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Abstract

Background: In single-cell RNA-sequencing analysis, clustering cells into groups and differentiating cell groups by
differentially expressed (DE) genes are 2 separate steps for investigating cell identity. However, the ability to differentiate
between cell groups could be affected by clustering. This interdependency often creates a bottleneck in the analysis
pipeline, requiring researchers to repeat these 2 steps multiple times by setting different clustering parameters to identify a
set of cell groups that are more differentiated and biologically relevant. Findings: To accelerate this process, we have
developed IKAP—an algorithm to identify major cell groups and improve differentiating cell groups by systematically
tuning parameters for clustering. We demonstrate that, with default parameters, IKAP successfully identifies major cell
types such as T cells, B cells, natural killer cells, and monocytes in 2 peripheral blood mononuclear cell datasets and
recovers major cell types in a previously published mouse cortex dataset. These major cell groups identified by IKAP
present more distinguishing DE genes compared with cell groups generated by different combinations of clustering
parameters. We further show that cell subtypes can be identified by recursively applying IKAP within identified major cell
types, thereby delineating cell identities in a multi-layered ontology. Conclusions: By tuning the clustering parameters to
identify major cell groups, IKAP greatly improves the automation of single-cell RNA-sequencing analysis to produce
distinguishing DE genes and refine cell ontology using single-cell RNA-sequencing data.
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Findings

Single-cell RNA-sequencing (scRNA-seq) enables inquiry of cell
identity based on single-cell transcriptomics. To facilitate cell
type characterization and recognition, computational methods
have been developed for (i) clustering cells with similar tran-
scriptomic profiles into groups and (ii) identifying a set of differ-
entially expressed (DE) genes to differentiate those cell groups
[1]. These 2 tasks are frequently treated as independent entities.

However, groups identified by clustering greatly determine the
DE genes associated with each group. Compared with cluster-
ing, computing DE genes is often more resource intensive. We
therefore attempted to improve and accelerate biological inter-
pretation of RNA-seq data by developing an algorithm to effec-
tively identify the k major groups that produce distinguishing
DE genes.

Despite the existence of well-performing scRNA-seq cluster-
ing methods, identifying k groups remains a challenge owing to
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Figure 1: IKAP workflow. See Online Methods for details. SNN: shared nearest neighbor.

parameter specification [2]. Most (if not all) clustering methods
require a parameter suggesting k and a list of genes or princi-
pal components (PCs) for computing cell-to-cell similarity. The
proper k is generally unknown a priori. Choosing a small k may
mix >1 cell type in a group whereas choosing a large k would re-
sult in many subgroups of unclear biological significance. Both
can complicate cell type recognition by producing uninforma-
tive DE genes. In addition, feature selection can affect grouping
quality, which, in turn affects its distinguishing power. There-

fore, k and feature selection often become a bottleneck in the
scRNA-seq analysis pipeline.

To address this issue, we propose an unbiased approach—
called IKAP (Identifying K mAjor cell Population groups)—which
identifies well-separated k major groups poised to produce dis-
tinguishing DE genes in an scRNA-seq dataset by systemati-
cally exploring the parameter space (Fig. 1 and Online Meth-
ods). IKAP is implemented on top of Seurat [3]—one of the most
widely used scRNA-seq analysis packages—in which clustering
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Figure 2: Major cell groups identified for PBMC 8K (A, B, and C) and the mouse cortex dataset (D, E, and F). (A) Shown are tSNE plots for the 7 major groups identified by

IKAP with cell types labeled (top) and expression of known marker genes (bottom): CD3E for T cells, CD79A for B cells, GNLY for NK cells, and LYZ for monocytes. (B) The
heat map for expression of the top 5 DE genes (by expression fold change) from each group in (A). Rows are genes and columns are cells. (C) Performance summary of 3
candidate sets proposed by IKAP (left) and the 20 trial sets (right). Note that the number of candidate sets can vary for different datasets. Running time is shown at the

bottom. The dashed blue lines indicate the number of cell groups (top) and the median log2 fold change (bottom) of the best set (PC9K7). (D) The tSNE plot for 8 major
groups identified by IKAP in the mouse cortex dataset consistent with previously annotated cell types. (E) The heat map for expression of marker genes annotated for
major cell types in Zeisel et al. 2015 [6] (blue) and DE genes identified by IKAP for groups 3 and 7 in (D) (red). (F) The heat map indicates the proportion of overlapping
cells between IKAP-identified major groups and major cell types annotated in Zeisel et al. 2015 [6].

