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Abstract Eukaryotes thought to have evolved clonally for millions of years are referred to as

ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which

are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF

strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such

nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei

with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in

frequency among strains, and despite recombination all nuclear genomes have an average similarity

of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via

meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a

primary source of nuclear variability in these organisms, highlighting its potential for strain

enhancement of these symbionts.

DOI: https://doi.org/10.7554/eLife.39813.001

Introduction
Mating between compatible partners allows organisms to create genetic variation within populations

and provides them with opportunities for adaptation to environmental change. In contrast, long-

term clonal evolution should lead to the accumulation of deleterious mutations within lineages and,

ultimately, to extinction (Kondrashov, 1988; Agrawal, 2001; Kaiser and Charlesworth, 2009;

Keightley and Eyre-Walker, 2000; McDonald et al., 2016). Some eukaryotic groups have seem-

ingly challenged this theory by evolving for millions of years without observable sexual reproduction.

Such organisms have been referred to as ancient asexual scandals, and prominent examples of these

evolutionary oddities have included the bdelloid rotifers and the arbuscular mycorrhizal fungi (AMF)

(Normark et al., 2003; Judson and Normark, 1996; Sanders, 1999). In rotifers, genome diversity

can be generated by reshaping chromosomes through horizontal gene transfers (Flot et al., 2013;

Debortoli et al., 2016; Signorovitch et al., 2016). Other asexual mechanisms that increase genetic

variability in clonal taxa include transpositions, DNA replication or inter- or intra-chromosomal rear-

rangements (Faino et al., 2016; Croll, 2014; Seidl and Thomma, 2014). Furthermore, the absence

of observable mating does not necessarily indicate that sex is absent as, for example, several organ-

isms long thought to be clonal were eventually found to harbor many genomic signatures of sexual

reproduction within their genomes. Evidence of such cryptic sexuality includes the presence of meio-

sis-specific genes, mating-type loci, sex pheromones, and evidence of inter-strain recombination

(Taylor et al., 2015).
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AMF are ecologically successful organisms that have long been characterized as having lacked

sexual reproduction for hundreds of millions of years (Sanders and Croll, 2010). These fungi form

obligate symbioses with the roots of most land plants, and their presence in the soil can improve

plant fitness and biodiversity (James et al., 1998; van der Heijden et al., 1998; van der Heijden

et al., 2015). Their capacity to colonize early plant lineages such as liverworts and/or hornworts, and

the presence of an AMF symbiotic signaling pathway in algal ancestors of land plants, are some indi-

cations that AMF-plant associations may have been established when plants colonized land

(Bonfante and Selosse, 2010; Delaux et al., 2015). The AMF mycelium is unique among eukaryotes

as it harbors hundreds to thousands of nuclei within one continuous cytoplasm, and there is no

known life stage with one or two nuclei. Although sexual reproduction is not formally observed in

AMF, these fungi contain many genomic regions with homology to those involved in mating in dis-

tant relatives (Halary et al., 2011; Riley and Corradi, 2013; Riley et al., 2014), suggesting that they

are able to undergo sexual reproduction. The cellular mechanisms that could trigger sexual pro-

cesses in AMF have however long been elusive.

Using genome analyses, it was recently shown that isolates of the model AMF Rhizophagus irreg-

ularis are either homokaryotic – that is co-existing nuclei harbor one putative mating-type (MAT)-

locus - or dikaryotic – two populations with different nuclear genotypes coexist in the mycelium,

each with a divergent MAT-locus (Ropars et al., 2016). The MAT-locus is the genomic region that

gives sexual identity to fungal isolates, and isolates of the AMF genus Rhizophagus harbor a geno-

mic location with significant similarities to the MAT-locus of basidiomycetes (Ropars et al., 2016).

