBV. The
lymphoproliferative disease reported in SH2D1A deficiency
seems to be more the consequence of extrinsic and constant
stimulation induced by EBV that cannot be properly controlled.
For both XLP forms, flow cytometry to test intracellular testing
for SAP and XIAP protein expression is available [Figure 6; (34)].
In addition, flow cytometric testing has demonstrated that the
absence of SAP or XIAP proteins results in reduced numbers of
circulating NKT (Vα24TCR+/Vβ11TCR+) cells (73).

SYNDROMES WITH AUTOIMMUNITY

The second major group of diseases of immune dysregulation
named “Syndromes with Autoimmunity and Others,”
is subdivided based on the increased percentage of
CD4−CD8−TCRα/β (double negative [DN] T cells), on
Treg defects, and the development of colitis (24). The 21 disease-
causing genes belonging to this group are represented in Figure 7
as well as a summarized guideline (Figure 8) which describes
the flow cytometric assays required to diagnose patients with
syndromes that include autoimmunity.

Syndromes Associated With an Increased
Percentage of CD4−CD8−TCRα/β Cells
Autoimmune Lymphoproliferative Syndromes (ALPS)
TCRα/β DN T cells are useful biomarkers, frequently elevated
in children with autoimmune lymphoproliferative syndromes
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FIGURE 6 | Disease-specific flow cytometry tests for PIDs with immune dysregulation. The histograms show the normal expression of SAP and XIAP from healthy

control lymphocytes (upper panels) compared with the absent expression of SAP and XIAP in lymphocytes from patients with X-linked lymphoproliferative syndrome

type 1 (XLP1) and XLP2 (lower panels), respectively. The dot plot exhibits the absence of nuclear forkhead box P3 (FOXP3) expression in CD4+CD25+ regulatory T

cells from patient PBMCs with immune dysregulation, polyendocrinopathy, enteropathy, X-linked inheritance syndrome (IPEX) (bottom right panel) compared with

healthy control PBMCs (top right panel).

(ALPS) (179). The immunological functions of these cells
have been reviewed in detail elsewhere (180). However, their
precise role in the pathogenesis of autoimmune diseases is not
well understood (179). ALPS is caused by mutations in five
different genes: FAS, FASL, FADD, CASP8, and CASP10. The
interaction between Fas (CD95) and Fas ligand or FasL (CD178),
both expressed by activated T lymphocytes (the former also
present on other cell types), triggers the formation of a death-
inducing signaling complex (181, 182). This process involves the
recruitment of Fas-associated death domain (FADD), cysteine-
aspartic acid protease 8 (CASP8), and CASP10, initiating a
cascade of signaling events that result in apoptotic cell death
(183). This process regulates lymphocyte life span and promotes
the elimination of autoreactive lymphocytes (Figure 7). The
syndromes caused by mutations in these five genes have been
classified by the National Institutes of Health (NIH) (177)
as ALPS-FAS cell surface death receptor (the most frequent)
(75), ALPS-FASL (76), ALPS-Caspase 8 (77), ALPS-Caspase 10
(78), and the FADD-deficiency (79). These disorders generally

present as lymphadenopathy, splenomegaly, and autoimmune
manifestations such as autoimmune hemolytic anemia, and
severe recurrent thrombocytopenia (75–79, 184). Laboratory
findings also include polyclonal hypergammaglobulinaemia, T
lymphocyte apoptosis defect, and increased percentages of
TCRα/β DN T cells (177).

Flow cytometry analysis demonstrates defective T cell
apoptosis in response to anti-Fas antibody, recombinant FasL,
or after phytohaemagglutinin (PHA)-/IL-2 stimulation by using
FasT Kill assays or AV/PI or 7-AAD-staining. The technique of
detecting increased percentages of TCRα/β DN T cells within
peripheral blood mononuclear cells (PBMCs) is well established
(76, 185, 186). Moreover, protein expression of FAS (187) and
FASL (186) (both after T-cell blast generation by PHA plus
IL-2) by flow cytometry is available to investigate ALPS-FAS
and ALPS-FASL, respectively. Although the other ALPS forms
(due to FADD (79), CASP8, or CASP10 deficiency) have not
yet been studied by flow cytometry due to the unavailability of
specific fluorescent conjugated antibodies, mutations in the FAS
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FIGURE 7 | Inborn errors of immunity that cause Syndromes with autoimmunity and others. The illustration demonstrates the mutated genes associated with

syndromes with autoimmunity, and are shown with different colored backgrounds. To allow a better comprehension of signaling pathways, other molecules (TCR,

