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Identifying protein interaction modules<p>A new network decomposition method is proposed that uses both a global metric and a local metric to identify protein interaction mod-ules in the protein interaction network. </p>

Abstract

We propose a new network decomposition method to systematically identify protein interaction
modules in the protein interaction network. Our method incorporates both a global metric and a
local metric for balance and consistency. We have compared the performance of our method with
several earlier approaches on both simulated and real datasets using different criteria, and show
that our method is more robust to network alterations and more effective at discovering functional
protein modules.

Background
Protein complexes are building blocks of cellular components
and pathways. A comprehensive understanding of a biologi-
cal system requires knowledge about how protein complexes
are assembled, regulated, and organized to form cellular com-
ponents and perform cellular functions. The emergence of a
variety of genomic and proteomic techniques to systemati-
cally obtain such information has generated an enormous
amount of data [1-11]. However, interpretation and analysis
of such data in terms of biological function has not kept pace
with data acquisition, mainly due to the complexity of the
problem and the limitation of current techniques to handle
the data.

In this paper, we address the issue of constructing protein
interaction modules from the protein interaction data. Highly
connected protein modules are mostly found to be protein
complexes performing a specific biological function. The con-
cept of protein interaction modules as fundamental func-
tional units was first outlined by Hartwell et al. [12]. Protein
interaction modules are composed of a variable number of

proteins, with discrete functions arising from their individual
constituents and their synergistic interactions. A multi-pro-
tein complex, such as the ribosome, is one common form of
interaction module; other examples of protein functional
modules include proteins working collectively in a pathway,
such as signal transduction, that do not necessarily form a
tightly associated, stable protein complex.

To detect protein interaction modules from protein interac-
tion data, we use a graph theory approach. Protein interaction
networks are routinely represented as graphs, with proteins
as nodes and interactions as edges. In a graphical representa-
tion of a protein interaction network, a functional unit, or a
group of functionally related proteins, is tightly connected as
a community, while proteins from different functional units
are more loosely connected. In the past few years, new algo-
rithms have been developed to extract communities from a
generic network. Girvan and Newman [13] proposed a
decomposition algorithm (GN algorithm) to analyze commu-
nity structure in networks. Their algorithm iteratively
removes edges based on betweenness values, the number of
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shortest paths between all pairs of nodes in the network run-
ning through an edge, in contrast to the traditional hierarchi-
cal clustering algorithm where closely connected nodes are
iteratively joined together into larger and larger communi-
ties. In a different approach, Radicchi et al. [14] replaced the
edge betweenness metric with an edge clustering coefficient -
the number of triangles to which a given edge belongs,
divided by the number of triangles that might potentially
include it, given the degrees of the adjacent nodes. The edge
clustering coefficient is a local topology-based metric and a
candidate edge with the lowest clustering coefficient is
removed one at a time in the algorithm of Radicchi et al. (the
'edge clustering coefficient' algorithm, ECC algorithm for
short).

When applied to a large network, these two algorithms give
substantially different results. The reason is that an individ-
ual edge with larger betweenness does not necessarily have a
lower clustering coefficient, although on average it will. Ulti-
mately, the global metric in the GN algorithm behaves differ-
ently from the local metric in the ECC algorithm. In this
paper, we propose to resolve this conflict by combining the
global and local metrics to form a consistent and robust algo-
rithm. We make three additional significant contributions: a
new metric (commonality) that takes into account the effects
of random edge distributions; a new definition of a protein
interaction module; and a novel filtering procedure to remove
false-positive interactions based on a random graph model
analysis. We demonstrate that our new algorithm is more
effective and robust in terms of discovering protein interac-
tion modules in protein interaction networks than either the
global or local algorithm by application to the large yeast pro-
tein interaction network.

Results and discussion
The principal result of this paper is the development of a new
algorithm for extracting protein interaction modules from a
protein interaction network. We first present the new meth-
odology developments and then compare the performance of
different algorithms, including the MCL algorithm [15], on
simulated networks where protein complexes were known.
The MCL algorithm is a fast and scalable unsupervised cluster
algorithm for graphs based on simulation of stochastic flow in
graphs [15] and was found to be overall the best performing
one by the Brohee and van Helden study [16]. Note that our
proposed new algorithm, the GN algorithm, and the ECC
algorithm are divisive partitioning-type algorithms, while the
MCL algorithm is a non-partitioning algorithm. Both the
modularity [17] measure and productive cuts in the following
sections are not applicable to the MCL algorithm. Second, we
compare the results of different algorithms on a small protein
interaction network where protein complexes are largely
known. Lastly, we apply our new algorithm, the GN algo-
rithm, the ECC algorithm, and the MCL algorithm, whenever
applicable, to two large yeast protein interaction networks

and evaluate the performance of each algorithm based on the
value of modularity [17], overlap with Munich Information
Center for Protein Sequences (MIPS) complexes [18] and
Gene Ontology (GO) term enrichment of each cluster.