AMF dikaryons were proposed to originate from hyphal fusion and nuclear exchange (plasmogamy)

between compatible homokaryons (Ropars et al., 2016). In dikaryotic fungi, compatible nuclei fuse

(karyogamy) and undergo recombination, but there is no direct evidence yet that these sexual pro-

cesses occur in AMF dikaryons. In particular, although inter-isolate recombination has been inferred

to exist based on analyses of single loci (Riley et al., 2014; Croll and Sanders, 2009;

Gandolfi et al., 2003; den Bakker et al., 2010), direct evidence of genetic exchange between

nuclei of opposite MAT-loci co-existing within the same mycelium, as is expected for

fungal mating processes, has never been reported.

Results
Here, we tested the hypothesis that karyogamy and inter-nuclear recombination occur in the AMF

mycelium using a single-nucleus sequencing approach. Sequenced nuclei were isolated from seven

isolates of the genus Rhizophagus, including three known Rhizophagus irregularis dikaryons (A4, A5;

SL1 (Ropars et al., 2016)), two R. irregularis homokaryons (A1, C2 (Ropars et al., 2016)), and two

closely related species (Rhizophagus diaphanus MUCL-43196, Rhizophagus cerebriforme DAOM-

227022). Genome data from R. irregularis SL1 (also known as DAOM-240409), R. diaphanus and R.

cerebriforme represent new additions to public databases from representatives of the Glomeromy-

cotina, and all sequencing data were assembled using SPAdes (Bankevich et al., 2012) to facilitate

comparisons with published genome data (Ropars et al., 2016).

As expected for an AMF dikaryon, the SL1 assembly contains two putative MAT-loci, with a

genome architecture identical to that of known R. irregularis dikaryons (Figure 1A). The isolate also

harbors the high allele frequency peak at 0.5 characteristic of AMF dikaryons (Table 1, Figure 1B)

(Ropars et al., 2016; Corradi and Brachmann, 2017). Despite these similarities, the SL1 assembly is

more fragmented than those of all other Rhizophagus relatives (Table 1). Higher fragmentation is

also seen in other known dikaryons (Table 1; Ropars et al., 2016), a feature that probably stems

from a higher intra-mycelial genetic diversity in these isolates. Importantly, BUSCO, K-mer graphs

and transposable elements (TE) analyses all show that all isolates analysed in this study share highly

similar gene repertoires, genome sizes and TE counts (Table 2, Supplementary file 1). Thus, the

higher assembly fragmentation of SL1 may result from other factors such as, for example, the pres-

ence of higher heterokaryosis and/or inter-nuclear recombination. In contrast to SL1, the R. diapha-

nus and R. cerebriforme assemblies harbor only one MAT-locus and show a conventional

homokaryotic allele frequency pattern (Figure 1B).

To find direct evidence of inter-nuclear recombination in AMF, we obtained and compared partial

genome sequences from 86 single nuclei – that is single haploid genotypes – isolated from R. irregu-

laris dikaryons (SL1, n = 15; A4, n = 14; A5, n = 8), R. irregularis homokaryons (A1, n = 12; C2,
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Figure 1. A.Predicted MAT-locus of R. irregularis dikaryon isolate SL1. (B) Genome-wide allele frequency of homokaryons and dikaryons. R. irregularis

SL1 shows the hallmark 50:50 ratio reference to alternate allele frequency of dikaryotic isolates. The R. irregularis plots for A1, A4, A5 and C2 represent

new analyses of publicly available genome sequence data obtained by (Ropars et al., 2016). The homokaryotic isolates R. irregularis A1 and C2, and R.

cerebriforme and R. diaphanus are also shown as comparison. Blue dashed line highlights the 0.5 allele frequency.

DOI: https://doi.org/10.7554/eLife.39813.002
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n = 9), and from the species R. diaphanus (n = 12) and R. cerebriforme (n = 15). Nuclei were isolated

and analysed using a combination of fluorescence-activated cell sorting (FACS), whole genome

amplification (WGA) (Ropars et al., 2016), and Illumina sequencing. Each nucleus was genotyped by

mapping paired-end Illumina reads obtained from WGA-based DNA against their respective

genome reference. The combination of PCR-based WGA and Illumina sequencing methods results in

variation in average depth position and reference coverage among nuclei and isolates (Table 1).

