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Abstract
We present an algorithm for detecting the location of cells from two-photon calcium imaging data. In our
framework, multiple coupled active contours evolve, guided by a model-based cost function, to identify cell
boundaries. An active contour seeks to partition a local region into two subregions, a cell interior and exterior, in
which all pixels have maximally “similar” time courses. This simple, local model allows contours to be evolved
predominantly independently. When contours are sufficiently close, their evolution is coupled, in a manner that
permits overlap. We illustrate the ability of the proposed method to demix overlapping cells on real data. The
proposed framework is flexible, incorporating no prior information regarding a cell’s morphology or stereotypical
temporal activity, which enables the detection of cells with diverse properties. We demonstrate algorithm
performance on a challenging mouse in vitro dataset, containing synchronously spiking cells, and a manually
labelled mouse in vivo dataset, on which ABLE (the proposed method) achieves a 67.5% success rate.

Key words: active contour; calcium imaging; fluorescence microscopy; level set method; segmentation

Introduction
Two-photon calcium imaging has enabled the long-

term study of neuronal population activity during learning
and behavior (Peron et al., 2015b). State of the art genet-

ically encoded calcium indicators have sufficient signal-
to-noise ratio (SNR) to resolve single action potentials
(Chen et al., 2013). Furthermore, recent developments in
microscope design have extended the possible field-of-
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Significance Statement

Two-photon calcium imaging enables the study of brain activity during learning and behavior at single-cell
resolution. To decode neuronal spiking activity from the data, algorithms are first required to detect the
location of cells in the video. It is still common for scientists to perform this task manually, as the
heterogeneity in cell shape and frequency of cellular overlap impede automatic segmentation algorithms.
We developed a versatile algorithm based on a popular image segmentation approach (the level set method)
and demonstrated its capability to overcome these challenges. We include no assumptions on cell shape
or stereotypical temporal activity. This lends our framework the flexibility to be applied to new datasets with
minimal adjustment.
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view in which individual neurons can be resolved to 9.5
mm2 (Stirman et al., 2016), and enabled the simultaneous
imaging of separate brain areas (Lecoq et al., 2014).
However, a comprehensive study of activity in even one
brain area can produce terabytes of imaging data (Peron
et al., 2015a), which presents a considerable signal pro-
cessing problem.

To decode spiking activity from imaging data, one must
first be able to accurately detect regions of interest (ROIs),
which may be cell bodies, neurites or combinations of the
two. Heterogeneity in the appearance of ROIs in imaging
datasets complicates the detection problem. The calcium
indicator used to generate the imaging video affects both
a cell’s resting fluorescence and its apparent shape. For
example, some genetically encoded indicators are ex-
cluded from the nucleus and therefore produce fluores-
cent “donuts.” Moreover, imaging data are frequently
contaminated with measurement noise and movement
artefacts. These challenges necessitate flexible, robust
detection algorithms with minimal assumptions on the
properties of ROIs.

Manual segmentation of calcium imaging datasets is
still commonplace. While this allows the use of complex
selection criteria, it is neither reproducible nor scalable.
To incorporate implicitly a human’s selection criteria,
which can be hard to define mathematically, supervised
learning from extensive human-annotated data has been
implemented (Valmianski et al., 2010; Apthorpe et al.,
2016). Other approaches rely on more general cellular
properties, such as their expected size and shape (Ohki
et al., 2005) and that they represent regions of peak local
correlation (Smith and Häusser, 2010; Kaifosh et al.,
2014). The latter approaches use lower-dimensional sum-
mary statistics of the data, which reduces computational
complexity but does not typically allow detection of over-
lapping regions.

