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Abstract

Aims This study aimed to investigate the association between trimethylamine N-oxide (TMAO) and the prognosis and asso-
ciation between high-sensitivity C-reactive protein (hsCRP) and TMAO-associated cardiovascular risk in patients with acute
myocardial infarction (AMI) complicated by heart failure (HF).
Methods and results A total of 985 patients presenting with AMI and HF were consecutively enrolled at the Fuwai Hospital
between March 2017 and January 2020. Patients were stratified into groups according to tertiles of TMAO levels and the me-
dian hsCRP levels. The primary endpoint was major adverse cardiac events (MACE), including all-cause death, recurrence of
myocardial infarction, and rehospitalization due to HF. During a median follow-up of 716 days, 138 (14.0%) patients experi-
enced MACE. Cox regression analyses showed that the adjusted hazard ratio (HR) for MACE was higher in patients in tertile
3 [TMAO > 9.52 μmol/L, HR: 1.85, 95% confidence interval (CI): 1.18–2.89; P = 0.007] than in tertile 1
(TMAO < 4.74 μmol/L), whereas no significant differences were detected between the patients in tertiles 1 and 2
(TMAO = 4.74–9.52 μmol/L, HR: 0.96, 95% CI: 0.59–1.58; P = 0.874). Restricted cubic spline regression depicted an
S-shaped association between TMAO and MACE (P for nonlinearity = 0.012). In the setting of hsCRP above the median level
(6.68 mg/L), per unit increase of TMAO was associated with a 20% increase of MACE risk (HR: 1.20, 95% CI: 1.05–1.37,
P = 0.009); increasing tertiles of TMAO were significantly associated with a higher risk of MACE (adjusted P = 0.007 for inter-
action; P < 0.001 for trend across tertiles). The Kaplan–Meier analysis indicated that patients in tertile 3 had a significantly
lower event-free survival (P = 0.001) when the hsCRP level was above the median level. No similar association between TMAO
and MACE was observed when the hsCRP level was below the median level.
Conclusions High plasma TMAO levels were independently correlated with poor prognosis in patients with AMI complicated
by HF, especially in those with higher hsCRP levels. There was an S-shaped relationship between TMAO and HR for MACE.
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Introduction

Plasma trimethylamine N-oxide (TMAO) is one of the me-
tabolites produced by gut microbiota. It has been proven
to be involved in many pathophysiological processes and
be related to the prognosis of patients with coronary artery
disease and heart failure (HF).1,2 A meta-analysis demon-

strated that plasma TMAO level was positively and
dose-dependently associated with an increased cardiovascu-
lar risk in the general population.3 The TMAO level is rec-
ognized as an independent risk factor for major adverse
cardiovascular and cerebrovascular events in patients with
acute coronary syndrome.4 Our previous study found that
TMAO might serve as a potential indicator of the character-
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istics of coronary artery plaques.5 Recent studies have
displayed that elevated plasma levels of TMAO are associ-
ated with poor outcomes in a population with HF.6 The
combination of TMAO with B-type natriuretic peptide
(BNP) could improve the prognostic value of mortality in
patients with HF with preserved ejection fraction (HFpEF).7

However, most previous studies have focused on
patients with chronic HF,8,9 and it is uncertain whether
TMAO levels have the same effects on patients with
acute HF.

High-sensitivity C-reactive protein (hsCRP), a systemic in-
flammatory response marker, is extensively used to evaluate
inflammatory risk in patients with myocardial infarction
(MI).10–12 Some studies have suggested that TMAO may ac-
tivate the inflammation cascade.13,14 However, it remains
unclear whether TMAO is related to a poorer prognosis in
the population with acute myocardial infarction (AMI) and
HF and whether it is associated with increased cardiovascu-
lar risk determined by hsCRP. Therefore, we intended to ex-
plore the association between TMAO and the prognosis
and the association between hsCRP levels and
TMAO-associated cardiovascular risk in patients with AMI
complicated by HF.