Using basic filtering methodologies (see Material and Methods), we find that nuclear genomes

diverge from their respective reference from 0.06% for R. diaphanus, to a maximum of 0.12% for

SL1 and A4 (Table 1). Using this method, pairwise nuclear genome comparisons show a high aver-

age inter-nuclear similarity ranging from 99.62% in SL1 to a maximum of 99.87% in A1

(Supplementary file 2). When present, variability is scattered across the genome

(Supplementary file 3).

It is noteworthy that most attempts to validate SNP scored using basic filtering methods resulted

in the identification of many false positives. Specifically, only 4% (6 out of 148 tested) of SNPs identi-

fied using the abovementioned methods were confirmed using PCR and Sanger sequencing proce-

dures performed on the original DNA extracts. In order to maximize the detection of true positives

Table 1. Summary statistics of genomes and nuclei analyzed in this study. * Values from (Ropars et al., 2016).

Rhizophagus irregularis
Rhizophagus
cerebriforme

Rhizophagus
diaphanusSL1 A1 A4 A5 C2

A. Genome Assembly Statistics

Assembly Coverage 136x 68x 95x 76x 96x 150x 120x

Number of Scaffolds 29,279 11,301* 11,380* 14,626* 10,857* 15,087 15,496

Assembly Size (Kb) 211,501 125,869* 138,327* 131,461* 122,873* 171,896 170,781

Assembly SNP/Kb 0.50 0.25 0.74 0.79 0.35 0.41 0.23

B. Single Nucleus Statistics

Number of Nuclei Analyzed 16.0 12.0 14.0 8.0 9.0 15.0 12.0

Average Assembly Coverage 14.08% 57.30% 46.84% 58.40% 61.42% 22.39% 11.45%

Average Position Depth 11.8 18.1 22.1 22.7 22.9 15.4 12.3

Number of SNPs Against Reference

– Total SNPs 346,382 241,294 423,166 291,025 251,648 262,030 101,681

– Average SNPs Per Nuclei - basic filtering 35,473 51,435 73,349 76,055 58,158 30,534 10,554

– Average Divergence with reference - basic
filtering

0.12% 0.07% 0.12% 0.10% 0.08% 0.08% 0.06%

Average - Inter-Nucleus Divergence - basic filtering 0.38% 0.13% 0.24% 0.16% 0.14% 0.24% 0.21%

DOI: https://doi.org/10.7554/eLife.39813.003

Table 2. BUSCO and K-mer assembly size estimation

BUSCO analysis K-mer estimation

Genes found Completeness Predicted genome size

A. R. irregularis

A1 268 92.41% 131.7 Mb

C2 263 90.69% 148.6 Mb

A4 262 90.34% 143.5 Mb

A5 267 92.07% 130.1 Mb

SL1 265 91.38% 146.5 Mb

B. R. cerebriforme 267 92.07% 119.7 Mb

C. R. diaphanus 267 92.07% 121.1 Mb

DOI: https://doi.org/10.7554/eLife.39813.004
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in our study, and thus ensure the detection of bone-fide recombinants, we focused our searches for

inter-nuclear diversity on the 100 largest scaffolds of each isolate, and scored SNPs only within

regions devoid of repeats, manually confirmed to be single copy using reciprocal BLAST procedures,

and with frequencies between 0.26–0.74. This conservative approach has likely removed some true

positives from our analysis - for example this filtering method resulted in an average 93.8% decrease

in total SNP counts (Supplementary file 4) - but we believe that this caveat is largely offset by a

much higher SNP validation rate, that is 84%, or 30 out of 36 SNPs tested, were validated using

Sanger sequencing procedures.