To better discriminate between neighboring cells, some
methods make use of the temporal activity profile of
imaging data. The (2 � 1)-D imaging video, which consists
of two spatial dimensions and one temporal dimension, is
often prohibitively large to work on directly. One family of
approaches therefore reshapes the (2 � 1)-D imaging

video into a 2-D matrix. The resulting matrix admits a
decomposition, derived from a generative model of the
imaging video, into two matrices, each encoding spatial
and temporal information. The spatial and temporal com-
ponents are estimated using a variety of methods, such as
independent component analysis (Mukamel et al., 2009;
Schultz et al., 2009) or non-negative matrix factorization
(Maruyama et al., 2014). Recent variants extend the video
model to incorporate detail on the structure of neuronal
intracellular calcium dynamics (Pnevmatikakis et al., 2016)
or the neuropil contamination (Pachitariu et al., 2016). By
expressing the (2 � 1)-D imaging video as a 2-D matrix,
this type of approach can achieve high processing speeds.
This does, however, come at the cost of discarded spatial
information, which can necessitate postprocessing with
morphologic filters (Pachitariu et al., 2016; Pnevmatikakis
et al., 2016).

In this article, we propose a method in which cell
boundaries are detected by multiple coupled active con-
tours. To evolve an active contour we use the level set
method, which is a popular tool in bioimaging due to its
topological flexibility (Delgado-Gonzalo et al., 2015). To
each active contour, we associate a higher-dimensional
function, referred to as the level set function, whose zero
level set encodes the contour location. We implicitly
evolve an active contour via the level set function. The
evolution of the level set function is driven by a local
model of the imaging data temporal activity. The data
model includes no assumptions on a cell’s morphology or
stereotypical temporal activity. Our algorithm is therefore
versatile, it can be applied to a variety of data types with
minimal adjustment. For convenience, we refer to our
method as ABLE (an activity-based level set method). In
the following, we describe the method and demonstrate
its versatility and robustness on a range of in vitro and in
vivo datasets.

Materials and Methods
Estimating the boundary of an isolated cell

Consider a small region of a video containing one cell
(Fig. 1A, inside the dashed box). This region is composed
of two subregions: the cell and the background. We want
to partition the region into �in and �out, where �in

corresponds to the cell and �out the background. We
compute a feature of the respective subregions, f in

and fout, with which to classify pixels into the cell
interior or background. In particular, we define f in ��T

and fout ��T as the average subregion time courses,
where T is the number of frames in the video. We
estimate the optimal partition as the one that minimizes
discrepancies between a pixel’s time course and the
average time course of the subregion to which it belongs.
To calculate this discrepancy, we employ a dissimilarity
metric, D (see below), which is identically zero when the time
courses are perfectly matched and positive otherwise. As
such, we minimize the following cost function, which we
refer to as the external energy,
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Eext(�in , �out ) � ��
in

D(I(x), f in )dx

� ��
out

D(I(x), fout )dx, (1)

where I�x���T is the time course of pixel x.
The cell location estimate is iteratively updated by the

algorithm. At each iteration, the cell exterior is defined as
the set of pixels within a fixed distance of the current
estimate of the cell interior (Fig. 1B). The default distance
is taken to be two times the expected radius of a cell. We
refer to this exterior region as the narrowband to empha-
sise its proximity to the contour of interest. The boundary
between the interior and the narrowband is the active
contour. As an active contour is updated, so is the cor-
responding narrowband (Fig. 1F). The region of the video
for which the optimal partition is sought is therefore not
static; rather, it evolves as an active contour evolves.

Computing the dissimilarity metric
Because of the heterogeneity of calcium imaging data,

we do not use a universal dissimilarity metric. When both
the pattern and magnitude of a pixel’s temporal activity
are informative, as is typically the case for synthetic dyes,
we use a measure based on the Euclidean distance,
where

DE(I(x), f) � �I(x) � f�2 , (2)

for f��T. When we have an image not a video (i.e. I(x) and
f are one-dimensional) this dissimilarity metric reduces to
the fitting term introduced by Chan and Vese (2001). For
datasets in which the fluorescence expression level varies
significantly throughout cells and, as a consequence, pix-
els in the same cell exhibit the same pattern of activity at
different magnitudes, we use a measure based on the
correlation, such that