A new commonality metric
Consider two proteins A and B. Let k be the number of com-
mon interacting partners (or neighbors) between A and B. If
A and B belong to the same protein complex, they likely share
many common interaction partners, that is, have a large k. On
the other hand, if A and B do not belong to the same protein
complex, they likely have few common interaction partners,
that is, have a small k. However, randomness also enters the
equation. Let n, m be the number of total interacting partners
for protein A and B, respectively (n and m are also called
degrees of A and B). A standard model of a protein interaction
type network is the fixed-degree-sequence random graph [19]
where the interactions follow the hypergeometric distribu-
tion. From this model, the average number of common inter-
acting partners between proteins A and B in a random graph
is given by:

N is the total number of nodes. To offset this random effect
that a large k results from large n and m, we propose a new
commonality index as:

The square root of n·m makes it a scale invariant. We note
that in [14], the authors define a similar metric as:

BCD algorithm
Our goal is to discover protein interaction modules. Intui-
tively, when two protein functional modules are sparsely con-
nected, edges between them should have higher edge-
betweenness values and lower commonality, whereas edges
within a module should have high commonality and low edge-
betweeness. Thus, for sparsely connected functional modules,
edge-betweenness highly correlates with edge-commonality.
When protein functional modules overlap, the correlation
between the global metric and local metric becomes less clear.
For this reason, we combine these two metrics to build a more
consistent and robust metric. The new BCD (Betweenness-
Commonality Decomposition) algorithm is summarized as
follows: step 1, calculate the edge commonality (C) for each
edge in the network; step 2, calculate the edge-betweenness
(B) for each edge in the current subnetwork; step 3, remove
the edge with the maximal ratio B/C; and step 4, repeat steps
2 and 3 until no edges remain.
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Like the edge clustering coefficient in the ECC algorithm, the
edge commonality is a static property of an edge in the con-
text of the entire network, telling how strong the affinity is
between two nodes it connects. The edge commonality is cal-
culated only once at the beginning of a decomposition proc-
ess, while the edge-betweenness is updated each time an edge
is removed to achieve best results [13]. This algorithm runs
with O(M2N) computational complexity, where M is the
number of edges and N is the number of nodes in a network.
As a practical matter, we calculate the betweenness using the
fast algorithm of Brandes [20] where the edge-betweenness
value can be obtained by summing pair-dependencies over all
traversals [21], so that we can easily parallelize the computa-
tionally costly betweenness calculation.

A new definition of protein interaction module
Intuitively, a protein interaction module is a subnetwork in
the protein interaction network with more internal interac-
tions than external interactions. A precise definition of the
interaction module is not trivial. A number of definitions of
community (or protein interaction module in terms of the
protein interaction network) have been proposed with differ-
ent criteria [14,17,22]. No clear consensus of module defini-
tion exists.

All three algorithms (BCD, GN, ECC) in this study transform
a network into a decomposition tree (Figure 1). In this tree
(called a dendrogram in the social sciences), the leaves are the
nodes, whereas the branches join nodes or (at higher level)
groups of nodes, thus identifying a hierarchical structure of
communities nested within each other. When inspecting the
resultant tree from either one of the tree algorithms on a
small yeast transcription network with 225 proteins and 1,792