requires 2 parameters that need to be specified by users: res-
olution r that determines k (the higher r, the larger k) and the
number of top principal components (nPC). Briefly, for a given
nPC, IKAP initializes a set of kmax groups by setting a high r. To
simulate the fine-to-coarse grouping process, 2 nearest groups
are merged iteratively, generating kmax sets of groups with k =
1 to kmax. For each set, the gap statistic is computed to mea-
sure the gap between the grouping with observed data and that
with random data [4]. The gap often monotonically increases (at
variable amount) as k increases from 1 to kmax, indicating that
splitting out each group somewhat contributes to the grouping
moving away from randomness (Supplementary Fig. 1). We rea-
son that those k’s that contribute more (i.e., yield large gap in-
crease) might correspond to the set of k well-separated major
groups. IKAP repeats this procedure for a range of nPCs. Finally,
a few candidate sets of cell groups with large gap increases are
picked. Among all candidate sets, the one with the lowest clas-
sification error is marked as the best, using decision trees built
from DE genes. IKAP can be run default without specifying any
parameter as we did for experimentation in this study and can
potentially be tailored for scRNA-seq clustering methods other
than Seurat.

We tested IKAP on a peripheral blood mononuclear cell
(PBMC) dataset of ∼8,000 cells (denoted as PBMC 8K) from a
healthy donor [5]. The best set (with k = 7 and nPC = 9; thus, ab-
breviated as PC9K7) and 2 alternative sets (PC16K8 and PC18K9,
respectively) were reported. The major groups reported in PC9K7
were effectively aligned with known major cell types such as B

cells, T cells, and natural killer (NK) cells as evidenced by expres-
sion of marker genes (Fig. 2A). Note that in this paper, cell types
are defined as types of cells that have been manually (or conven-
tionally) annotated and defined by a set of marker genes. Those
marker genes of different cell types (such as CD3E, TRAC, and
IL32 for T cells) were also prioritized to the top of the DE gene
list for every group (Fig. 2B), facilitating cell type determination.
To compare with the trial-and-error strategy, we varied nPC (=5,
10, 15, and 20) and r (=0.1, 0.2, 0.4, 0.6, and 1.0) to generate 20
trial sets of groups using Seurat clustering. Most trial sets did not
divide cells into major cell types (Supplementary Fig. 2) and cell
type marker genes were not ranked at the top or were unspecific
to particular cell groups, complicating cell type recognition (Sup-
plementary Fig. 3). To quantitatively evaluate whether a set of
cell groups can produce distinguishing DE genes, we designed 3
metrics: (i) the number of DE genes with high AUROC (area under
the receiver operating curve), (ii) in-group versus out-of-group
expression fold change among high-AUROC DE genes, and (iii)
classification error when classifying cells using decision trees
built from multiple DE genes. Compared with the 20 trial sets, we
found PC9K7 yielded more DE genes with high AUROC, higher
expression fold change, and lower classification error (Fig. 2C).
Two alternative sets (PC16K8 and PC18K9) also agreed with ma-
jor cell types and produced distinguishing DE genes with more
rare types or subtypes reported (Fig. 2C; Supplementary Fig. 4).
Finally, IKAP consumed less time (1 hr 10 m) than computing the
20 trial sets (5 hr 13 m) (Fig. 2C). Although IKAP required an extra
step to explore parameter space (19 m), much time was saved
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Figure 3: Examples of cell ontology proposed by IKAP. Three cell ontology examples were built by recursively running IKAP on the biggest groups (circled in red) for
the mouse cortex dataset (A), PBMC 4K (D), and PBMC 8K (E). Putative cell types were labeled. Unknown types were left as blanks. (B) Shown is the tSNE plot for major
groups and subgroups of group 7 presented in the mouse cortex ontology in (A). (C) The heat map shows expression of DE genes identified by IKAP (red) and annotated
in Zeisel et al. 2015 [6] (blue) for subgroups of group 7 in (A) (labeled at bottom). (F) Heat maps show expression of selected DE genes that differentiate T-cell subtypes

in PBMC 4K (top; subgroups labeled according to the ontology in [D]) and in PBMC 8K (bottom; subgroups labeled according to the ontology in [E]). Subgroups with
similar expression profiles are linked by lines between PBMC 4K and PBMC 8K.