We selected this stringent methodology to genotype all 86 sequenced nuclei and search for evi-

dence of inter-nucleus recombination in all seven isolates. Using this approach, we find that the total

number of SNPs detected is, on average, over 30 times larger in dikaryons compared to homokary-

otic relatives, with homokaryons harboring only between 9 (R. diaphanus) to 131 SNPs (R. cerebri-

forme) along the 100 largest scaffolds (Supplementary file 4). Removing the filtering based on

allele frequencies resulted in a slightly higher SNP count, but did not alter the overall results – that is

dikaryons are still far more variable than homokaryons (Supplementary file 5). Consistent with previ-

ous findings based on much shorter nuclear regions (Ropars et al., 2016), our pairwise sequence

comparisons show that nuclei isolated from AMF dikaryons always segregate into two main clades,
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Figure 2. Similarity matrix of nuclei isolated from AMF dikaryons. The heat map reflects the level of similarity sequence between nuclei based on the

SNPs detected along single copy regions. The number ID of the nuclei with a MAT-locus and genotype verified using PCR and Sanger sequencing are

shown in coloured boxes. In A4 and A5, clustering of single nuclei correlates well with the MAT-locus identity of each nucleus (A, B). In R. irregularis

SL1, this correlation is not evident, as reflected by the mosaic genetic pattern of single nuclei (C). R. irregularis SL1 also shows evidence of inter-nucleus

recombination, as evidenced by the high sequence similarity between nuclei with opposite mating-type, for example nucleus 7 (C). Variable regions

that could not be assigned to either MAT-locus are left with white background.

DOI: https://doi.org/10.7554/eLife.39813.005
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depending on their genotype (Figure 2), and that each nucleus always harbors one of two co-exist-

ing MAT-loci.

We find that in A4 and A5, nuclei with the same MAT-locus (MAT-1 or MAT-2 for A4; MAT-3 or

MAT-6 for A5) always harbor highly similar genotypes. This pattern results in a genetic similarity of

single nuclei that is based exclusively on the MAT-locus identity (Figure 2A,B), and we find no evi-

dence that nuclei with opposing MAT-loci cluster together in these isolates. In SL1, nuclei also segre-

gate into two dominant clades, a finding consistent with its dikaryotic state. However, obvious links

between the MAT-locus identity of its nuclei and their genotype are not always evident in this isolate

(Figure 2C). For example, the nucleus 7 of SL1 harbors the MAT-5 locus, but also shows significant

sequence similarity with nuclei harboring the MAT-1 locus (e.g. nucleus 8 and 12). This finding, which

we confirmed using Sanger sequencing approaches (see coloured boxes in Figure 2), indicates the

presence of inter-nuclear recombination in this isolate, potentially involving the MAT-locus. Other

nuclei in SL1 show a similar pattern, as evidenced by the distinct mosaic genotypes of this isolate

(Figure 2C). Overall, the genetic make-up of SL1 contrasts with the clear bi-allelic genetic structure

of the isolates A4 and A5 (Figure 2A,B), and highlights the higher nuclear genotypic diversity har-

bored by this isolate.

A detailed look at individual nuclear genotypes highlights evidence of inter-nuclear recombina-

tion across the genome (Figure 3, Supplementary file 6). Examples of recombination tracts include

those seen in the SL1 nuclei 14, and 15, which all share the MAT-1 locus but can sometimes carry

partial genotypes found in co-existing MAT-5 nuclei, and vice versa (Figure 3, Supplementary file

6). This pattern of inter-nuclear genetic exchange occurs among many nuclei in this isolate, regard-

less of their mating-type, and across all of the largest scaffolds in SL1 (Figure 2, Figure 3,

Supplementary file 6). In many cases, recombining genotypes encompass hundreds to thousands of

base pairs, (Figure 3, Supplementary file 6). Inter-nuclear exchange between two co-existing geno-

types are also seen, although more rarely, in A4 and to a much lesser extent in A5 – for example see

scaffold 70 positions 100454 to 100557 (Figure 3, Supplementary file 6) for potential recombina-

tion in A4. In this example, a single recombination event between genotypes harbored by the nuclei

22 (MAT-1) and 19 (MAT-2) resulted in a genetic exchange involving at least one thousand base

pairs, and similar events are found elsewhere in the genome of A4.