interactions, where known protein interaction modules can
be inferred from the annotations of well-studied proteins, we
found most, if not all, protein complexes, within which pro-
teins are tightly grouped as subtrees in the decomposition
tree with uniform structure similar to those shadowed sub-
trees in Figure 1. Similar results were seen in much larger net-
works. Based on those observations, we propose a precise
definition of a protein interaction module utilizing the
decomposition tree structure. We first note that on the
decomposition tree, all leaf nodes are single proteins, while
non-leaf nodes are collections of proteins. We define a 'special
parent' as a non-leaf node with at least one child being a leaf
(Figure 1). A protein interaction module is then defined as the
nodes of a maximal sub-tree where all non-leaf nodes are spe-
cial parents. Further, when two modules share the same par-
ent, we merge them (Figure 1, subtrees in solid boxes) when
the maximal commonality of edges connecting these two
modules is larger than a pre-defined cutoff. Currently, the
cutoff is set at 0.1 to avoid merging two modules with very
limited connections between them. Results on actual protein
interaction networks indicate that proteins within a module
as defined above have very similar GO terms and perform
similar functions (see Figure 2 for examples). The dangling
nodes outside modules (in dashed boxes in Figure 1) are sim-
ply categorized as singletons.

Filtering false-positive interactions
Most yeast protein interaction data were obtained from large-
scale, high-throughput experiments, which generally contain
false positives [23]. To minimize the number of false positive
interactions, we apply a statistical test to measure the reliabil-
ity of an interaction (edge). We rigorously calculate the statis-
tical significance of each interaction between two proteins as
the random probability (P value) that the number of common
interacting partners occurs at or above the observed number.
Previous work has shown that the statistical significance
based on the number of common interacting partners highly
correlates with the functional association of two proteins
[24,25].

In a species with N proteins, the number of distinct ways in

which two interacting proteins A and B with n and m interac-

tion partners have k partners in common is given by

. The first factor ( ) is the

number of ways to choose the k common partners from all N

proteins except proteins A and B. The second term ( )

counts the number of ways of choosing dangling partners of

protein A (note that the common partners and protein A, B

are excluded). Similarly, the third term ( ) is for

choosing dangling partners of protein B. The total number of

ways for the two interacting proteins to have n and m

interaction partners, regardless of how many are in common,

is given by . Therefore, the probability to ran-

A sample decomposition tree showing protein interaction modulesFigure 1
A sample decomposition tree showing protein interaction modules. 
Special parents are marked with triangles. Modules as defined in the text 
are shown as shaded subtrees. Two modules with the same parent are 
merged if the edge commonality between the two modules is above a 
threshold (shown as boxes). Dashed lines outline singletons.
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A yeast transcriptional sub-network (upper) and the decomposition tree constructed by the BCD algorithm (lower)Figure 2
A yeast transcriptional sub-network (upper) and the decomposition tree constructed by the BCD algorithm (lower). Predicted protein modules are 
highlighted with colored bars (lower panel) and protein nodes in the network (upper panel) are colored accordingly. The module names in the upper panel 
are inferred from their members' annotation information. Singletons are colored red.
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domly see two interacting proteins with n and m partners,

sharing k common partners in a species with N proteins, is

given by:

The statistical significance is then calculated by:

where k0 is the observed number of common partners shared
by two interacting proteins. An interaction with P value
greater than 0.01 is considered to be a 'false positive' and is
discarded. We remove the edge with the highest P value and
recalculate the P value for affected edges. The process is
repeated until no edge has a P value > 0.01. We found in
analysis of yeast data, this filtering always improves the qual-
ity of discovered protein interaction modules.

Application to simulated yeast protein interaction 
networks
To compare the performance of our BCD algorithm, the GN
algorithm, the ECC algorithm with the original edge cluster-
ing coefficient definition (ECC1), and the ECC algorithm with
our commonality metric (ECC2), and the MCL algorithm [15],
in which the inflation parameter was set to the optimal value
1.8 according to the study [16], we built a test graph on the
basis of 198 complexes manually annotated in the MIPS data-
base [18] in a way similar to that used in Brohee and van
Helden's study [16]. Briefly, for each manually annotated
MIPS complex, an edge was created between each pair of pro-
teins within that complex. The resulting graph (referred to as
test graph) contains 1,078 proteins and 9,919 interactions. To
evaluate the robustness to false positives and false negatives,
we derived 16 altered networks by randomly removing edges
from or adding edges to the test graph in various proportions.
We then assessed the quality of clustering results on each
derived network by different algorithms with each annotated
complex. As done in Brohee and van Helden's study [16], we
computed a geometric accuracy value and a separation value
to estimate the overall correspondence between a clustering
result (a set of clusters) and the collection of annotated com-
plexes, where both a high geometric accuracy value and a high
separation value indicate good clustering (please see [16] for
more details).