because of fewer runs (3 candidate sets versus 20 trial sets) of
time-consuming DE gene identification. The result shows that
IKAP could help biological interpretation by picking appropriate
parameters and reporting major cell groups that produce distin-
guishing DE genes within a reasonable time frame.

To test robustness, we repeated the same analysis for an-
other dataset, PBMC 4K (∼4,000 cells), from the same donor [5].
This time 2 candidate sets (PC8K7 and PC20K8) were picked with
PC20K8 marked as the best. Compared with the 20 trial sets,
IKAP candidate sets were in better agreement with known cell
types, cell type marker genes being prioritized at the top, pro-
ducing more distinguishing DE genes, and consuming shorter
running time (Supplementary Figs 5–7).

Next, we applied IKAP on a mouse cortex dataset (∼3,000
cells) in which 9 major cell types were previously annotated in
Zeisel et al. 2015 [6] (Supplementary Fig. 8A). IKAP identified 1
candidate set with 8 major groups (PC13K8) (Fig. 2D). Six groups
were consistent with the annotated cell types as evidenced by
expressing marker genes annotated specific to those cell types
(Fig. 2E) and high proportion of overlapping cells (Fig. 2F). For the
2 remaining groups, one was a subtype of microglia cells (group 3
in Fig. 2D) characterized by Hexb (AUROC = 1.0), Cst3 (0.98), and
P2ry12 (0.98) and the other was the union of 3 annotated cell
types, interneurons, pyramidal S1, and pyramidal CA1 (group 7
in Fig. 2D), characterized by many DE genes including Atp1a3
(0.93), Ndrg4 (0.94), and Stmn3 (0.93) (Fig. 2E; Supplementary Fig.
9). Those genes were significantly upregulated in interneurons,
pyramidal S1, and pyramidal CA1 compared with every other
cell type annotated in Zeisel et al. 2015 [6] (Supplementary Ta-
ble 1). The common gene expression profile suggested a high-

level cell identity shared across the 3 cell types, which was con-
sistent with the clustering result showing their similarity com-
pared to other cell types in Zeisel et al. 2015 (see Fig. 1C in [6]).
Compared with the 20 trial sets (generated in the same way de-
scribed above), DE genes in PC13K8 yielded higher expression
fold change and lower classification error (Supplementary Fig.
8B). Interestingly, the number of DE genes with high AUROC re-
mained high as more subgroups were identified (which was not
true for PBMC datasets), suggesting that transcriptomic differen-
tiation in the mouse cortex cells was very fine-grained. Overall,
IKAP successfully recovered major cell types (rather than many
subtypes) that were consistent with previous annotations and
produced distinguishing DE genes.

Finally, IKAP can be used to recover finer types (or sub-
types) by running it recursively within each major cell group. To
demonstrate this approach, we expanded 2 layers deeper for all
3 datasets by applying IKAP on their biggest major groups and
the biggest resulting subgroups. For the mouse cortex dataset,
IKAP successfully recovered interneurons, pyramidal S1, and
pyramidal CA1 by subdividing their union group (group 7 in
Fig. 2D) (Fig. 3A–C). The 3-layer ontology (Fig. 3A) delineated
a more complete view of cell identities in the mouse cortex
dataset. It not only reported all previously annotated cell types
but also potential high-level cell identities such as the union of
interneurons, pyramidal S1, and pyramidal CA1 (Fig. 2E) and the
union of 2 pyramidal cell types (Fig. 3C). For PBMC datasets, T
cells (the biggest group) were subdivided into 2 layers of sub-
groups in which subgroups in the same layers were consis-
tent between PBMC 4K and PBMC 8K, suggesting that the ontol-
ogy built by IKAP could be reproduced in replicates (Fig. 3D–F;
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Supplementary Figs 10 and 11). Based on identified DE genes,
subgroups in the first layer were LDHB+, CCL5+, and LYZ+ T cells.
The LDHB+ T cells were further divided into CCR7+, CD8-/IL7R+,
and CD8−/IL7R− T cells in the second layer. Results shown above
were the best sets selected among candidate sets proposed by
IKAP. The reported ontology can be modified by manual inspec-
tion of different candidate sets. For example, within T cells, a
more flattened ontology was achieved by using the candidate
set with 7 subgroups (among 4 candidate sets) for PBMC 4K and
the set with 10 subgroups (among 5 sets) for PBMC 8K (Supple-
mentary Figs 12–14).