We performed identical analyses using different, improved assemblies (e.g. ALLPATHS-LG;

(Butler et al., 2008); Supplementary file 7) and more stringent variant callers (GATK-HaplotypeCal-

ler (Van der Auwera, 2002), Mutect2 (Cibulskis, 2013); Supplementary file 8, Supplementary file

9), and found that these did not change the overall findings of our study. Specifically, regardless of

the methods used to assemble the genome and call variants, evidence for inter-nuclear recombina-

tion is always present and more substantial in SL1 than in in A4 and A5. Accordingly, the genetic

relationships among co-existing nuclei are also generally unaffected by changes in both assembly

and SNP scoring methods (Supplementary files 10–12).

Discussion
The Meselson effect predicts that the long-term absence of sex and recombination should lead to

substantial accumulation of mutations within asexual lineages (Mark Welch and Meselson, 2000;

Arkhipova and Meselson, 2005). Many asexual eukaryotes follow this prediction (Weir et al., 2016;

Lovell et al., 2017; Neiman et al., 2010) but our data indicate that AMF may not. Specifically, we

find that co-existing nuclei are overall very similar in sequence, showing between 0.001% to maxi-

mum of 0.38% average genome divergence, depending on the filters applied to score variation,

with the vast majority of variation being in a bi-allelic state. The values obtained using basic filtering

methods– that is 0.38% average nuclear genome divergence - are consistent with data obtained by

others on single nuclei of the model AMF R. irregularis DAOM-197198 (Lin et al., 2014), but we also

demonstrate that these are largely inflated by false positives. Future work should take this into con-

sideration when assessing AMF genetic diversity using in-silico methodologies. Our study also shows

that low nuclear polymorphism is a hallmark of many AMF species and is not only restricted to this

R. irregularis DAOM-197198. It will be now interesting to see if natural AMF populations show a sim-

ilarly low nuclear polymorphism.

Our analyses of single nuclei data also supports the hypothesis that essentially all fungal species

have found means to recombine (Nieuwenhuis and James, 2016). In the case of AMF, our findings
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build on models previously proposed by Ropars et al. and Corradi and Brachmann (Ropars et al.,

2016; Corradi and Brachmann, 2017), as we found evidence that nuclei with opposite MAT-loci can

successfully undergo karyogamy in some dikaryotic isolates to generate new nuclear diversity

through recombination (Figure 4). This discovery is unaffected by the quality of the assembly, and is

supported by different methodologies used to score variation. Interestingly, in SL1, the observed

inter-nuclear recombination does not appear to result from a single event – that is each nucleus

shows differing recombination patterns - an indication that genetic exchanges among nuclei may

have occurred independently at different locations within the same AMF multinucleated mycelium

(Figure 4). In contrast, the few recombination events found in A4 involved exchange of genetic

material between two co-existing and highly conserved genotypes.
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Figure 3. Selected examples of genotypes, recombination and inter-nuclear variability observed in the dikaryons SL1, A4 and A5. In SL1, there is no

obvious co-linearity between the MAT-locus of single nuclei and their genotype. White columns reflect the absence of Illumina sequencing along the

nucleus at those homologous positions. The data shown are representative of the genotypes found along the first 100 scaffolds analysed in this study

and are based on data available in Supplementary file 5. Variations along homologous nucleotide positions are highlighted in yellow or green,

depending on the MAT-locus which the genotype is expected to associate with. The first and third columns represent, respectively the scaffold and

position number where the SNP was scored using stringent filtering methodologies. The second column represents the genotype of the representative

genome reference. M: Mating-type.