Figure 3a displays the impact of edge addition on geometric
accuracy and Figure 3b show the impact on separation.
Clearly, the ECC2 algorithm with our new commonality met-
ric greatly outperforms the ECC1 algorithm with the older
edge clustering coefficient measure when the graph is altered
with adding edges. In Figure 3c,d, increasing proportions

(0%, 20% 40%, 60%, and 80%) of edges are randomly
removed from the test graph with prior 100% edge addition.
Figure 3e,f show the effect of edge addition on graphs from
which 40% of the edges had previously been removed. All
curves show similar trends and that BCD and MCL outper-
form the other three algorithms. The performance of our BCD
algorithm is better than that of the MCL algorithm when the
graph is more dramatically altered with both edge removal
and addition (Figure 3c-f).

Application to the yeast protein interaction network
We used the yeast protein interaction network from the BioG-
rid database (version 2.0.24) [26], from which we extracted
36,238 unique interactions among 5,273 yeast proteins. We
applied the filtering process to the data and the resulting
dataset retained 3,030 yeast proteins and 17,242 high-confi-
dence interactions, which we call the filtered dataset. On both
the original and filtered datasets, we tested five algorithms:
our BCD algorithm, the GN algorithm, the ECC1 algorithm
with its original edge clustering coefficient, the ECC2 algo-
rithm with our commonality metric and the MCL algorithm
whenever applicable.

Results on a small yeast protein interaction network
Before diving into the entire complex network, we first
decomposed a small yeast transcription network with 225
proteins and 1,792 interactions, where known protein inter-
action modules can be inferred from the annotations of well-
studied proteins (Figure 2a). Figure 2b displays a hierarchical
decomposition tree by the BCD algorithm (decomposition
trees constructed by the other three algorithms are provided
in Additional data file 1). Note that there is no decomposition
tree for the MCL algorithm.

The proposed definition of protein interaction module works
well for both the GN and BCD algorithms because almost all
proteins within the same computed protein module do indeed
belong to the same known protein complex. Decomposition
trees obtained using the ECC1 algorithm and the ECC2 algo-
rithm with our commonality metric are shown in Additional
data file 1. They produce irregularly large modules and an
excess number of singletons. This suggests that the purely
local metric used in the ECC algorithm is not effective. Addi-
tional data file 1 also shows good results for both the GN and
BCD algorithms that combine global and local metrics. They
clearly produce more consistent and robust results.

The BCD algorithm revealed 21 functional modules (Figure
2); all proteins within known protein complexes are also
located within the same module, suggesting that the BCD
algorithm is superior at unveiling fine structure buried in
complex protein interaction networks. The MCL algorithm
predicts only 11 clusters from this small yeast transcription
network. Several functional modules are grouped together:
the three RNA dependent RNA polymerases (A, B, C) and the
RNA polymerase II mediator complex are merged into one
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cluster; the NuA4 histone acetyltransferase complex, the
SWR1 complex, and the INO80 chromatin remodeling com-
plex are grouped into one cluster; the TFIIA complex, the
Elongator complex, the SAGA histone acetyltransferase com-
plex, and the TFIID complex are grouped into one cluster;
and the COMPASS complex and the mRNA cleavage and
polyadenylation specificity complex (CPF) are grouped into

one cluster. Apparently, the MCL algorithm is inefficient in
discovering boundaries between functionally related protein
complexes and tends to group them together. The quality of
modules obtained using the GN algorithm is not as good;
members of four functional modules, transcription factor IIA
(TFIIA) [TOA1, TOA2], TFIID [TAF2, TAF3, TAF4, TAF7,
TAF8, TAF11, TAF13], nuclear pore-associated [SAC3,