CD3, CD28, CD80, and CD86) not associated with syndromes associated with autoimmunity are shown in white background. Nomenclature as designated by the

2017 IUIS phenotypic classification of PIDs (24). The illustration was constructed using Motifolio Drawing Toolkits (48).

receptor is the most frequent disease form of ALPS found in
∼70% of genetically defined ALPS (177, 178) thereby making
flow cytometry an essential screening tool for patients suspected
to have ALPS.

STAT3 Gain-of-function Mutations
While heterozygous germline inactivating mutations in the
signal transducer and activator of transcription 3 (STAT3) with

dominant negative effect cause autosomal dominant hyper
IgE syndrome (188), heterozygous gain-of-function (GOF)
mutations in STAT3 result in an ALPS-like phenotype (81).
Patients can develop early-onset poly-autoimmunity (e.g.,
type 1 diabetes), autoimmune hypothyroidism, enteropathy,
pulmonary disease, cytopenias, arthritis, short stature,
myelodysplastic syndrome, aplastic anemia, and lymphocytic
leukemia (81, 189, 190). Increased percentages of TCRαβ+-DN
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FIGURE 8 | Flowchart depicting the recommended immunophenotypic analysis used to define the molecular genetic defects of patients with immunodeficiency

syndromes with Autoimmunity. In those cases with normal protein by flow cytometry, if there is a strong clinical indication for a specific immune dysregulation disease,

it is recommended to perform gene sequencing to exclude missense mutations that do not impair protein expression. It is estimated that mutations in the FAS

receptor are the most frequent pathology of ALPS (∼=70% of genetically defined ALPS) (177, 178). However, the frequency of other immune dysregulation syndromes

remains unknown. Bold and italic texts are disease-specific and non-disease specific flow cytometry tests, respectively.

T cells are occasionally identified (189). So far, STAT3 GOF
mutations have been shown to enhance transcriptional activity
and delay dephosphorylation of STAT3, without inducing
constitutive phosphorylation as shown by flow cytometry
studies. In agreement with the involvement of STAT3 in the
inhibition of Tregs (191, 192) and enhancement of Th17 cell
differentiation (193), flow cytometry has also shown increased
Th17 levels while the FOXP3+CD25+ Treg population is
reduced and the expression of CD25 (IL2RA) is decreased in
patients with STAT3 GOF mutations (189). Due to its activity
as a repressor of FAS-FASL activity, decreased FASL-induced
apoptosis has been observed (190).

LRBA Deficiency
Mutations in the lipopolysaccharide responsive beige-like
anchor protein (LRBA) gene cause a common variable
immunodeficiency (CVID)-like disease with predominant
antibody deficiency (hypogammaglobulinemia) and
autoimmunity (e.g., autoimmune hemolytic anemia as well
as atrophic gastritis with autoantibodies against intrinsic factor,
autoimmune enteropathy, hypothyroidism, myasthenia gravis,
polyarthritis), and inflammatory bowel disease (80, 194, 195).
The phenotype of LRBA deficiency has been well-characterized
elsewhere (196). LRBA is highly expressed in immune cells
such as T and B cells (80). The application of flow cytometry
to screen patients with LRBA deficiency has been recently
developed (197) as well as its application to evaluate several
immunopathological mechanisms of this disease. More than
70% of the LRBA-deficient patients have reduced levels of Tregs
(196) (CD4+CD25+FOXP3+), which may be related to the
low surface expression of cytotoxic T lymphocyte–associated

antigen 4 (CTLA4 or CD152) (198). CTLA4 is a cell surface
molecule required for the proper suppressive function of Tregs
(199–201). The reduced CTLA4 levels can be explained by
the fact that LRBA is a regulator of CTLA4 vesicle trafficking
[Figure 5; (197)]. Increased percentages of TCRα/β DN T cells
have been found in up to 50% of LRBA-deficient patients (196).
Several other defects associated with LRBA deficiency have been
identified by flow cytometry (80). Among them are increased B
cell apoptosis, low levels of IgG+IgA+CD27+ switched-memory
B cells, reduced B cell proliferation, and impaired activation (as
measured by CD138 expression).