In summary, IKAP can identify major cell groups that pro-
duce distinguishing DE genes without the need for specifying
clustering parameters, facilitating the automation of the scRNA-
seq analysis pipeline. In addition, by recursively applying IKAP
within reported cell groups, subtypes can be identified at a finer
resolution, delineating cell identities in a multi-layered ontol-
ogy. As more and more scRNA-seq datasets are generated, it is
worth noting that using single-cell transcriptomic data to refine
existing cell ontology [7, 8] and to curate reference cell identi-
ties [9] is a necessary step forward. Because cell identities are
often hierarchical in nature (such as T-cell subtypes within T
cells), identifying the hierarchy of cell identities would be in-
formative [10]. For example, rather than classifying PBMCs into
subtypes (such as T-cell subtypes and B-cell subtypes) at once,
it would be more biologically meaningful to recognize high-level
identities such as T cells in the first layer and then subtypes in
the next layer. However, not much effort has been made for this
task yet. Computationally, it is essentially a task that recursively
identifies major groups as parent identities in the upper layer
and finer groups within each major group as child identities in
the next layer. Conventional methods of estimating k by com-
paring with random data such as the rule of selecting the best
k in the gap statistic paper [4] and the function sc3 estimate k
implemented in the scRNA-seq clustering package SC3 [11] tend
to report many finer groups but miss major groups that repre-
sent high-level cell identities. In the present study, we devel-
oped IKAP aiming to identify major cell groups in an scRNA-seq
dataset and we demonstrate that recursively running IKAP can
be used to recover the hierarchy of cell identities for a subset of
cells in the mouse cortex and PBMC datasets. We believe that
IKAP will greatly assist with refining cell ontology and curation
of reference cell identities in the future.

In spite of the advantages mentioned above, several concerns
should be noted when using IKAP. First, the performance of IKAP
would be affected by upstream data processing such as normal-
ization, covariate removal, feature selection (e.g., selecting vari-
able genes to compute PCs), and dimensional reduction. In ad-
dition, human intervention may still be needed to obtain opti-
mal cell type classification (even though “optimal classification”
could be subjective). For example, users may need to either ap-
ply IKAP within major cell groups to identify finer subgroups
as we did to recover interneurons, pyramidal S1, and pyramidal
CA1 in the mouse cortex dataset or to manually pick an alter-
native grouping rather than the best reported by IKAP. Finally,
we have shown that IKAP can perform well on the 3 datasets
that contain a limited number of discrete cell types with dis-
tinct gene expression profiles. However, IKAP may not work as
well for more heterogenous datasets such as tumor samples or
datasets where expression changes among cells are expected to
be gradients such as samples in developmental studies.

In conclusion, IKAP enriches the scRNA-seq analysis toolbox
by offering an unbiased solution for picking k major cell groups.
It not only improves the automation of the scRNA-seq analysis

pipeline but also has the ability to refine cell type ontology using
single-cell transcriptomes in the future.

Methods
IKAP details

IKAP was implemented on top of Seurat (version 2.3.4) [3] in R
(version 3.4). When running IKAP by default, it takes only a Seu-
rat object that contains a normalized expression matrix and pre-
computed covariates that need to be regressed out. The expres-
sion matrix will be scaled with covariates regressed out (if pro-
vided) using the ScaleData function in Seurat. Then, IKAP finds
variable genes using the FindVariableGenes function in Seurat.
All Seurat functions are run by default unless a particular setting
is specified. Default parameters for IKAP can be easily adjusted
by users. Details are discussed in the following.