Methods

Study population and design

The current study was conducted under the Declaration of
Helsinki and obtained ethnic approval from the Ethics Com-
mittee of Fuwai Hospital. All patients signed a written in-
formed consent form. Patients presenting with AMI and
HF admitted to the emergency department of Fuwai Hospi-
tal between March 2017 and January 2020 were prospec-
tively enrolled in this study cohort. The diagnostic criteria
of AMI were based on the Fourth Universal Definition of
Myocardial Infarction and guidelines,15–17 including ST-seg-
ment elevation MI and non-ST-segment elevation MI. HF
was diagnosed and classified based on typical symptoms
and signs, laboratory tests, echocardiogram, and X-ray find-
ings, following guidelines and statements by the European
Society of Cardiology and Heart Failure Society of
America.18,19 We excluded patients who were in the acute
phase of infectious or inflammatory diseases, missing hsCRP
test results, or missing follow-up records. A flowchart of pa-
tient selection process is shown in Supporting Information,
Figure S1. Relevant electronic medical records were re-
trieved using the hospital information system for subse-
quent analysis. Clinical data, including demographics, physi-
cal examination, medical history, blood test results,
echocardiogram data, and medication at discharge, were
obtained.

Laboratory testing

Blood samples were gathered into tubes with ethylenedi-
aminetetraacetic acid through radial or femoral artery before
percutaneous coronary intervention (PCI). These were proc-
essed at 4°C within 3 h, and then stored at �80°C until fur-
ther analysis. As mentioned previously, the stable isotope di-
lution high-performance liquid chromatography with online
electrospray ionization tandem mass spectrometry was used
to measure plasma TMAO levels, using an API 3200 triple
quadrupole mass spectrometer (AB SCIEX, Framingham, Mas-
sachusetts) with a d9(trimethyl)-labelled internal standard.20

HsCRP testing was routinely collected via cubital or basilic
veins in an overnight fasting state on the day after the PCI
procedure and measured using an immunoturbidimetric as-
say (Beckmann Assay, Bera, California). The other blood test
indicators are routinely detected in the hospital central labo-
ratory. The N-terminal pro-B-type natriuretic peptide (NT-
proBNP) and cardiac troponin I (cTnI) levels were measured
several times during hospitalization, and the baseline and
peak values were recorded.

Endpoints and follow-up

The primary endpoint was a composite of all-cause death, re-
currence of MI, and rehospitalization due to HF, called major
adverse cardiac events (MACE). Endpoint data were collected
by professionals in charge of follow-up via outpatient visits
and telephone interviews. Routine follow-up of patients was
performed at 6 and 12 months after PCI and annually there-
after. The protocol for follow-up was ratified by the Institu-
tional Review Board of Fuwai Hospital.

Statistical analysis

Mean ± standard deviation or median with interquartile range
(IQR) for continuous variables and number (percentage) for
categorical variables were reported. For continuous variables
with normal distribution, one-way analysis of variance or the
Kruskal–Wallis H test was used for comparison among groups,
while for categorical variables, the chi-square test or Fisher’s
exact test was conducted. To explore the impact of TMAO
and hsCRP on cardiovascular risk in patients with AMI and
HF, we divided the patients into three groups according to
plasma TMAO levels and further grouped them into two cate-
gories based on the median hsCRP levels. The correlation of
variables and TMAO were ln-transformed and subsequently
analysed using Spearman correlation tests with coefficients re-
ported for 1000 bootstrapped samples. The event-free sur-
vival distribution of groups was evaluated using Kaplan–Meier
analysis and log-rank test. The relationship between variables
(including TMAO) and the primary endpoints was first
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assessed using univariate Cox proportional hazards regression.
Adjusted hazard ratios (HRs) and 95% confidence intervals
(CIs) were then computed using multivariate Cox regression
analysis, adjusting for the following factors: age, sex, body
mass index, estimated glomerular filtration rate (eGFR), cur-
rent smoking, HF type, hypertension, diabetes mellitus (DM),
peripheral arterial disease, and history of stroke and MI. A for-
est plot was graphically displayed to summarize the results of
the various subgroup analyses of the HR of MACE comparing
the first and third tertiles of plasma TMAO levels. Possible non-
linear associations were evaluated using restricted cubic spline
(RCS) regression with TMAO as a continuous variable with four
knots. Finally, we tested the effect of TMAO and its interaction
with hsCRP on the HRs for MACE. All data were analysed using
the SPSS software (version 26.0; IBM Corp., Armonk, New
York, USA) and R (http://www.r-project.org/) statistical pack-
ages. A P-value <0.05 was considered as indicative of statisti-
cal significance.