Defective Regulatory T Cells
The next two subgroups of Syndromes with Autoimmunity are
based on the presence or absence of Treg defects (24). Tregs play
a central role in peripheral immune tolerance, which controls the
response of mature B and T cells that egressed from the primary
lymphoid organs (202–204). Several autoimmune diseases have
demonstrated the essential role of Tregs (202, 205), whose
development is orchestrated by the transcription factor FOXP3.

Immune Dysregulation Due to Abnormal Tregs

IPEX
The immune dysregulation, polyendocrinopathy, enteropathy,
X-linked syndrome (IPEX) is caused by loss of function
mutations in the FOXP3 gene (82). Clinical, immunological,
and molecular features of IPEX syndrome have recently been
characterized in a large cohort of patients (206). Flow cytometry
of CD4+FOXP3+CD25+ cells is well established to screen
patients suspected to have IPEX who normally have low or absent
nuclear FOXP3 expression in Tregs [Figure 6; (34)]. However,
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patients with missense mutations in FOXP3 may present with
normal protein expression and are not suitable for flow analysis.
The identification of FOXP3mutations is essential to differentiate
patients with IPEX from those with IPEX-like syndromes caused
by mutations in other immune regulatory genes (e.g., LRBA,
CTLA4, and CD25) (83, 206).

CD25 deficiency
Although CD25-deficient patients display normal percentage of
FOXP3+ cells, mutations in the CD25 gene, which encodes the
high-affinity subunit IL-2 receptor alpha chain (IL-12RA) of the
tripartite receptor for IL-2 (83), causes an IPEX-like syndrome.
This observation is explained by the fact that CD25, which can be
detected by flow cytometry, is required for the production of the
immunoregulatory cytokine IL-10 by Tregs (207). This suggests
that CD25 is required for the function but not the survival of
Tregs (207). CD4+ lymphocytes are decreased in numbers, and
the proliferative response following stimulation with anti-CD3,
PHA, or other mitogens is diminished (208). In addition, CD25
deficiency decreases apoptosis in the thymus, impairing negative
selection of autoreactive T cell clones, resulting in inflammation
in multiple organs (208).

Flow cytometry has also defined a role of CD25 in NK cell
maturation and function, as suggested by the accumulation of
CD56brightCD16high and reduced frequency of CD56dimCD16hi

NK cell in the peripheral blood as well as the expression
of higher amounts of perforin and granzyme B. Increased
degranulation (by increased CD107a expression) while reduced
IFN-γ production by NK cells has also been reported (209).

CTLA4 deficiency
Mutations in the inhibitory receptor CTLA4, which acts to
terminate the proliferation of activated T cells, have recently been
recognized as a monogenic cause of CVID (210, 211). Therefore,
for diagnostic assays of CTLA4, LRBA, and BACH2, defects
in these molecules need to be evaluated in parallel (Figure 7;
see section BACH2 Deficiency). CTLA4 is also constitutively
expressed by Tregs and functions as a key checkpoint molecule
for immune tolerance (211, 212). Details of CTLA4 biology
and immunophenotyping of CTLA4 haploinsufficiency have
recently been reviewed (213, 214). Briefly, CTLA4 competes
effectively with CD28 because of higher affinity for binding to the
costimulatory molecules CD80 and CD86, which are expressed
on the surface of antigen-presenting cells (215). Patients with
CTLA4 haploinsufficiency develop a T cell hyperproliferative
syndrome resulting in lymphocytic infiltration of multiple
organs (e.g., brain, gastrointestinal, and lung), autoimmune
thrombocytopenia, hemolytic anemia, and other cytopenias,
as well as hypogammaglobulinemia (84, 210), and increased
susceptibility for cancer (216). Decreased CTLA4 expression can
be demonstrated by flow cytometry. This tool is also useful
to assess the effect of different mutations on CTLA4 function,
which would normally require complex assays. For instance, flow
cytometry can be used to demonstrate that CTLA4 loses its ability
to interact with its natural ligands (CD80 and CD86), to traffic
from the intracellular compartment to the cell membrane, and to

inhibit T cell activation by physical removal of CD80/CD86 by
CTLA4-mediated trans-endocytosis (211, 217, 218).