1. Determine nPCmin, nPCmax, and kmax. IKAP avoids specifying
a particular number of top principal components (nPC) and
k by exploring combinations of nPC and k (nPC, k). nPCmin,
nPCmax, and kmax are used to define the search space of (nPC,
k) such that the combinations (nPC∗, k∗) that can generate
major groups are enclosed (i.e., nPCmin ≤ nPC∗ ≤ nPCmax and
k∗ ≤ kmax). Setting large nPCmax and kmax increases the search
space and the computation time. By following the concept of
the elbow method, nPCmin is computed as the first principal
component (PC) such that a decrease in explained standard
deviation relative to the next PCs is <10% for all following
PCs. By doing so, the top nPCmin PCs should contain infor-
mative features to define ≥1 set of major groups. Setting an
nPCmax > nPCmin is for exploring more possible (nPC∗, k∗) but
would not affect the main result much. By default, nPCmax is
set to nPCmin + 20. To set a kmax ≥ k∗, we found that setting r
> 1 in Seurat clustering usually produced many fine groups.
So, by default, kmax is set to the average of the number of re-
sulting groups using the top nPCmin PCs and using the top
nPCmax PCs by setting rini = 1.5. We varied the difference be-
tween nPCmax and nPCmin (nPCmax − nPCmin = 10, 15, 20, and
25) and rini (=0.9, 1.2, 1.5, and 1.8) to generate 16 test sets
for PBMC 4K, PBMC 8K, and the mouse cortex datasets and
found that grouping in the reported best sets did not change
much (Supplementary Figs 15–17). This shows that our re-
sults were not sensitive to the default values of nPCmax and
rini.

2. Generate kmax sets of groups for each nPC. IKAP initializes the
set of kini groups by setting r = 1.0 using Seurat clustering. If
kini < kmax, increment r by 0.2 until kini ≥ kmax. Two nearest
groups measured by their centers in the PC space are merged
iteratively, generating kini sets of groups but only the first kmax

sets (with k = 1 to kmax) are used further.
3. Compute gap statistic. The gap statistic for a set of k groups is

the difference between the log of sum of within-group pair-
wise distances over all k groups using the actual data and
the log of expected sum of within-group pairwise distances
over all k groups assuming data points (cells) are uniformly
distributed in a bounded PC space where boundaries in each
dimension are the minimum and the maximum of the ac-
tual data in that dimension. Details about gap statistic are
described in Tibshirani et al. [4]. Note that the rule of select-
ing the best k proposed in the original gap statistic paper is
not used in IKAP.

4. Select the candidate sets. The workflow of selecting candi-
date sets (PC9K7, PC16K8, and PC18K9) for PBMC 8K is shown
in Supplementary Fig. 18. The formal procedure is briefly de-
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scribed as follows. By computing gap increase from a set
of k − 1 groups to k groups (see Step 3 in Fig. 1) for every
tested nPC, IKAP generates a gap-increase matrix M in which
rows correspond to nPC and columns correspond to k. Note
that each combination of (nPC, k) corresponds to a set of cell
groups. IKAP first filters out those (nPC, k)’s with gap increase
≤ mean + standard deviation. Then, IKAP picks the largest
non-zero gap increase for every k (every column of M), gener-
ating a list of gap increases and a list of corresponding (nPC,
k)’s where k’s are different. The list of (nPC, k)’s is sorted by
corresponding gap increases in descending order. The first
(nPC, k) (which corresponds to the largest gap increase) is
picked as a candidate set. Then, IKAP goes down to the list
one by one and adds the (nPC, k) to the candidate list if the
nPC and k are greater than all nPCs and k’s already in the
candidate list. This requirement is to look for cases where
additional cell groups (larger k) are identified because of in-
corporating additional PCs (larger nPC).

5. Compute DE genes. IKAP utilizes the FindAllMarker function
in Seurat to compute DE genes for each candidate set. Only
upregulated genes are reported. Other parameters are set by
default.

6. Build decision trees. The idea of building the decision tree is
to evaluate whether a group of cells can be differentiated by
considering multiple genes jointly. For each candidate set of
cell groups proposed by IKAP, a binary classifier (a decision
tree) is built for each group using DE genes from all groups.
The decision tree is built by the R package rpart [12] using
default parameters.