Figure 1. A flow diagram of the main steps of the proposed segmentation algorithm: initialization (A–C), iterative updates of the
estimate (D–G), and convergence (H-J). When cells are sufficiently far apart we can segment them independently, in this example, we
focus on the isolated cell in the dashed box on the maximum intensity image in A. We make an initial estimate of the cell interior, from
which we form the corresponding narrowband (B) and level set function � (C). Based on the discrepancy between a pixel’s time
course and the time courses of the interior and narrowband regions (D), we calculate the velocity of � at each pixel (E). � Evolves
according to this velocity (G), which updates the location of the interior and narrowband (F). Final results for: one cell (H), the average
signals from the corresponding interior and narrowband (I), and segmentation of all four cells (J).
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DC(I(x), f) � 1 � corr(I(x), f) , (3)

where corr represents the Pearson correlation coefficient.
In this article, as default, we use the Euclidean dissimilar-
ity metric. Additionally, we present two notable examples
in which the correlation-based metric is preferable.

External energy for neighboring cells
We now extend the cost function presented in Equation

1 to one suitable for partitioning a region into multiple cell
interiors, {�in,1, �in,2,. . ., �in,M}, and a global exterior, �out,

which encompasses the narrowbands of all the cells. We
denote with fin,i the average time course of pixels exclu-
sively in �in,i. Due to the relatively low axial resolution of a
two-photon microscope, fluorescence intensity at one
pixel can originate from multiple cells in neighboring
z-planes. Accordingly, we allow cell interiors to overlap
when this best fits the data. In particular, we assume that
a pixel in multiple cells would have a time course well fit by
the sum of the interior time courses for each cell. The
external energy in the case of multiple cells is thus

Eext(�in,1 , �, �in,M , �out ) � �
�

out

D(I(x), fout )dx

� �
inside

D(I(x), �
i�C(x)

f in,i )dx, (4)

where the area termed “inside” denotes the union of all
cell interiors and the function C(x) identifies all cells whose
interior contains pixel x. When the region to be partitioned
contains only one cell, the external energy in Equation 4
reduces to that in Equation 1.

Level set method
It is not possible to find an optimal cell boundary by

minimizing the external energy directly (Chan and Vese,
2001). An alternative solution is to start from an initial
estimate, see below, and evolve this estimate in terms of
an evolution parameter �. In this approach, the boundary
is called an active contour. To update the active contour
we use the level set method of Osher and Sethian (1988).
This method was first introduced to image processing by
Caselles et al. (1993) and Malladi et al. (1995); it has since
found widespread use in the field. We implicitly represent
the evolving boundary estimate of the ith cell, the ith active
contour, by a function �i, where �i is positive for all pixels
in the cell interior, negative for those in the narrowband
and zero for all pixels on the boundary (Fig. 1C). We refer
to �i as a level set function, as its zero level set identifies
the contour of interest. We note that since the contour
evolves with �, �i itself depends on �. In the following, we
present a set of M partial differential equations (PDEs),
one for each active contour, derived in part from Equation
4, which dictate the evolution of the level set functions.
The solution to the set of PDEs yields (as the zero level
sets) the cell boundaries which minimize the external
energy in Equation 4.

From the external energy and a regularization term (Li
et al., 2010), we define a new cost function

E(�1, �, �M) � �Eext(�1, �, �M) � 	R(�1, �, �M) , (5)

where the arguments to the external energy in Equation 4
are replaced by the corresponding level set functions. The
parameters � and 	 are real-valued scalars, which define
the relative weight of the external energy and the regular-
izer. The regularizer is designed to ensure that a level set
function varies smoothly in the vicinity of its active con-
tour. The corresponding regularization energy is mini-
mized when �i has gradient of magnitude one near the
active contour and magnitude zero far from the contour.
An example of such a function, a signed distance function
(which is the shape of all level set functions on initializa-
tion), can be seen in Figure 1C.