BACH2 deficiency
The gene encoding the BTB and CNC homology 1, basic
leucine zipper transcription factor 2 (BACH2) is involved in
the maturation of T and B lymphocytes. BACH2 is required
for class switch recombination (CSR), somatic hypermutation
(SHM) of immunoglobulin genes, and generation of regulatory
T cells (219, 220). BACH2 haploinsufficiency has recently been
associated with CVID and lymphocytic colitis. Low BACH2
protein expression in CD4+, CD8+ T and B lymphocytes can
be demonstrated by flow cytometry, together with significantly
decreased numbers of Foxp3+ Treg cells, increased Th1 cells,
reduced CD19+CD27+ memory, and low IgG class-switched
CD27+IgG+ B cells (85).

Normal Treg Function

APECED
The discovery that mutations in the autoimmune regulator
(AIRE) gene cause the autoimmune-polyendocrinopathy-
candidiasis-ectodermal-dystrophy (APECED) syndrome
(221) provided the novel concept that a monogenic defect
can cause a systemic human autoimmune disease (86).
The endocrinopathies presented by APECED patients are
characterized by hypoparathyroidism, hypothyroidism, adrenal
failure, gonadal failure, and autoimmune hepatitis. The
ectodermal dystrophies comprise vitiligo, alopecia, keratopathy,
and dystrophy of dental enamel, nails, and tympanic membranes
(86, 222).

AIRE mediates central T cell tolerance by promoting the
expression of thousands of tissue-specific self-antigens by
medullary thymic epithelial cells (mTEC), leading to the deletion
of T cells with strongly self-reactive TCR (223). Extrathymic
AIRE expression has recently been reported in response to
antigen and interleukin 2 stimulation in human peripheral
blood cells such as CD4+ T cells, suggesting a role of AIRE in
mature lymphocytes (224). However, there is no flow cytometry
assay available to analyze AIRE expression in peripheral blood
lymphocytes. To explore the expression of AIRE in CD4+ T
cells to screen patients with APECED could improve the precise
diagnosis of this disease, once the screening is currently based on
the presence of the classical triad of CMC, hypoparathyroidism
and adrenal insufficiency (Addison’s disease) (225).

Tripeptidyl-peptidase II deficiency
Tripeptidyl peptidase II (TPPII) is a cytosolic peptidase that
works downstream of proteasomes in cytosolic proteolysis
by trimming proteasomal degradation products [Figure 7;
(226)]. TPPII modulates several cellular processes, including
antigen presentation by major histocompatibility complex
(MHC) I molecules, T cell proliferation, and survival (87,
227). Among others, patients with TPPII deficiency develop
autoimmune manifestations (e.g., immune hemolytic anemia,
immune thrombocytopenia, and other cytopenias), and they
are susceptible to viral infections such as CMV and severe
chickenpox (87).
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Although not used to assess TPPII expression in lymphocytes
for establishing the diagnosis of TPPII deficiency, flow
cytometry has been broadly employed to immunophenotypes
and characterize lymphocyte function in affected patients.
Lymphocytes from TPPII-deficient patients express higher
levels of HLA class I molecules, present a skewed T-
effector memory phenotype, and have a predominant
CD8+CD27−CD28−CD127− phenotype (87), which has
been associated with enhanced effector functions and
increased percentages of IFN-γ- and IL-17- positive T cells,
as well as high levels of T-bet and perforin expression.
Defective lymphoproliferation and increased susceptibility to
apoptosis were also characterized by flow cytometry using
Carboxyfluorescein succinimidyl ester (CFSE) and AV/PI.
Furthermore, the patients showed increased levels of CD21low

cells, an autoreactive B cell population often associated with
CVID and autoimmune diseases. CD21low B cells are thought
to have undergone activation and proliferation in vivo while
exhibiting defective proliferation in response to B cell receptor
stimulation (228, 229).