7. Compute classification error and select the best and alterna-
tive candidate sets. The R package rpart builds the decision
tree for each group in a candidate set (see ”Build decision
trees” above) and also reports relative errors (i.e., training er-
rors) at different number of splits (nsplit) along the decision
tree. For each group at a given nsplit, the group-level classifi-
cation error is computed as the product of the relative error
and the fraction of cells in that group. The set-level classi-
fication error of a candidate set at a given nsplit is defined
as the sum of all group-level classification errors. IKAP com-
putes the final classification error for each candidate set as
the average of set-level classification errors for nsplit = 5–
15. Note that the tree usually did not grow >15 splits in the
experiments shown in this study. Finally, among candidate
sets, the one with the lowest classification error is marked
as the best and the rest are alternatives. In our experience,
the number of candidate sets reported by IKAP usually ranges
from 1 to 4.

Performance summary

For each DE gene, the AUROC was computed for classifying
its associated group versus others using normalized unique
molecular identifier (UMI) count and the function roc.curve in
the R package PRROC [13]. We counted the median of num-
bers of genes with high AUROC (>0.8, 0.85, and 0.9) across
all groups. The classification error was computed as described
above (”Compute classification error” in ”IKAP details”). Average
expression log fold change (AvgLFC) was reported by Seurat for
each DE gene in each group. For each group, we sorted genes by
AvgLFC and only considered DE genes with AUROC > 0.8. Among
those, we computed the mean of AvgLFC across the top 10 (or n
if n < 10) DE genes for each group. Running time was measured
on a 4.2-GHz Intel Core i7 iMac desktop with 64 GB memory.

PBMC 4K and PBMC 8K datasets

PBMC 4K and PBMC 8K were downloaded from the 10x Ge-
nomics website [5]. They were filtered and normalized using
the R package Seurat [3]. We removed cells with <200 genes ex-
pressed or the UMI count of mitochondrial genes >5% of the to-
tal UMI count. For each dataset, we regressed out the percentage
of mitochondrial gene UMI count and the total UMI count from
the normalized expression matrix and scaled the matrix using
the ScaleData function in Seurat. Finally, we got the expression
matrix with 16,746 genes and 4,077 cells for PBMC 4K and the
matrix with 18,408 genes and 8,090 cells for PBMC 8K.

Mouse cortex dataset

The dataset was obtained from Zeisel et al. [6]. We normalized
and scaled the expression matrix as we did for PBMC 4K and
PBMC 8K, but we did not filter out any cells in order to be con-
sistent with the published work. In total, the expression matrix
comprised 19,972 genes and 3,005 cells.

Cell type recognition

Major cell groups in PBMC datasets (Figs 2A and 3D–E) were an-
notated on the basis of expression of marker genes and the lit-
erature. CD14+ monocytes: expression of LYZ and S100A8 [14].
FCGR3A+ monocytes: expression of FCGR3A and MS4A7, a mono-
cyte marker [15]. B cells: expression of CD79A [16]. Megakary-
ocytes: expression of PPBP [17]. Plasmacytoid dendritic cells: ex-
pression of LILRA4 [18]. T cells: expression of CD3E [19]. NK cells:
expression of GNLY but not CD3E [20].

Availability of supporting source code and
requirements

Project name: IKAP
Project home page: https://github.com/NHLBI-BCB/IKAP
Operating system(s): Mac OS
Programming language: R
License: MIT license
RRID: IKAP, RRID:SCR 017417

Availability of supporting data and materials

PBMC 4K and PBMC 8K can be downloaded from the 10x Ge-
nomics website [5]. The mouse cortex dataset can be acquired
from the GEO database with the accession number GSE60361.
Supporting data are also available via the GigaScience repository
GigaDB [21].