Results

Baseline characteristics and the association
between trimethylamine N-oxide and laboratory
variables

Between March 2017 and January 2020, 1006 patients were
admitted for AMI complicated by HF, of which 985 patients
with complete clinical data were ultimately included in this
study (Supporting Information, Figure S1). Table 1 presents
the detailed baseline characteristics of the included patients.
The median age of total patients was 63 (IQR 54–70) years,
and 766 (77.8%) patients were male. Overall, the median
plasma levels of TMAO were 6.7 (IQR 4.0–11.7) μmol/L.
When grouped by the Killip class, the plasma levels
of TMAO in patients with Killip I–IV were 6.4 (IQR 3.8–11.3),
9.2 (IQR 4.6–13.9), 10.5 (IQR 5.5–18.1), and 13.4 (IQR 6.1–-
23.3) μmol/L, respectively, showing an increasing trend
(P < 0.001). Besides, the plasma levels of TMAO for patients
with HF with mildly reduced ejection fraction (HFmrEF), HF
with preserved ejection fraction (HFpEF), and HF with re-
duced ejection fraction (HFrEF) were 6.4 (IQR 3.8–11.2), 7.0
(IQR 4.4–12.6), and 8.0 (IQR 4.6–17.9) μmol/L, respectively,
also showing an increasing trend (P = 0.007). Patients in
tertile 3 of TMAO levels were inclined to be older and pre-
sented with a higher prevalence of previous strokes, Killip II–-
IV, HF with reduced ejection fraction (HFrEF), and chronic kid-
ney disease (CKD). Besides, TMAO levels were positively
associated with peak NT-proBNP levels (r = 0.087,
P = 0.002), and inversely correlated with hsCRP levels
(r = �0.062, P = 0.016), baseline and peak cTnI levels
(r = �0.028 and �0.038, P = 0.013 and 0.019, respectively),
eGFR (r = �0.495, P < 0.001), and low-density lipoprotein-Ta
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cholesterol levels (r = �0.281, P < 0.001), as shown in
Supporting Information, Table S1.

Trimethylamine N-oxide and study endpoints

There were 138 (14.0%) patients who experienced MACE dur-
ing the follow-up, and the median follow-up time was
716 days. The Kaplan–Meier analysis of TMAO stratified by
tertiles is shown in Figure 1. The results showed a significant
increase in MACE risk in the tertile 3 (P < 0.001), similar to
the risk for all-cause death and recurrence of MI
(P < 0.001), whereas the difference for rehospitalization
due to HF was not statistically significant (P = 0.260). The for-
est plot in Figure 2 compares the HR for MACE between the
patients in tertile 3 and tertile 1 according to different sub-
groups. The results showed that patients with higher TMAO

levels had a higher risk of MACE regardless of age, sex, con-
comitant hypertension and DM, and history of stroke. In
the tertile 3, women, younger patients (<65 years old), and
patients with worse renal function had a relatively higher
risk. However, when it comes to hsCRP level, only in the set-
ting of hsCRP more than the median level, patients with
higher TMAO levels had a significantly higher risk.

Table 2 describes the univariable and multivariable rela-
tionships between all endpoints and TMAO levels. The results
revealed that TMAO was an independent risk factor for MACE
(P = 0.003) and recurrent MI (P = 0.011). Meanwhile, there
were no statistical significances for the all-cause death and
rehospitalization due to HF (P = 0.125 and P = 0.607, respec-
tively). The adjusted HR for MACE was higher in tertile 3
(>9.52 μmol/L, HR: 1.85, 95% CI: 1.18–2.89; P = 0.007) than
in tertile 1 (<4.74 μmol/L), while no significant
difference was detected between tertile 2 and tertile 1

Figure 1 Kaplan–Meier curve for cumulative event-free survival in different patient groups stratified by TMAO levels. (A) major adverse cardiac event,
(B) all-cause death, (C) myocardial infarction, (D) rehospitalization due to heart failure. TMAO, trimethylamine-N-oxide.
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(4.74–9.52 μmol/L, HR: 0.96, 95% CI: 0.59–1.58; P = 0.874).
Similarly, patients in tertile 3 had a higher HR for recurrent
MI than patients in tertile 1 (HR: 2.19, 95% CI: 1.13–4.26;
P = 0.020).