Robustness of the algorithms to random edge addition and removalFigure 3
Robustness of the algorithms to random edge addition and removal. Each curve represents the value of accuracy (left panels) or separation (right panels). 
(a, b) Edge addition to the test graph. (c, d) Edge removal from an altered graph with 100% of randomly added edges. (e, f) Edge addition to an altered 
graph with 40% of randomly removed edges. Color code: red, BCD; blue, GN; cyan, MCL; orange, ECC with the original edge clustering coefficient; green, 
ECC with our commonality index.
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CDC31, THP1], and a new one [ABD1, SPT6] predicted by the
BCD algorithm, are misplaced. The ECC algorithm has the
same tendency to separate peripheral members of the same
known protein complex into incorrect protein modules. For
instance, in the transcription network, the ECC algorithm dis-
joins peripheral proteins such as FOB1, RPC10, RRP8 and
RPL6B in a very early phase of the decomposition process,
causing those derived singletons to be separated from most
functional modules. Singletons do not provide useful infor-
mation for inferring the function of any module. Therefore,
the number of singletons generated by an algorithm is an
additional indicator of that algorithm's performance: an
excess number of singletons indicates poor performance of a
particular algorithm. On this small network, the ECC algo-
rithm produces 13 singletons, while the BCD and GN algo-
rithms produce 9 and 3 singletons, respectively. While the
difference between the ECC algorithm and the BCD algorithm
is only four singletons, those ECC singletons lose their con-
nections with other modules as they are isolated at a much
earlier stage of the decomposition process. Although the GN
algorithm produces the least number of singletons in the
example network, it is at the expense of generating mosaic
modules. Similar trends are seen in following experiments of
large networks.

We also note that the original ECC1 algorithm performs more
poorly than the ECC2 algorithm with our commonality index
(Additional data file 1). From now on, we will not discuss the
original ECC1 algorithm. When we refer to the ECC algo-
rithm, we mean the ECC algorithm using our commonality
index.

Results on the global yeast network
In this section, we discuss the results of BCD decomposition
of a specific network (yeast), the quality of computed mod-
ules, and comparison to MIPS hand-curated protein complex
data.

We first studied the decomposition processes by the three
algorithms as curves in Figure 4. Each curve displays the size
of the current network on which an algorithm acts versus the
number of productive cuts thus far. We consider the tendency
of network fragmentation due to different algorithms, as
measured by the number of productive cuts. Note that most
module (complex) finding algorithms are typically applied on
connected components of network. A productive cut is
defined as a removal of an edge resulting in two separate sub-
networks. On the original dataset, the BCD, GN and ECC
algorithms require 674, 2,779, and 2,304 productive cuts to
split the largest connected component of 5,257 nodes into
smaller pieces, which means, on average, the algorithms sep-
arate 7.8, 1.9 and 2.3 nodes, respectively, from the largest
connected component in each productive cut. On the filtered
dataset, the respective algorithms require 80, 107 and 710
productive cuts to split the largest connected component of
2,924 nodes into smaller pieces, which means, on average,

the algorithms separate 36.5, 27.3 and 4.1 nodes, respectively,
from the largest connected component in each productive cut.
The more productive cuts made, the more fragmented the
network and the more singletons generated, as shown in
Table 1. As stated earlier, a large number of singletons is an
indicator of poor performance by a particular algorithm. For
both datasets, the BCD algorithm produces the fewest single-
tons of the three partitioning-type algorithms. The size distri-
butions of predicted protein complexes for each algorithm,
including the MCL algorithm, on both datasets are shown in
Figure 5. The pattern of predicted complexes generated by all
three methods is similar to that of hand-curated MIPS com-
plexes [18], suggesting that the proposed protein module def-
inition is effective.

Modularity
As a measure of the quality of the protein modules computed,
we use modularity (Q) [17], which is a measure of a commu-
nity structure in a network, measuring the difference between
the number of edges falling within groups and the expected
number in an equivalent network with edges placed at ran-
dom. Basically, the higher the modularity, the better the

separation. The best clusters are given at the point when the
modularity is maximal. Previous studies stopped the decom-
position process when the modularity reached its peak value
and treated all resulting clusters as communities [17,21].
Applying the modularity criteria on protein interaction net-
works in this study, however, we found that protein modules

Decomposition curves for the largest sub-networks of two datasets on (a) unfiltered data and (b) filtered data by the three algorithmsFigure 4
Decomposition curves for the largest sub-networks of two datasets on 
(a) unfiltered data and (b) filtered data by the three algorithms. During 
the decomposition process, the larger connected component and the 
larger one of its derived sub-networks are always decomposed earlier. 
The y-axis shows the size of the sub-network under decomposition and 
the x-axis shows the number of productive cuts so far. A productive cut 
means the removal of an edge splitting one network into two 
disconnected parts.