JAK1 gain-of function
The janus kinase 1 (JAK1) plays a central role in cytokine
(e.g., interferon-α, IFN-γ, IL-6) signaling by phosphorylating
STAT proteins (e.g., STAT1, STAT2, and STAT3). STAT proteins
translocate to the nucleus and activate the transcription of
many genes involved in immune responses (230). A family
with a JAK1 germline GOF mutation that causes a systemic
immune dysregulatory disease has recently been reported.
Affected patients present with severe atopic dermatitis, profound
eosinophilia, and autoimmune thyroid disease. A phospho-
flow cytometry assay was able to demonstrate increased
JAK1 and STAT1 phosphorylation at baseline and following
IFN-α stimulation as well as enhanced IL-6-induced STAT3
phosphorylation (88).

Challenges to evaluating Treg function by flow cytometry
Due to their relevant pathophysiological role in the maintenance
of immune homeostasis, we briefly reflect on the challenges
associated with evaluating Treg number and function by flow
cytometry. Distinct markers have been used to characterize
human CD4+ regulatory T cells since their first ex-vivo
characterization in 2001 (231–233). The stable expression of
the transcription factor FOXP3 represents one of the hallmarks
of Tregs in both human and mice (234) and has been
used to evaluate Tregs by flow cytometry, not only in PIDs
with immune dysregulation but also other human diseases,
including cancer (235) and diabetes (236). However, the
functional characterization of human Tregs by flow cytometry
still represents a challenge due to several factors; (I) FOXP3 can
also be transiently expressed by activated CD4+ T cells (237,
238); (II) FOXP3 evaluation requires the permeabilization of the
nucleus membrane thereby impeding the possibility of FACS-
sorting; (III) Circulating Tregs represent a very low frequency
of the blood composition (representing 10% of the CD4+ T
cell compartment) and therefore a large number of PBMCs
are required for adequate analysis. (IV) Classic Treg definition
requires the ex-vivo evaluation of their suppressive capability.

Phenotypically, the evaluation of Tregs goes beyond the
expression of FOXP3 in CD4+ T cells, requiring the combination
of distinct surface markers. In order to detect the high expression
of the alpha chain of the IL-2 receptor (CD25) (232, 233),
flow cytometric panels have shown that Treg cells exhibit low
expression of both CD45RA (239) and IL-7 alpha receptor
(CD127) (240, 241). Recent works have also shown that Tregs
from tissues might express high levels of activation markers
such as the coinhibitory receptor T cell Ig and ITIM domain
(TIGIT) (242), the inducible T-cell co-stimulator (ICOS) (243),
and the ectonucleotidase CD39 (244–246), which could be used
for further ex-vivo isolation and characterization.

Another challenge for the laboratorial evaluation of Tregs
consist of the low frequency of these cells in peripheral blood,
which limits adequate functional assessment of these cells. To
overcome this limitation, in vitro strategies for Treg expansion
may include an initial cell enrichment step by selecting T
cells, phenotypically characterized by CD4+CD25highCD127low

expression, that will subsequently be subjected to cell culture in
the presence of IL-2, rapamycin or TCR-stimulation (e.g., anti-
CD3 or APCs) (247–249). These strategies may be considered to
achieve the number of cells required for screening or classical
suppression assays using cells from patients with PIDs and
immune dysregulation. In this context, Tregs are co-cultured and
proliferated with conventional CD4+ T cells or CD8+ T cells
under polyclonal stimulation followed by assessing suppression
of proliferation with fluorescent-labeling methods. The ratios of
Tregs to target cells, duration of co-culture and readout need to
be adapted to each set of assays, considering variation of donors,
cell viability and the sensitivity of the suppression method (250).

Immune Dysregulation With Early Onset
Colitis
IL-10, IL-10Ra, and IL-10Rb Deficiencies
Interleukin 10 (IL-10) is an important anti-inflammatory
cytokine produced by cells like APCs. Early-onset (within the
first months of life) of severe inflammatory bowel disease (EO-
IBD), i.e., Crohn’s disease and ulcerative colitis (UC), can be
caused by IL-10 and IL10- receptor deficiencies (89, 90, 251).
The expression of both IL-10 receptor alpha (IL-10RA) and IL-10
receptor beta (IL10RB) can be assessed by flow cytometry (90). Of
note, IL-10 binds to its receptor, leading to the activation of the
JAK1-STAT3 pathway [Figure 9A; (252)]. Normal or defective
IL-10-induced phosphorylation of STAT3 in T cells has been
evaluated by flow cytometry to distinguish patients with EO-IBD
due to IL-10 or IL-10R deficiencies (Figure 9B). Recombinant IL-
6 or IL-23 are used in parallel with IL-10 as stimuli to distinguish
the specificity of IL-10 or IL10R deficiencies.