Additional files

Supplementary Figure 1: Gap statistics increased as more cell
groups were identified in PBMC 8K using different numbers of
top principal components (nPCs) with large gap increase seen
around the number of groups (k) = 7, 8, or 9.
Supplementary Figure 2: Major cell types in PBMC were not
well aligned with the 20 trial sets of cell groups generated for
PBMC 8K by varying resolution (r) and the number of top princi-
pal components (nPC) using Seurat clustering. (A) The tSNE plots
for the 20 trial sets. (B) Expression of PBMC type marker genes:
CD3E for T cells, CD79A for B cells, GNLY for NK cells, and LYZ for
monocytes.

https://github.com/NHLBI-BCB/IKAP
https://scicrunch.org/resolver/RRID:IKAP
https://scicrunch.org/browse/resources/SCR_017417
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Supplementary Figure 3: DE gene expression for 6 trial sets se-
lected from the 20 trial sets for PBMC 8K shown in Supplemen-
tary Fig. 2. In the heat maps, rows are genes and columns are
cells. Groups of cells (separated by vertical white lines) from left
to right correspond to groups of corresponding trial sets in Sup-
plementary Fig. 2 in the order of 0, 1, 2, . . . etc.
Supplementary Figure 4: Two alternative sets (PC16K8 and
PC18K9) of major cell groups identified for PBMC 8K by IKAP.
Shown are tSNE plots of the major groups (left) and heat maps
for expression of top DE genes (by expression fold change) (right)
for PC16K8 (top) and PC18K9 (bottom). Rows are genes and
columns are cells in the heat maps.
Supplementary Figure 5: Two candidate sets (PC8K7 and PC20K8)
of major groups identified for PBMC 4K by IKAP were aligned
with major cell types in PBMC and well differentiated by cell type
marker genes. tSNE plots show major groups of PC8K7 (A) and
PC20K8 (B). Heat maps show expression of top DE genes (by ex-
pression fold change) of each group for PC8K7 (C) and PC20K8 (D).
(E) tSNE plots for expression of cell type marker genes: CD3E for T
cells, CD79A for B cells, GNLY for NK cells, and LYZ for monocytes.
(F) Performance summary of the 2 candidate sets proposed by
IKAP and 20 trial sets. Running time is shown at the bottom. The
dashed blue lines indicate the number of cell groups (top) and
the median log2 fold change (bottom) of the best set (PC20K8).
Supplementary Figure 6: Major cell types in PBMC were not
well aligned with the 20 trial sets of cell groups generated for
PBMC 4K by varying resolution (r) and the number of top prin-
cipal components (nPC) using Seurat clustering. (A) The tSNE
plots for the 20 trial sets. (B) Expression of PBMC cell type marker
genes: CD3E for T cells, CD79A for B cells, GNLY for NK cells, and
LYZ for monocytes.
Supplementary Figure 7: Expression of top DE genes for 6 trial
sets selected from the 20 trial sets for PBMC 4K shown in Sup-
plementary Fig. 6. In the heat maps, rows are genes and columns
are cells. Groups of cells (separated by vertical white lines) from
left to right correspond to groups of corresponding trial sets in
Supplementary Fig. 6 in the order of 0, 1, 2, . . . etc.
Supplementary Figure 8: Comparison among previously anno-
tated major cell types, major cell groups identified by IKAP, and
the 20 trial sets of cell groups for the mouse cortex data. (A) The
top tSNE plot shows 9 cell types with original labels in Zeisel et
al. 2015 [6] where astrocytes were merged with ependymal and
endothelial merged with mural. The modified tSNE plot at bot-
tom recovered ependymal and mural types using group 4 and
group 1 identified by IKAP in Fig. 2D. (B) Performance summary
of the set proposed by IKAP, the 20 trial sets, and the modified
version of major cell types in (A). Running time is shown at the
bottom. The dashed blue lines indicate the number of cell groups
(top) and the median log2 fold change (bottom) of the best set
(PC13K8).
Supplementary Figure 9: Genes exclusively upregulated in in-
terneurons, pyramidal S1, and pyramidal CA1 in the mouse cor-
tex dataset. Gene expression is indicated by color for each mouse
cortex cell in the tSNE plot shown in Fig. 2D. Dark blue indicates
high expression whereas grey indicates low expression.
Supplementary Figure 10: An example of 2-layer T-cell ontol-
ogy proposed by IKAP for PBMC 4K. Shown on the left is the
ontology with 2 layers (also shown in Fig. 3D). The heat map
shows expression of top DE genes (ranked by expression fold
change) of each subgroup. Rows are genes and columns are
cells.
Supplementary Figure 11: An example of 2-layer T-cell ontology
proposed by IKAP for PBMC 8K. Shown on the left is the ontol-
ogy with 2 layers (also shown in Fig. 3E). The heat map shows