As a continuous variable, the RCS regression analysis
displayed an S-shaped relationship between TMAO levels
and HR for MACE (P for nonlinearity = 0.012) after adjusting
for the confounding factors (Figure 3). The cutoff level of
TMAO for the predicted HR was 10.0 μmol/L. However, there
was no statistical evidence to support a nonlinear association
between TMAO and all-cause death (P for nonlinear-

ity = 0.237), recurrent MI (P for nonlinearity = 0.088), or re-
hospitalization due to HF (P for nonlinearity = 0.372).

Associations between major adverse cardiac
events stratified by high-sensitivity C-reactive
protein and trimethylamine-N-oxide

The Kaplan–Meier curve of cumulative event-free probability
for the tertiles stratified by median hsCRP levels is shown in
Figure 4. The results demonstrated a significant difference

Figure 2 Forest plot of hazard ratios for major adverse cardiac events comparing first and third tertiles of plasma TMAO levels and stratified by base-
line characteristics. DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; hsCRP, high-sensitivity C-reactive protein; HF, heart failure;
HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced
ejection fraction; MI, myocardial infarction; PAD, peripheral artery disease; TMAO, trimethylamine-N-oxide.
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among tertiles (P < 0.0001) in the setting of hsCRP above the
median level (6.68 mg/L). However, when hsCRP level was
below the median level, the difference among the tertiles
was not statistically significant (P = 0.056).

As presented in Table 3, in the setting of hsCRP above the
median level, per unit increase of TMAO was associated with
a 20% increase of MACE risk (HR: 1.20, 95% CI: 1.05–1.37,
P = 0.009); patients in tertile 3 had a significantly higher risk
for MACE than those in tertile 1 (HR: 2.91, 95% CI: 1.52–5.56;
P = 0.001), whereas no significant differences were obtained
between the patients in tertile 2 and tertile 1 (HR: 1.27, 95%
CI: 0.62–2.61; P = 0.520). Additionally, there was a significant
interaction for MACE between TMAO tertiles and hsCRP di-
chotomy (P for interaction = 0.007). Meanwhile, there were
no similar findings when hsCRP levels were below the median
level.

Discussion

This prospective cohort study explored the association be-
tween plasma TMAO and hsCRP levels and the prognosis of
patients with AMI and HF. The main finding was that high
plasma TMAO levels were independently associated with
poor outcomes, particularly in patients with higher hsCRP
levels. There may be a potential congenerous effect of TMAO
and inflammation on cardiovascular risk. Besides, an
S-shaped curve relationship was recorded between TMAO
and HR for MACE.

TMAO is a small organic compound that is formed by the
oxidation of trimethylamine in the host liver by flavin

monooxygenases.21 Alkaloids such as choline, carnitine, and
betaine are converted to trimethylamine by intestinal
flora.22,23 Robust evidence suggests that TMAO is involved
in immunity, inflammation, cholesterol metabolism, and ath-
erothrombosis. The median (IQR) plasma levels of TMAO
were 6.7 (4.0–11.7) μmol/L in this study, which is similar to
the range reported in previous studies related to HF.8 The
concentration of TMAO may vary according to the disease
state, course, and severity. In a systematic review, the median
levels of TMAO ranged from 2.87 to 88 μmol/L in the general
population, whereas patients with CKD had higher TMAO
levels.3 The plasma TMAO levels in the groups classified as
New York Heart Association II, III, and IV groups were
3.5 ± 0.9, 6.0 ± 0.8, and 8.1 ± 1.0 μmol/L, respectively, show-
ing a significantly increasing trend (P < 0.01) in the chronic
HF population.24 Similarly, levels of TMAO also showed an in-
creasing trend according to the Killip class in this study. Thus,
different levels of TMAO reflect various states of pathophys-
iological processes.