A standard way to obtain the level set function that
minimizes the cost function is to find the steady-state
solution to the gradient flow equation (Aubert and Korn-
probst, 2006), we do this for each �i:


�i


�
� �


E

�i

, (6)

for i � {1,2,. . .,M}. From Equation 5 we obtain


�i


�
� ���


Eext


�i
� 	


R

�i

� . (7)

We solve this PDE numerically, by discretizing the evo-
lution parameter �, such that

�i(� � 1) � �i(�) � ����

Eext


�i
� 	


R

�i

� . (8)

The regularization term, which encourages �i to vary
smoothly in the image plane, helps to ensure the accurate
computation of the numerical solution.

At every timestep �, each level set function is con-
secutively updated until convergence. We must retain
	�� � 0.25 to satisfy the Courant-Friedrichs-Lewy con-
dition (Li et al., 2010), a necessary condition for the con-
vergence of a numerically-solved PDE. This condition
requires that the numerical waves propagate at least as
fast as the physical waves (Osher and Fedkiw, 2003). We
therefore set � � � 10 and 	 � 0.2/� �. For each dataset,
we tune the value of � based on the algorithm perfor-
mance on a small section of the video. To attain segmen-
tation results on the real datasets presented in this article,
we use � � 150 (see Results, ABLE is robust to hetero-
geneity in cell shape and baseline intensity), � � 50 (see
Results, ABLE detects synchronously spiking, densely
packed cells), � � 25 (see Results, Algorithm comparison
on manually labeled dataset), and � � 10 (see Results,
Spikes are detected from ABLE-extracted time courses
with high temporal precision).

External velocity
The movement of a level set function, �i, is driven by the

derivatives in Equation 8, 
Eext/
�i provides the impetus
from the video data and 
R/
�i the impetus from the
regularizer. In the following, we outline the calculation and
interpretation of 
Eext/
�i; the regularizer is standard and
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its derivative is detailed in Li et al. (2010). As is typical in
the level set literature (Zhao et al., 1996; Li et al., 2010),
using an approximation of the Dirac delta function 
�, we
obtain an approximation of the derivative: 
Eext/
�i�x� �

���i�x��Vi�x�, where

Vi(x) � �D(I(x), f in,i ) � D(I(x), fout ) x not in neighboring cell,
D(I(x), f in,i � �

j�C(x)
f in,j ) � D(I(x), �

j�C(x)
f in,j ) otherwise.

(9)

We refer to Vi(x) as the external velocity as it encapsu-
lates the impetus to movement derived from the external
energy in Equation 4, see Figure 1E for an illustrative
example.

The term 
�, which is only non-zero at pixels on or near
the cell boundary, acts as a localization operator, ensuring
that the velocity only impacts �i at pixels in the vicinity of
the active contour. The parameter � defines the approxi-
mate radius, in pixels, of the non-zero band, here, we take
� � 2. The product with the localization operator means that,
in practice, the external velocity must only be evaluated at
pixels on or near the cell boundary. As a consequence,
although the external velocity contains contributions from all
cells in the video, the problem remains local, only neighbor-
ing cells directly affect a cell’s evolution.

Although �out represents a global exterior, in practice,
we calculate the corresponding time course in Equation 9,

fout, locally. To evaluate the external velocity of an active
contour, we calculate fout as the average time course from
pixels in the corresponding narrowband. This allows us to
neglect components such as intensity inhomogeneity and
neuropil contamination (Fig. 2), which we assume vary on
a scale larger than that of the narrowband.

The external velocity of a single active contour (Eq. 9)
can be interpreted as follows: if a pixel, not in another cell,
has time course more similar to that of the contour interior
than the narrowband, then the contour moves to incorpo-
rate that pixel. If a pixel in another cell has time course
better matched by the sum of the interior time courses of
cells containing that pixel plus the interior time course of
the evolving active contour, then the contour moves to
incorporate it. Otherwise, the contour is repelled from that
pixel.