500 1000 1500 2000 2500

100 200 300 400 500 600 700

50
0

15
00

25
00

10
00

25
00

50
00(a)

(b)

BCD
GN
ECC

BCD
GN
ECC

Productive cut

S
iz

e 
of

 la
rg

e 
ac

tin
g 

su
bn

et
w

or
k

Genome  2007, 8:R271



http://genomebiology.com/2007/8/12/R271 Genome 2007,     Volume 8, Issue 12, Article R271       Wang et al. R271.8
obtained in this way tend to be dominated by several very
large examples. Nonetheless, the maximal modularity is an
objective measure, which is useful for comparing the per-
formance of different algorithms. Table 2 lists the maximal
modularities obtained by three algorithms on three networks
of different size. The BCD algorithm has the highest Q values
for both the transcription network and the unfiltered global
network and is very close to the highest Q value of the GN
algorithm on the filtered data, suggesting that the BCD algo-
rithm is best in terms of maximal modularity. In particular,
on the noisy original data, the maximal modularity Q value by
the BCD algorithm is significantly higher than the Q values by
the other two algorithms, suggesting the tolerance of data
noise by the BCD algorithm is much better than the other
algorithms.

Overlap with MIPS complexes
We validated the biological significance of our predicted pro-
tein modules by comparing the hand-curated protein com-

plexes in the MIPS [27] database with the predicted modules.
For each predicted module, we found a best-matching MIPS
complex using the method of Spirin and Mirny [22], which
finds two complexes with the least probability of random
overlap using the hypergeometric distribution:

where N is the total number in the protein interaction net-
work, n and m are the sizes of two complexes, and k is the
number of common nodes. Table 3 presents the overlap (the
number of common proteins divided by the number of pro-
teins in the best-matching MIPS complexes) between pre-
dicted and MIPS complexes. In terms of the absolute number
of clusters that overlap 100% with MIPS complexes, the BCD

Table 1

Number of predicted complexes and singletons

Unfiltered Filtered

Algorithm Complex Singleton Complex Singleton

BCD 850 (5.0) 991 391 (6.8) 361

GN 614 (4.6) 2,477 297 (8.9) 379

ECC 875 (3.5) 2,214 491 (4.1) 1,021

MCL 703 (7.3) 168 232 (13.0) 3

The average size of complexes is shown in parentheses.

P

n

k

N n

m k

N

m

overlap =

⎛

⎝
⎜

⎞

⎠
⎟

−
−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

Size distribution of predicted and MIPS protein complexesFigure 5
Size distribution of predicted and MIPS protein complexes.
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is the best one on the unfiltered dataset, while the MCL
algorithm is the best on the filtered dataset. In terms of the
percentage of clusters that overlap 100% with MIPS com-
plexes, the MCL algorithm always performs better than the
other three. However, we found the size of predicted clusters
might affect the number. The larger a cluster is, the more
likely it contains all members of an overlapping MIPS com-
plex. From both Table 1 and Figure 5, the MCL algorithm pro-
duces a greater number of larger clusters than the other three
algorithms, which was seen previously in the small yeast tran-
scription network.

Therefore, to estimate the overall correspondence between a
resulting cluster by one approach and the collection of anno-
tated complexes, we computed the geometric accuracy and
separation as done in the described study [16]. The results are
shown in Table 3. Clearly, the BCD algorithm achieves better
accuracy than the other three algorithms on both unfiltered
and filtered datasets. In terms of separation, it is the MCL

algorithm that performs best among the four algorithms on
both datasets (Table 3).

GO term enrichment
In addition to the MIPS protein complex dataset we also eval-
uated the biological significance of predicted protein modules
by quantifying GO term co-occurrences using the SGD GO
Term Finder [28]. The GO Term Finder calculates a P value
that reflects the probability of observing by chance the co-
occurrence of proteins with a given GO annotation in a certain
complex based on a binomial distribution. The lower the P
value of a GO term, the more statistically significant a com-
plex is enriched in the GO term. Table 4 lists the percentage
of predicted protein modules whose P value falls within P < e-
15, [e-15, e-10], [e-10, e-5] and [e-5, 1]. There are more BCD
complexes in terms of absolute number with P value less than
1e-15 on both the unfiltered and filtered datasets.