Moreover, increasing numbers of studies have exhibited
that TMAO may be a promising cardiovascular risk marker.
A prospective multicentre cohort study by Lee et al. reported
that for persistently higher levels of plasma TMAO in the pa-
tients aged >65 years were associated with more incident
atherosclerotic cardiovascular disease (the extreme quintile
vs. the lowest quintile, HR: 1.21, 95% CI, 1.02–1.42; P-
trend = 0.029).25 Higher TMAO levels were an independent
risk factor for short- and long-term composite outcome of
MI, stroke, need for revascularization, or all-cause death in
patients with acute coronary syndrome.4 A nested case–-
control study indicated that the risk for cardiovascular death,
MI, or stroke in patients with higher TMAO levels was ele-

Table 2 Association between TMAO levels and all endpoints

Endpoint Group Event (n, %) Crude HR (95% CI) P-value Adjusted HR (95% CI)a P-value

MACE
Tertile 1 31 (9.5) 1 (Ref) 1 (Ref)
Tertile 2 34 (10.3) 1.11 (0.68–1.81) 0.673 0.96 (0.59–1.58) 0.874
Tertile 3 73 (22.3) 2.57 (1.69–3.92) <0.001 1.85 (1.18–2.89) 0.007
Trend test 138 (14.0) 1.69 (1.36–2.10) <0.001 1.42 (1.12–1.79) 0.003

All-cause death
Tertile 1 14 (4.3) 1 (Ref) 1 (Ref)
Tertile 2 20 (6.1) 1.48 (0.75–2.92) 0.264 1.14 (0.57–2.31) 0.709
Tertile 3 38 (11.6) 2.92 (1.58–5.40) 0.001 1.63 (0.84–3.18) 0.151
Trend test 72 (7.3) 1.75 (1.29–2.37) <0.001 1.30 (0.93–1.80) 0.125

reMI
Tertile 1 13 (4.0) 1 (Ref) 1 (Ref)
Tertile 2 13 (4.0) 1.01 (0.47–2.18) 0.975 0.92 (0.42–1.99) 0.831
Tertile 3 30 (9.1) 2.48 (1.29–4.76) 0.006 2.19 (1.13–4.26) 0.020
Trend test 56 (5.7) 1.67 (1.19–2.35) 0.003 1.58 (1.11–2.23) 0.011

reHF
Tertile 1 5 (1.5) 1 (Ref) 1 (Ref)
Tertile 2 4 (1.2) 0.82 (0.22–3.04) 0.762 0.69 (0.18–2.61) 0.584
Tertile 3 9 (2.7) 1.92 (0.64–5.73) 0.242 1.28 (0.40–4.05) 0.679
Trend test 18 (1.8) 1.45 (0.81–2.60) 0.210 1.17 (0.64–2.16) 0.607

HR, hazard ratio; MACE, major adverse cardiac event; reMI, recurrent myocardial infarction; reHF, rehospitalization due to heart failure;
TMAO, trimethylamine-N-oxide.
aAdjusted for age, sex, body mass index, estimated glomerular filtration rate, current smoking, HF-type, hypertension, diabetes mellitus,
peripheral artery disease, and history of stroke and MI.
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vated by approximately 50% (quartile 4 vs. quartile 1, odds
ratio = 1.43, 95% CI, 1.06–1.93, P-trend = 0.015) in patients
with stable coronary artery diseases.26 For patients with HF,
a meta-analysis reported that elevated TMAO levels pre-
dicted a higher risk of composite outcomes (including
all-cause death, hospitalization with HF, and heart transplan-
tation) with a 1.68-fold (95% CI: 1.44–1.96) increase in the HR
of the highest tertile compared with that of the lowest
tertile.8 Our current study observed that, the relative risk
for MACE was increased by 1.85 (95% CI: 1.18–2.89) times
in patients with AMI and HF who had the highest levels of
TMAO than that in the lowest tertile. In addition, this is the
first study to show the S-shaped association between TMAO

and HR for MACE (P for nonlinearity = 0.012), implying that
the HR of MACE may no longer increase after TMAO exceeds
a certain level. However, the specific mechanism of this asso-
ciation requires further investigation.