DOI: https://doi.org/10.7554/eLife.39813.006
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In fungi, diploid nuclei can undergo recombination either through meiosis, in a sexual cycle, or

through aneuploidization, in a parasexual cycle involving nuclear fusion followed by random chromo-

somal loss. Parasexuality is rare in fungi (Paccola-Meirelles and Azevedo, 1991; Rosada et al.,

2010; Seervai et al., 2013; Bennett, 2015), and this process drives recombination via mitotic events

(as opposed to meiosis in a sexual cycle). It also requires the stable division of diploid nuclei for

many generations to produce recombination through mitosis (Clutterbuck, 1996). To date, flow

cytometry data has found that AMF nuclei are haploid (Ropars et al., 2016; Sedzielewska et al.,

2011; Hosny et al., 1998) and evidence of widespread diploidy, as evidenced by the mapping of

both alternate and reference reads along large portions of genome, could not be found in this study.

In contrast, all AMF, including those investigated here, harbor a complete set of meiosis-related

genes (Halary et al., 2011) and there is recurring evidence that conspecific isolates can exchange

and recombine genetic material, presumably through sex (Riley et al., 2014; Croll and Sanders,

2009; den Bakker et al., 2010; Chen et al., 2018) . For these reasons, we argue that the inter-

nuclear recombination we observed in this study is likely driven by meiotic events - that is conven-

tional fungal sexual processes - although it is possible that parasexuality has also been at play in cre-

ating some of the observed nuclear diversity.

What causes recombination rates to vary substantially among the dikaryons SL1, A4 and A5 is

presently unclear, as all cultures were established around the same time (Ropars et al., 2016;

Jansa et al., 2002) and there is no available evidence that they were propagated under different in

vitro conditions. Perhaps, in isolates such as A4 and A5 the co-existing genotypes are not permissive

for generating recombinants (Idnurm et al., 2015) - for example the isolates have not yet met the

right environmental conditions that trigger karyogamy or lack the mating compatibility necessary to

undergo frequent meiosis (James et al., 2006; Heitman et al., 2013; Heitman, 2015). In this case,

some of the somatic mutations and recombination found in A4 and A5 could result from exposure to

mobile viral genotypes or transposable elements, as there is evidence that these are active in AMF

genomes (Chen et al., 2018).

Karyogamy (K
) + Recombination (R

)

K
+
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K
+
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One MAT-locus per mycelium

No recombination

Genetically homogeneous

e.g. : A1, C2, DAOM 197198

Two MAT-loci per mycelium

Little to no recombination

Genetically homogeneous

e.g. : A4, A5

Two MAT-loci per mycelium

High recombination

Genetically diverse

e.g. : SL1

Clonal Dikaryote Recombining Dikaryote
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MAT-B: 

MAT-A: 

MAT-B: 
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Figure 4. Schematic representation of the three genome organizations found to date in the model AMF

Rhizophagus irregularis. Left: Most AMF analyzed using genome analysis and PCR targeted to the MAT-locus have

been found to carry nuclei with the same MAT-locus. In these isolates, genetic variability is lower than dikaryotic

relatives, and recombination is undetectable. Middle: The R. irregularis isolates A4 and A5 carry nuclei with two

distinct MAT-loci. Evidence of recombination is very rare, and two divergent genotypes appear to co-exist in the

cytoplasm. Right: In some cases, strains can harbour nuclei with two distinct MAT-loci that undergo frequent

karyogamy. The frequency of karyogamy increases nuclear diversity within the mycelium.
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In conclusion, our findings demonstrate that arbuscular mycorrhizal fungi can generate genetic

diversity via inter-nuclear recombination in the dikaryotic life-stage. This provides a novel under-

standing of the sexual and genetic potential of these plant symbionts and opens exciting possibilities

to enhance their environmental application. In particular, we showed that recombined isolates such

as SL1 contain an important source of nuclear diversity, which could lead to genetic enhancement of

new AMF strains. Despite evidence of recombination, however, clonality still appears to be the prev-

alent mode of evolution in lab cultures of these symbionts, including for AMF dikaryons (Figure 4).