Initialization
We devised an automatic initialization algorithm which

selects connected areas of either peak local correlation or
peak mean intensity as initial ROI estimates. Initializing
areas of peak mean intensity, which may correspond to
artefacts rather than active cells (see, e.g., the electrode in
Fig. 1A), is essential so that these regions do not distort
the narrowband signal of another ROI. We first compute
the correlation image of the video. For each pixel, this
is the average correlation between that pixel’s time course

Figure 2. ABLE detects cells with varying size, shape, and baseline intensity from mouse in vivo imaging data. The 236 detected ROIs
are superimposed on the mean image of the imaging video (A). Extracted neuropil-corrected time series and corresponding ROIs are
displayed for a subset of the detected regions (B). Cells with both stereotypical calcium transient activity (B, 1–9) and saturating
fluorescence (B, 10–12) are detected. The performance of ABLE does not deteriorate due to intensity inhomogeneity: ROIs with
baseline fluorescence from beneath the video median to just below saturation are detected (C). The area of detected regions varies
(D) with the smallest ROIs corresponding to cross-sections of dendrites (E). Neighboring regions with sufficiently high correlation are
merged (F), those with lower correlation are not merged (G). In F, we plot the ROIs before and after merging along with the
corresponding neuropil-corrected time courses. In G, we plot the separate ROIs and the neuropil-corrected time courses. The
proposed method naturally facilitates neuropil-correction, the removal of the weighted, local neuropil time course from the raw cellular
time course (H).
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and those of the pixels in its 8-connected neighborhood.
Local peaks in this image and the mean intensity image
are identified (by a built-in MATLAB function, “imextend-
edmax”) as candidate ROIs. The selectivity of the initial-
ization is set by a tuning parameter �, which defines the
relative height with respect to neighboring pixels (in units
of SD of the input image) of the peaks that are sup-
pressed. The higher the value of �, the more conservative
the initialization. We have found it best to use a low value
for � (in the range 0.2-0.8) so as to overestimate the
number of ROIs; redundant estimates are automatically
pruned during the update phase of the algorithm. More-
over, smaller values of � produce smaller initializations,
which reduce errors due to initializations composed of
multiple cells.

Convergence
We stop updating a contour estimate if a maximum

number of iterations Nmax has been reached or the active
contour has converged, using one or both of these con-
ditions is common in the active contour literature (Li et al.,
2010; Delgado-Gonzalo and Unser, 2013). A contour is
deemed to have converged if, in Ncon consecutive itera-
tions, the number of pixels that are added to or removed
from the interior is less than �. As default, we take Nmax �
100, Ncon � 40 and � � 2.

The complexity of the level set method is intrinsically
related to the dimensionality of the active contour; the
number of frames of the video is only relevant to the
evaluation of the external velocity (Eq. 9), which accounts
for a small fraction of the computational cost. In Table 1,
we demonstrate that increasing video length by a factor of
10 has only a minor impact on processing time. As the
framework includes no assumptions on an ROI’s stereo-
typical temporal activity, before segmentation a video can
be downsampled by averaging consecutive samples,
thereby simultaneously enabling the processing of longer
videos and increasing SNR.

Increasing cell density principally impacts the calcula-
tion of the external velocity and does, therefore, not alter
the computational complexity of the algorithm. On syn-
thetic data, we observe that increasing cell density only
marginally affects the convergence rate (Table 2). As em-
phasized above (see External velocity), updating an active
contour is a local problem, consequently, we observe that
algorithm runtime increases linearly with the total number
of cells (Table 1). Due to the independence of spatially
separate ROIs in our framework, further performance
speed-ups are achievable by parallelizing the computa-
tion.

Merging and pruning ROIs
ABLE automatically merges two cells if they are suffi-

ciently close and their interiors sufficiently correlated, a
strategy previously employed in the constrained matrix
factorization algorithm of Pnevmatikakis et al. (2016).
When two contours are merged, their respective level set
functions are replaced with a single level set function,
initialized as a signed distance function (Fig. 1C), with a
zero level set that represents the union of the contour
interiors.