Remarkably, our study reported that the higher risk for
MACE was mainly driven by all-cause death and recurrence
of MI, and not rehospitalization due to HF. As reported in
previous studies, the results for rehospitalization due to HF
were inconsistent in different HF subtypes, especially in pa-
tients with acute HF or HFpEF.27,28 For patients with acute
HF, a study by Suzuki et al. reported that TMAO was not as-
sociated with the risk of death or rehospitalization due to
HF, after adjusting for cofounders especially eGFR.29 In con-

Figure 3 Continuous hazard ratios across TMAO for major adverse cardiac events (A), all-cause death (B), myocardial infarction (C), and rehospitali-
zation due to heart failure (D). HR, hazard ratio; TMAO, trimethylamine-N-oxide.
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trast, Israr et al. indicated that TMAO was independently re-
lated to the short- and long-term outcomes of a composite of
all-cause mortality or rehospitalization caused by HF.30

Schuett et al. revealed that elevated TMAO levels could not
predict all-cause mortality and cardiovascular mortality in pa-
tients with HFpEF.28 However, Kinugasa et al. reported that
elevated TMAO levels at discharge were associated with an
increased risk of post-discharge cardiac events in patients
with HFpEF.31 Given the relatively mild symptoms and signs,

and different pathophysiological processes of HFpEF, the re-
sults might be inverse. However, clinical data on acute HF
or HFpEF are limited, and further studies are necessary to ex-
amine the association between TMAO levels and the progno-
sis in patients with acute HF or HFpEF. In addition, the precur-
sors of trimethylamine, such as choline and carnitine, were
proved to be associated with poor outcomes in patients with
HF. A study by Israr et al. extensively suggested that circulat-
ing levels of multiple metabolites of the choline/carnitine-

Figure 4 Kaplan–Meier curve for cumulative MACE-free survival rate among TMAO tertiles stratified by hsCRP below median levels (A) and above me-
dian levels (B). hsCRP, high-sensitivity C-reactive protein; MACE, major adverse cardiac event; TMAO, trimethylamine-N-oxide.

Table 3 Association between MACE and TMAO levels stratified by hsCRP median levels

Variable n, total n, event (%) Crude HR (95% CI) P-value Adjusted HR (95% CI)a P-value

hsCRPb

>median vs. ≤median 1.17 (0.84–1.64) 0.356 1.20 (0.85–1.69) 0.292
TMAO

>median vs. ≤median 2.14 (1.50–3.05) <0.001 1.56 (1.08–2.26) 0.019
hsCRP ≤ 6.68 mg/L

TMAO per SDc - - 1.08 (0.88–1.32) 0.482 0.89 (0.71–1.11) 0.297
TMAO by median
≤median 249 27 (10.8) 1 (Ref) 1 (Ref)
>median 243 37 (15.2) 1.46 (0.89–2.40) 0.134 1.14 (0.66–1.95) 0.646

TMAO by tertile
Tertile 1 162 5 (6.6) 1 (Ref) 1 (Ref)
Tertile 2 82 10 (12.2) 1.91 (0.65–5.59) 0.238 1.78 (0.57–5.54) 0.317
Tertile 3 79 11 (13.9) 2.14 (0.74–6.16) 0.159 2.27 (0.73–7.03) 0.155

hsCRP > 6.68 mg/L
TMAO per SDc - - 1.27 (1.14–1.41) <0.001 1.20 (1.05–1.37) 0.009
TMAO by median
≤median 243 19 (7.8) 1 (Ref) 1 (Ref)
>median 250 55 (22.0) 3.12 (1.85–5.25) <0.001 2.35 (1.36–4.07) 0.002

TMAO by tertile
Tertile 1 166 13 (7.8) 1 (Ref) 1 (Ref)
Tertile 2 163 18 (11.0) 1.44 (0.71–2.94) 0.315 1.27 (0.62–2.61) 0.520
Tertile 3 164 43 (26.2) 3.86 (2.07–7.19) <0.001 2.91 (1.52–5.56) 0.001

HR, hazard ratio; hsCRP, high-sensitivity C-reactive protein; MACE, major adverse cardiac event; TMAO, trimethylamine-N-oxide.
aAdjusted for age, sex, body mass index, estimated glomerular filtration rate, current smoking, HF-type, hypertension, diabetes mellitus,
peripheral artery disease, and history of stroke and MI.

bThe median level of hsCRP was 6.68 mg/L.
cP = 0.041 for interaction between TMAO tertiles and hsCRP dichotomy for MACE, and adjusted P = 0.007.
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TMAO pathway were graded associations with the severity
and adverse prognosis of chronic HF.32 It is worth expecting
that combining TMAO with these biomarkers might play a
better role in the risk stratification of different types of HF.