From a conceptual perspective, future work should now aim to identify the mechanisms that trigger

inter-nuclear recombination in AMF isolates, and determine how frequent this process is in natural

populations of these widespread plant symbionts. It will also be important to establish whether

recombination rates vary depending on soil conditions – for example disturbance - or specific plant

hosts (Ritz et al., 2017), and how this process is reflected at the level of the transcriptome. Within

this context, future investigations should also determine if specific recombined genomic regions are

linked with an isolate’s phenotype (e.g. increased spore production, hyphal density, or mycorrhiza-

tion rates) or with the fitness of economically important plants and crops.

Materials and methods

Single nucleus sorting, WGA, and Illumina sequencing
FACS-based sorting of single nuclei and WGA were performed according to Ropars et al., 2016

(Ropars et al., 2016). DNA concentration of the WGA samples was measured by fluorometric quan-

tification using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). Subsequently, sequencing

libraries were constructed using Nextera XT DNA Library Preparation Kit (Illumina). Library quality

and quantity were checked with a Bioanalyzer and the High Sensitivity DNA Analysis Kit (Agilent

Technologies) and a Qubit with the DNA HS Assay Kit (Invitrogen). Samples were sequenced on a

HiSeq1500 (Illumina) using 100 bp paired-end sequencing in rapid-run mode at LAFUGA (LMU

Genecenter, Munich), resulting in 2,020,347,187 reads. Single nuclei sequencing and genome reads

are available in NCBI under the following bioproject: PRJNA477348.

Genome assembly, read mapping and SNP prediction and filtering
SPAdes v. 3.10 was used to assemble the SL1, R. diaphanus (MUCL 43196), and R. cerebriforme

(DAOM227022) genomes using default parameters (Bankevich et al., 2012), and the resulting con-

tigs were then scaffolded using SSPACE (Boetzer et al., 2011). Reads from single nucleus sequenc-

ing were cleaned using trim_galore with default parameters and were then mapped to the

respective genome assembly using BWA-Mem with –M parameter (bwa mem –M) (Li, 2013). SPAdes

assemblies are publicly available on NCBI (R. diaphanus: QZLH00000000, R. cerebrifrome:

QZLG00000000, SL1 SPAdes: QZCD00000000, and SL1 ALLPATH-LG: QZCC00000000) along with

the core meiosis SL1 genes (RAD21/Rec8: MH974797, MND1: MH974798, DMC1: MH974799,

Spo11: MH974800, HOP2: MH974801, MSH4: MH974802, MSH5: MH974803).

The whole genome reads are available on NCBI SRA: R. cerebriforme (SRR7418134 and

SRR7418135), R. diaphanus (SRR7418169 and SRR7418170), and R. irregularis SL1 (SRR7418171 and

SRR7418172). The single nucleus reads are also deposited (R. cerebriform: SRR7411799 to

SRR7411813, R. diaphanus: SRR7410308 to SRR7410319, R. irregularis A1: SRR7416439 to

SRR7416450, R. irregularis A4: SRR7416451 to SRR7416464, R. irregularis A5: SRR7416431 to

SRR7416438, R. irregularis C2: SRR7416465 to SRR7416473, and R. irregularis SL1: SRR7411814 to

SRR7411829).

Two filtering methods were used to detect variants, which are referred to here as ‘basic’ or ‘strin-

gent’. In the basic filtering procedure, initial variant calling was done using freebayes with the follow-

ing parameters: -p 1 m 30 K -q 20 C 2; namely a ploidy of one, a minimum quality of mapped reads

of 30, a minimum base quality of 20, and a minimum set of reads supporting alternative allele of two

(Garrison and Marth, 2012). Predicted variant positions were then filtered by keeping only those

where reads supporting alternate alleles outnumbered reads supporting the reference allele by a

ratio of 10:1. Genotypes of nuclei not supported by the 10:1 read ratio are retained when co-existing

nuclei showed the same genotype supported by a 10 to 1 ratio at the same positions.
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The strict filtering method was built on top of the basic filtering procedures and includes three

additional criteria. The first criterion was the coverage of the reference assembly from the original

reads. Specifically, reads were mapped to the reference assembly and only candidate SNP positions

with coverage that ranged between 69% and 131% of average coverage along the genome refer-

ence (close to 50/50 ratio) were kept. The second criterion was that the remaining candidate SNP

positions also needed to keep a proportion of reference allele to alternate allele between 26% to

74% in the SNP calling via original assembly reads. Finally, the third criterion was confirming the sin-

gle copy nature of the SNP using BLAST procedures. In this case, the 100 bp upstream and down-

stream regions overlapping the scored SNPs were BLAST against the reference genome. If BLAST

results returned more than two good hits (e-value of better than 0.001) this region was considered

to be a multi-copy region and thus discarded from downstream analyses.