CONCLUSION AND FUTURE
PERSPECTIVES

Since the identification of the specific mutation is the definitive
approach for a specific molecular diagnosis, flow cytometry
represents an extremely useful and versatile tool to effectively and
rapidly evaluate patients with PIDs at relatively low costs (32–
35). Of note, most of the other PIDs associated with immune
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FIGURE 9 | IL-10 and IL-10 receptor deficiencies and the relevant role of flow cytometry analysis for precise diagnosis. (A) The interaction between IL-10 and its

receptor (left side) as well as the downstream signaling events (right side) are exhibited. The red X highlights the IL-10 and IL-10 receptors (IL-10RA/B) that if mutated

cause immune dysregulation with early onset colitis. (B) Flow cytometric histograms from a healthy control and an IL-10RA deficient patient, in resting or after IL-23 or

IL-10 stimulation, illustrating the importance of flow cytometric application for functional assessment of inborn errors of immunity.

dysregulation (Figure 3) seem to be rare diseases. This current
landscape is also influenced by the fact that, while some diseases
have been described earlier (e.g., mutations in FAS, FASL, and
LYST) (75, 184) and investigated in more detail, the molecular
defects that cause most PIDs with immune dysregulation have
only recently been discovered (Figure 1). However, we can
confidently estimate that PRF1 deficiency accounts for 30–50%,
and UNC13D deficiency for up to 20% of all FHL cases (34,
105, 108, 123), and mutations in the FAS receptor are the most
frequent cause of ALPS [∼70% of genetically defined ALPS
(177, 178)]. The incidence of several other PIDs with immune
dysregulation remains to be determined when additional patients
are discovered. While more than 250 patients with Chediak–
Higashi syndrome due to LYST deficiency were described 13
years ago (? ), other PIDs we included in this review have been
reported only in the last decade and we expect that only a
small proportion of these patients have been discovered to date.
The establishment of more laboratories capable of molecularly
characterizing PIDs with immune dysregulation syndromes
throughout the world, including developing countries, will be
essential in advancing this new field of immunology. This
will allow us to elucidate which defects are indeed rare
or common.

Since these syndromes are rare, there is not a high
request of specialized assays (e.g., FAS/FASL expression) when
compared to other less specialized laboratory tests (e.g., complete
blood count and quantitative immunoglobulins determination).
Consequently, while the former assays are routinely only
performed in PID research centers (often in state universities),
which are supported by research grants, less specialized
examinations are broadly available in most laboratories. We
hope that improving the diagnoses of previously described
and newly discovered PIDs with immune dysregulation will
encourage governments and other funding sources to promote
the establishment of new PID specialized laboratories in

underserved geographic areas such as developing countries,
where the true incidence of PIDs with immune dysregulation
remains to be determined.

Finally, beyond its utility as a screening tool for patients
with symptoms of immune dysregulation, flow cytometry has
helped to characterize novel immunopathological mechanisms
of several recently reported new PIDs. However, new flow
cytometric technologies such as time-of-flight mass cytometry
(CyTOF) (253) have not yet been applied for characterizing
the immunopathology of immune dysregulation syndromes.
Equally, flow cytometry is not currently applied in the
context of systems immunology studies (254, 255) to better
understand the immunopathology of diseases of immune
dysregulation. For instance, traditional flow cytometry can be
used to validate the findings obtained from combinatorial
techniques such as CyTOF with high-throughput sequencing
of mRNA (RNA-seq) or mass spectrometry, and uncovering
systemic immunology defects (256, 257). Systems immunology
will provide a more comprehensive understanding of the
role of specific molecules across immune cells, potentially
revealing novel therapeutic targets for patients with diseases of
immune dysregulation.
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