The required proximity for two cells to be merged is one
cell radius (the expected cell radius is one of two required
user input parameters). To determine the correlation
threshold, we consider the correlation of two noisy time
courses corresponding to the average signals from two
distinct sets of pixels belonging to the same cell. We
assume the underlying signal components, which corre-
spond to the cellular signal plus background contribu-
tions, have maximal correlation but that the additive noise
reduces the correlation of the noisy time courses. Assum-
ing the noise processes are independent from the under-
lying cellular signal and each other, the correlation
coefficient of the noisy time courses is

1
1 � 10�SNRdB/10

, (10)

where SNRdB is the signal-to-noise-ratio (dB) of the noisy
time courses. We thus merge components with correla-
tion above this threshold. We select a default correlation
threshold of 0.8, derived from a default expected SNR of
5 (dB). The user has the option to input an empirically
measured SNR, which updates the correlation threshold
using the formula in Equation 10.

A contour is automatically removed (“pruned”) during
the update phase if its area is smaller or greater than
adjustable minimum or maximum size thresholds, which,
as default, are set at 3 and 3�r2 pixels, respectively,
where r is the expected radius of a cell.

Metric definitions
The SNR is defined as the ratio of the power of a signal

�x
2 and the power of the noise ��

2, such that SNRpow �
�x

2/��
2. We write the SNR in decibels (dB) as SNRdB �

10log 10�SNRpow�.
Given two sets of objects, a ground truth set and a set

of estimates, the precision is the percentage of estimates
that are also in the ground truth set and the recall is the
percentage of ground truth objects that are found in the
set of estimates. As a complement of the precision we use
the fall-out rate, the percentage of estimates not found in
the ground truth set. The success rate (%) is

Table 1. Runtime (minutes) on synthetic data of size 512 �
512 � T

Number of cells
25 125 225

Number of frames (T) 100 1.1 6.5 11.2
1000 1.3 6.5 12.7

On synthetic data with dimensions 512 � 512 � T, the runtime of ABLE
(minutes) increases linearly with the number of cells and is not significantly
affected by increasing number of frames, T. Runtime was measured on a
PC with 3.4 GHz Intel Core i7 CPU.

Table 2. Number of iterations to convergence as cell density
increases

Number of neighbors 0 1 2 3 4
Number of iterations 33 33 35 35 36

On synthetic data the average number of iterations to convergence, over
100 realizations of noisy data, marginally increases as the number of cells in
a given cell’s narrowband (“neighboring cells”) increases.
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2
precision � recall
precision � recall

. (11)

When the objects are cells, an estimate is deemed to
match a ground truth cell if their centres are within 5 pixels
of one another. When the objects are spikes, the required
distance is 0.22s (three-sample widths). To quantify spike
detection performance, we also use the root-mean-
square error, which is the square root of the average
squared error between an estimated spike time (t̂k��) and
the ground truth spike time (tk��).

Simulations
To quantify segmentation performance, we simulated

calcium imaging videos. In the following, we detail the
method used to generate the videos. Cellular spike trains
are generated from mutually independent Poisson pro-
cesses. A cell’s temporal activity is the sum of a stationary
baseline component, the value of which is selected from a
uniform distribution, and a spike train convolved with a
stereotypical calcium transient pulse shape. Cells are do-
nut (annulus) shaped to mimic videos generated by ge-
netically encoded calcium indicators, which are excluded
from the nucleus. To achieve this, the temporal activity of
a pixel in a cell is generated by multiplying the cellular
temporal activity vector by a factor in [0,1] that decreases
as pixels are further from the cell boundary. When two
cells overlap in one pixel, we sum the contributions of
both cells at that pixel. Spatially and temporally varying
background activity, generated independently from the
cellular spiking activity, is present in pixels that do not
belong to a cell.