Prediction of possible novel protein complexes
The number of predicted protein complexes is larger than the

Table 2

Comparison of modularity coefficients for network decomposition on three networks of varying sizes

Modularity Q

Network Size n BCD GN ECC

Transcription network 225 0.692 0.690 0.637

Filtered global data 3030 0.701 0.717 0.550

Unfiltered global data 5273 0.423 0.340 0.284

Table 3

Comparison of predicted protein complexes with known MIPS complexes

BCD GN ECC MCL

Unfiltered

100%* 59 (6.9†) 27 (4.4) 56 (6.4) 53 (7.5)

>50% 65 (7.6) 51 (8.3) 56 (6.4) 63 (9.0)

>0% 125 (14.7) 92 (15.0) 122 (13.9) 153 (21.8)

No overlap 601 (70.7) 444 (72.3) 641 (73.3) 434 (61.7)

Accuracy‡ 0.70 0.64 0.62 0.65

Separation‡ 0.21 0.16 0.20 0.27

Filtered

100% 53 (13.6) 45 (15.2) 50 (10.2) 67 (28.9)

>50% 46 (11.8) 38 (12.8) 49 (10.0) 24 (10.3)

>0% 83 (21.2) 66 (22.2) 120 (24.4) 50 (21.6)

No overlap 209 (53.5) 148 (49.8) 272 (55.4) 91 (39.2)

Accuracy 0.73 0.71 0.61 0.67

Separation 0.29 0.28 0.26 0.38

*The overlap is defined as the percentage of proteins in the best-matching MIPS complexes in a predicted cluster. Complexes with only one protein 
are excluded in this analysis. †The percentage of total predicted protein complexes. ‡The geometric accuracy and separation according to [16].
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number of known protein complexes compiled in the MIPS
complex dataset, and many predicted protein complexes do
not overlap with MIPS complexes. Among these unmatched
predicted protein complexes, some are likely to be true func-
tional protein modules because the GO terms in these com-
plexes are greatly enriched as indicated by low P values.
Figure 6 presents two such modules: a five-member module
(P = 1.9e-12) of a spindle-assembly checkpoint complex that
is crucial in the checkpoint mechanism required to prevent
cell cycle progression into anaphase in the presence of spindle
damage [29] (Figure 6a), and a thirteen-member module (P =
9.8e-17) including members from the Set3 histone deacety-
lase complex (Set3, Hos2, Snt1, Hos4, Hst1, Sif2) [30], pro-
teins involved in telomeric silencing (Zds1, Zds2 and Skg6)
[31], proteins related to sporulation (Spr6 and Bem3) [32,33]
and two other proteins (YIL055C and Cpr1) (Figure 6b). A
complete list of complexes and modules with functional
annotation is provided in Additional data files 2 and 3.

Table 5 provides the number of predicted protein modules (4
algorithms, 2 datasets) where either the GO terms are greatly
enriched (P < 1e-15) or they overlap with MIPS complexes
(overlap = 100%). Generally, the protein modules falling
within the above two categories can be viewed as functional
modules. The BCD algorithm outperforms the other three
algorithms in terms of identifying more functional protein
modules on the unfiltered dataset. The MCL algorithm pre-
dicts more functional protein modules than our BCD algo-
rithm does on the filtered dataset. In addition, all four
algorithms predict a substantial number of complexes that do
not overlap with MIPS or in which GO term co-occurrences

are insignificant. However, these are potentially novel func-
tional complexes for biologists to explore further.

Table 4

Predicted protein complexes of size ≥3 enriched in GO terms

Unfiltered Filtered

<e-15 e-15 to e-10 e-10 to e-5 e-5 to 1 <e-15 e-15 to e-10 e-10 to e-5 e-5 to 1

BCD 58 (10.4) 41 (7.4) 118 (21.2) 339 (61.0) 62 (21.1) 38 (13.0) 86 (29.3) 108 (36.7)

GN 47 (24.1) 23 (11.8) 43 (22.1) 82 (42.1) 60 (24.4) 32 (13.0) 66 (26.8) 88 (35.8)

ECC 47 (10.1) 48 (10.3) 120 (25.9) 249 (53.7) 45 (13.7) 55 (16.7) 114 (34.7) 115 (35.0)

MCL 55 (11.2) 31 (6.3) 96 (19.6) 309 (62.9) 55 (24.1) 33 (14.5) 62 (27.2) 78 (34.2)

The number in parentheses indicates the percentage of total complexes in that category.

Examples of modules where the GO terms are greatly enrichedFigure 6
Examples of modules where the GO terms are greatly enriched. (a) A 
five-member module of the spindle-assembly checkpoint complex that is 
crucial in the checkpoint mechanism required to prevent cell cycle 
progression into anaphase in the presence of spindle damage. (b) A 
thirteen member module including members from the Set3 histone 
deacetylase complex (Set3, Hos2, Snt1, Hos4, Hst1, Sif2), proteins 
involved in telomere silencing (Zds1, Zds2 and Skg6), proteins related to 
sporulation (Spr6 and Bem3), and two other proteins (YIL055C and 
Cpr1).