Distance matrix comparisons
To detect inter-nuclear sequence divergence, pairwise comparison of SNP data was performed for

co-existing nuclei of all isolates. In this analysis, two datasets were created. The first dataset includes

only all variable regions, as defined by the total number of filtered SNP positions shared between

the nuclei (Supplementary file 6). The other dataset includes the number of covered positions

shared between the nuclei (Supplementary file 2).

SNP dispersion analysis
Raw SNP predictions from single nucleus reads were cleaned by removing SNP that were longer

than length one. Each SNP position was converted into percent of total length of scaffold one and

then plotted with an alpha value of 0.2.

Validation of SNPs and MAT-loci via PCR and Sanger sequencing using
DNA from single nuclei
PCR-reactions were run with 0.13 ng/mL to 0.33 ng/mL of single nucleus DNA as a template, 0.5 mM

forward and reverse primers each (Supplementary file 13 and 0.2 mM dNTPs. For reactions per-

formed with Phusion HF Polymerase, 1x Phusion HF Buffer and 0.02 U/mL Phusion HF Polymerase

and for reactions with GoTaq Hot-Start Polymerase, 1x Green Buffer, 2.5 mM MgCl2 and 0.025 U/mL

GoTaq Hot-Start Polymerase were used. The reactions were performed in a total volume of 15 mL or

30 mL. The amplification was run with a touchdown PCR program: 95˚C/2 min - [95˚C/30 s; T1/30 s

(T1 declining by 0.5˚C every cycle) -; 72˚C/30 s]x10 - [95˚C/30 s; T2/30 s; 72˚C/30 s]x35–72˚C/5 min. T1
and T2 are specific annealing temperatures for different primer combinations (see

Supplementary file 9). PCR cleanup was performed with 2.9 U/mL Exonuclease I (New England Biol-

abs) and 0.14 U/mL Shrimp Alkaline Phosphatase (rSAP, New England Biolabs) at 37˚C for 5 min and

heat inactivated at 85˚C for 10 min. Sanger sequencing reactions were performed at the Genomics

Service Unit (LMU).
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Data availability

Single nuclei sequencing and genome reads are available in Genbank under the following biopro-

ject: PRJNA477348. SPAdes assemblies are publicly available on NCBI (R. diaphanus:

QZLH00000000, R. cerebrifrome: QZLG00000000, SL1 SPAdes: QZCD00000000, and SL1 ALLPATH-

LG: QZCC00000000) along with the core meiosis SL1 genes (RAD21/Rec8: MH974797, MND1:

MH974798, DMC1: MH974799, Spo11: MH974800, HOP2: MH974801, MSH4: MH974802, MSH5:

MH974803). The whole genome reads are available on NCBI SRA: R. cerebriforme (SRR7418134 and

SRR7418135), R. diaphanus (SRR7418169 and SRR7418170), and R. irregularis SL1 (SRR7418171 and

SRR7418172). The single nucleus reads are also deposited (R. cerebriforme: SRR7411799 to

SRR7411813, R. diaphanus: SRR7410308 to SRR7410319, R. irregularis A1: SRR7416439 to

SRR7416450, R. irregularis A4: SRR7416451 to SRR7416464, R. irregularis A5: SRR7416431 to
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SRR7416438, R. irregularis C2: SRR7416465 to SRR7416473, and R. irregularis SL1: SRR7411814 to

SRR7411829).

The following datasets were generated:
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