Software accessibility
The software described in the paper is freely available

online at http://github.com/StephanieRey.

Two-photon calcium imaging of quadruple
whole-cell recordings

All procedures conformed to the standards and guide-
lines set in place by the Canadian Council on Animal Care,
under the Research Institute of the McGill University
Health Centre animal use protocol number 2011-6041 to
PJS. P11-P15 mice of either sex were anaesthetized with
isoflurane, decapitated, and the brain was rapidly dis-
sected in 4XC external solution consisting of 125 mM
NaCl, 2.5 mM KCl, 1 mM MgCl2, 1.25 mM NaH2PO4, 2
mM CaCl2, 26 mM NaHCO3, and 25 mM dextrose, bub-
bled with 95% O2/5% CO2 for oxygenation and pH. Qua-
druple whole-cell recordings in acute visual cortex slices
were conducted at 32-34°C with internal solution consist-
ing of 5 mM KCl, 115 mM K-gluconate, 10 mM K-HEPES,
4 mM MgATP, 0.3 mM NaGTP, 10 mM Na-phospho-
creatine, and 0.1% w/v biocytin, adjusted with KOH to pH
7.2-7.4. On the day of the experiment, 20 	M Alexa Fluor
594 and 180 	M Fluo-5F pentapotassium salt (Life Tech-
nologies) were added to the internal solution. Electro-
physiology amplifier (Dagan BVC-700A) signals were
recorded with a National Instruments PCI-6229 board,
using in-house software running in Igor Pro 6 (WaveMet-
rics). The two-photon imaging workstation was custom

built as previously described (Buchanan et al., 2012).
Briefly, two-photon excitation was achieved by raster-
scanning a Spectraphysics MaiTai BB Ti:Sa laser tuned to
820 nm across the sample using an Olympus 40� objec-
tive and galvanometric mirrors (Cambridge Technologies
6215H, 3 mm, 1 ms/line, 256 lines). Substage photomul-
tiplier tube signals (R3896, Hamatsu) were acquired with a
National Instruments PCI-6110 board using ScanImage
3.7 running in MATLAB (MathWorks). Layer-5 pyramidal
cells were identified by their prominent apical dendrites
using infrared video Dodt contrast. Unless otherwise
stated, all drugs were obtained from Sigma-Aldrich.

Two-photon calcium imaging of bulk loaded
hippocampal slices

All procedures were performed in accordance with na-
tional and institutional guidelines and were approved by
the UK Home Office under Project License 70/7355 to
SRS. Juvenile wild-type mice of either sex (C57Bl6, P13-
P21) were anaesthetized using isoflurane before decapi-
tation procedure. Brain slices (400 	m thick) were
horizontally cut in 1-4°C ventilated (95% O2, 5% CO2)
slicing artificial CSF (ACSF: 0.5 mM CaCl2, 3.0 mM KCl,
26 mM NaHCO3, 1 mM NaH2PO4, 3.5 mM MgSO4, 123
mM sucrose, and 10 mM D-glucose). Hippocampal slices
containing dentate gyrus, CA3 and CA1 were taken and
resting in ventilated recovery ACSF (rACSF; 2 mM CaCl2,
123 mM NaCl, 3.0 mM KCl, 26 mM NaHCO3, 1 mM
NaH2PO4, 2 mM MgSO4, and 10 mM D-glucose) for 30
min at 37°C. After this, the slices were placed in an
incubation chamber containing 2.5 ml of ventilated rACSF
and “painted” with 10 	l of the following solution: 50 	g of
Cal-520 AM (AAT Bioquest), 2 	l of Pluronic-F127 20% in
DMSO (Life Technologies), and 48 	l of DMSO (Sigma
Aldrich) where they were left for 30 min at 37XC in the
dark. Slices were then washed in rACSF at room temper-
ature for 30 min before imaging. Dentate gyrus granular
cells were identified using oblique illumination before be-
ing imaged using a standard commercial galvanometric
scanner based two-photon microscope (Scientifica) cou-
pled to a mode-locked Mai Tai HP Ti Sapphire (Spectra-
Physics) laser system operating at 810 nm. Functional
calcium images of granular cells were acquired with a
40� objective (Olympus) by raster scanning a 180 � 180
	m2 square field of view at 10 Hz. Electrical stimulation
was accomplished with a tungsten bipolar concentric
microelectrode (WPI) where the tip of the electrode was
placed into the molecular layer of the dentate gyrus (20
pulses with a pulse width of 400 	s and a 60-	A ampli-
tude were delivered into the tissue with a pulse repetition
rate of 10 Hz, repeated every 40 s). Unless otherwise
stated, all drugs were obtained from Sigma-Aldrich.