expression of top DE genes (ranked by expression fold change)
of each subgroup. Rows are genes and columns are cells.
Supplementary Figure 12: Alternative sets of T-cell subgroups
reported by IKAP for PBMC 4K and PBMC 8K. Two PBMC ontolo-
gies with T-cell subgroups are shown on the left for PBMC 4K
(top) and PBMC 8K (bottom). Expression of DE genes is plotted in
heat maps on the right. Rows are genes and columns are cells.
Subgroups with similar expression profiles are linked by lines.
Supplementary Figure 13: Expression of top DE genes (ranked by
expression fold change) for PBMC 4K T cell subgroups shown in
Supplementary Fig. 11. Rows are genes and columns are cells.
Supplementary Figure 14: Expression of top DE genes (ranked by
expression fold change) for PBMC 8K T cell subgroups shown in
Supplementary Fig. 11. Rows are genes and columns are cells.
Supplementary Figure 15: Major cell groups identified by IKAP
were not sensitive to settings of parameters, rini and (nPCmax −
nPCmin), for PBMC 4K (see Online Methods). The tSNE plots for
16 sets of major cell groups generated by varying rini (=0.9, 1.2,
1.5, and 1.8) and (nPCmax − nPCmin) (=10, 15, 20, and 25) using
PBMC 4K. By default rini = 1.5 and (nPCmax − nPCmin) = 20.
Supplementary Figure 16: Major cell groups identified by IKAP
were not sensitive to settings of parameters, rini and (nPCmax −
nPCmin), for PBMC 8K (see Online Methods). The tSNE plots for
16 sets of major cell groups generated by varying rini (=0.9, 1.2,
1.5, and 1.8) and (nPCmax − nPCmin) (=10, 15, 20, and 25) using
PBMC 8K. By default rini = 1.5 and (nPCmax − nPCmin) = 20.
Supplementary Figure 17: Major cell groups identified by IKAP
were not sensitive to settings of parameters, rini and (nPCmax −
nPCmin), for the mouse cortex dataset (see Online Methods). The
tSNE plots for 16 sets of major cell groups generated by varying
rini (=0.9, 1.2, 1.5, and 1.8) and (nPCmax − nPCmin) (=10, 15, 20,
and 25) using the mouse cortex dataset. By default rini = 1.5 and
(nPCmax − nPCmin) = 20.
Supplementary Figure 18: The workflow of selecting candidate
sets (PC9K7, PC16K8, and PC18K9) for PBMC 8K. Given a gap-
increase matrix M (see Fig. 1 for how to compute gap increase),
the following steps were taken. Step 0: filter entries by gap in-
creases > mean + standard deviation. Step 1: take the maxi-
mum gap increase across rows for each column (k) and record
the corresponding (nPC, k). Step 2: sort recorded (nPC, k)’s based
on their corresponding gap increases. Step 3: add the first (nPC,
k), which is PC9K7, into the candidate list. Step 4: remove the sec-
ond (nPC, k), which is PC9K6, because its nPC (=9) is not larger
than nPC of the candidate (=9) in the candidate list and neither
is its k not larger than k of the candidate (=7) in the candidate
list. Step 5: add the third (nPC, k) into the candidate list because
its nPC (=16) is larger than nPC of the candidate (=9) in the can-
didate list and so is its k. Step 6: add the fourth (nPC, k) into the
candidate list because its nPC (=20) is larger than all nPCs of the
candidates (=9 and 16) in the candidate list and so is its k. Finally,
PC9K7, PC16K8, and PC18K9 were selected as candidate sets for
PBMC 8K.
Supplementary Table 1. Median expression of genes
significantly∗ upregulated in the union of interneurons,
pyramidal S1, and pyramidal CA1 for the mouse cortex cell
types annotated in Zeisel et al. 2015 [6].
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