Currently, substantial evidence reveals that systemic in-
flammation is the predominant driver of atherosclerosis and
the underlying pathology of cardiovascular diseases.33 HsCRP
is regarded as a marker for measuring the intensity of sys-
temic inflammation.34 In this study, we found that hsCRP
levels were not associated with MACE risk (P = 0.077), which
may be because we selected the median level of hsCRP as the
cutoff while the cutoff was 2 or 3 mg/L to assess residual car-
diovascular risk in most previous studies.11,34 Besides, our
previous study found that both low and high hsCRP levels
were associated with increased risk of death in AMI
patients,12 which may partially explain that no significance
in the median levels of hsCRP and MACE risk in this study.
In addition, we observed that TMAO levels were negatively
correlated with hsCRP levels (P = 0.009), which is consistent
with the result of the previous study.35,36 Whereas a meta-
analysis37 reported that various sample sources and diseases
would cause different results, and there was a non-linear as-
sociation between TMAO and CRP levels. More importantly,
we observed that the difference in the risk for MACE be-
tween tertiles 3 and 1 was only statistically significant if the
hsCRP level was above the median level. Furthermore, in-
creasing hsCRP might enhance the effect of TMAO levels on
the HR of MACE. These may be because TMAO and inflamma-
tion may have potential synergistic effects on cardiovascular
risk. In the past few years, some experimental studies have
suggested that TMAO activates different signalling pathways,
resulting in the release of inflammatory cytokines, such as in-
terleukin-1β, which induces systemic inflammation.13,14,38

Seldin et al. reported that TMAO could activate the nuclear
factor-κB signalling pathway, which is essential for the inflam-
matory effects of TMAO. Another study by Chen et al. re-
vealed that TMAO caused vascular inflammation through ac-
tivating the nucleotide-binding oligomerization domain-like
receptor family pyrin domain-containing 3 (NLRP3) inflamma-
some. Notably, NLRP3 inflammasome is required for TMAO to
induce inflammatory cascades and can cause the release of
interleukin-1β and interleukin-18, which extensively triggers
systemic inflammation. These results may explain why the
TMAO-associated HR for MACE was significantly elevated
only when hsCRP was elevated. However, it is unclear why
there is a negative correlation between TMAO and hsCRP
levels. Even so, it is worth noting that elevated hsCRP levels
would strengthen the impact of TMAO on adverse outcomes.
The potential mechanism of interaction between body in-
flammatory status and TMAO levels deserves further atten-
tion and research.

The present study had a few limitations that should be ac-
knowledged. First, the study measured the TMAO concentra-
tions before PCI, and changes in TMAO levels during the

course were unavailable. Besides, dietary changes may influ-
ence the TMAO levels. Second, given that this study included
patients with AMI and HF in the emergency department,
there may have been bias of patient selection, resulting in a
sample with relatively severe condition. Third, although this
is a prospective cohort study, the causality between TMAO
levels and its interaction with hsCRP and cardiovascular out-
comes in patients with AMI and HF remains elusive. Further-
more, race and region may also affect TMAO levels.27,39

Therefore, large-scale, multicentre studies are needed to ver-
ify these findings.

Conclusions

In summary, increased TMAO levels before PCI were indepen-
dently related to an increased risk of MACE in patients with
AMI and HF, especially in those with elevated hsCRP levels.
It is worth paying attention to the potential synergistic effects
of TMAO and inflammation in the future. Notably, there is no
linear relationship between the risk of MACE and increasing
TMAO levels.
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heart failure; hsCRP, high-sensitivity C-reactive protein;
TMAO, trimethylamine-N-oxide.
Figure S3. Kaplan–Meier curve for cumulative event-free sur-
vival rate among TMAO tertiles in patients with STEMI. A: ma-

jor adverse cardiac event, B: all-cause death, C: myocardial in-
farction, D: rehospitalization due to heart failure; STEMI,
ST-segment elevation myocardial infarction; TMAO,
trimethylamine-N-oxide.
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