YIL055C

Sif2

Snt1 Set3

Cpr1

Bem3

Hst1

Zds2

Hos4

Mad2
Zds1

Bub1

Skg6

Bub3

Mad1

Spr6

Hos2Mad3

(b)(a)

Table 5

Predicted protein modules where either GO terms are greatly enriched (P < 1e-15) or all members of a best-matching MIPS complex 
are found (overlap = 100%)

Algorithm Unfiltered (percentage) Filtered (percentage)

BCD 95 (11.2*) 90 (23.0)

GN 58 (9.4) 80 (27.0)

ECC 87 (9.9) 83 (16.9)

MCL 84 (11.9) 91 (39.2)

*The percentage of total predicted protein complexes.
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The effects of filtering false-positive interactions
In all experiments, the results on the filtered data are consist-
ently better than the results on the original data. For example,
in Table 3, the non-overlap between computed protein mod-
ules by the BCD algorithm and known protein complexes was
reduced from 601 for the original data to 209 on the filtered
data. In Table 4, the percentage of GO terms with probability
<e-10 is always higher in the filtered data than in the original
data.

Discussion
Protein interaction networks are examples of complex sys-
tems that are difficult to understand from raw experimental
data alone. Methods to organize, filter, extract significant fea-
tures and display these data are critical to understanding
these systems. A number of network partition algorithms
have been proposed to find modular structures in protein
interaction networks [22,34-39]. Our work is a further devel-
opment along the network decomposition approach [13,14].
Our main contribution is to combine the global metric with a
local metric in the decomposition procedure. We also
resolved several critical technical issues. We propose a new
commonality metric based on random graph analysis, a clear
definition of protein modules utilizing the decomposition tree
structure, and a noise filtering algorithm based on random
graph analysis. These advances in methodology result in an
effective, consistent, and robust algorithm, as demonstrated
on both simulated datasets and the experimental yeast inter-
action data. The protein modules obtained have clear biolog-
ical functions, as shown in Table 5. Our approach to recover
protein interaction modules is fully self-contained, that is, it
does not need other input or parameters to identify protein
module boundaries. Our test experiments on yeast show that
this method can effectively predict protein interaction mod-
ules from a complex interaction network. We plan to further
automate this algorithm to compute protein interaction mod-
ules for a large number of organisms.

Materials and methods
Computing geometric accuracy and separation
We computed the geometric accuracy and separation by fol-
lowing the approach described in the study by Brohee and van
Helden [16]. Briefly, each clustering result was compared
with the annotated complexes by building a contingency table
T, where row i corresponds to the ith annotated complex and
column j to the jth cluster and the value of a cell Tij indicates
the number of proteins found in common between complex i
and cluster j. The contingency table has n rows (complexes)
and m columns (clusters).

Accuracy

First, we define complex-wise sensitivity  as the maxi-

mal fraction of protein of complex i that could be found in one

cluster by the formula:

where Ni is the number of proteins belonging to complex i. To

characterize the general sensitivity of a clustering result, we

compute a clustering-wise sensitivity as the weighted average

of  over all complexes by the formula:

Second, we calculate a cluster-wise positive predictive value

 as the maximal fraction of proteins of cluster j found

in the best-matching complex by the formula:

where Tj is the marginal sum of a column j by:

To characterize the general PPV (positive predictive value) of

a clustering result as a whole, we compute a clustering-wise

PPV as the weighted average of  over all clusters by:

The geometric accuracy (Acc) indicates the tradeoff between
sensitivity and predictive value. It is obtained by computing
the geometric mean of the Sn and the PPV by:

Separation
From the contingency table, we derive relative frequencies
with respect to the marginal sums, either per row:
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We then define the separation as the product of column-wise
and row-wise frequencies by:

The complex-wise separation  is calculated as the sum

of separation values for a given complex i by:

and the cluster-wise separation  for cluster j by:

To estimate a clustering result as a whole, complex-wise Sepco

and clustering-wise Sepcl values are computed as the average

of  over all complexes, and of  over all clusters,

respectively:

We then compute the geometric separation (Sep) as the geo-
metric mean of Sepco and Sepcl by:
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