Results
ABLE is robust to heterogeneity in cell shape and
baseline intensity

ABLE detected 236 ROIs with diverse properties from
the publicly available mouse in vivo imaging dataset of
Peron et al. (2015c), see Fig. 2. Automatic initialization on
this dataset produced 253 ROIs with 17 automatically
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removed during the update phase of the algorithm after
merging with another region.

To maintain a versatile framework, we included no pri-
ors on cellular morphology in the cost function that drives
the evolution of an active contour. This allowed ABLE to
detect ROIs with varied shapes (Fig. 2A) and sizes (Fig.
2D). The smaller detected ROIs correspond to cross-
sections of dendrites (Fig. 2E), whereas the majority
correspond to cell bodies. The topological flexibility of
the level set method allows cell bodies and neurites to
be segmented as separate (Fig. 2G) or connected (Fig.
2A) objects, depending on the correlation between their
time courses. ABLE automatically merges neighboring
regions that are sufficiently correlated (Fig. 2F). Cell bodies
and dendrites that are initialized separately and exhibit
distinct temporal activity, however, are not merged. For
example, the cell body and neurite in Figure 2G were
not merged as the cell body’s saturating fluorescence
time course was not sufficiently highly correlated with
that of the neurite.

Evaluating the external velocity, which drives an active
contour’s evolution, requires only data from pixels in close
proximity to the contour (see Materials and Methods,
External velocity). This region has radius of the same
order as that of a cell body. Background intensity inho-
mogeneity, caused by uneven loading of synthetic dyes or
uneven expression of virally inserted genetically encoded
indicators, tend to occur on a scale larger than this. On
this dataset we show that, as a result of this local ap-
proach, ABLE is robust to background intensity inhomo-
geneity. This is illustrated by the wide range of baseline
intensities of the detected ROIs (Fig. 2C), some of which
are even lower than the video median.

No prior information on stereotypical neuronal temporal
activity is included in our framework. Cells detected by
ABLE exhibit both stereotypical calcium transient activity
(Fig. 2B, 1-9) and nonstereotypical activity (Fig. 2B, 10-
12), perhaps corresponding to saturating fluorescence,
higher firing cell types such as interneurons, or non-
neuronal cells.

The scattering of photons when imaging at depth can
result in leakage of neuropil signal into cellular signal. To
obtain decontaminated cellular time courses it is thus
important to perform neuropil correction in a subsequent
stage, once cells have been located. This involves com-
putation of the decontaminated cellular signal by sub-
tracting the weighted local neuropil signal from the raw
cellular signal. As illustrated in Figure 2H, the proposed
method naturally facilitates neuropil correction, as it com-
putes the required components as a by-product of the
segmentation process (see Materials and Methods, Ex-
ternal velocity). The appropriate value of the weight pa-
rameter varies depending on the imaging set-up (Kerlin
et al., 2010; Chen et al., 2013; Peron et al., 2015a). We
therefore do not include neuropil-correction as a stage of
the algorithm, preferring instead to allow users the flexi-
bility to choose the appropriate parameter in postpro-
cessing.

ABLE demixes overlapping cells
When imaging through scattering tissue, a two-photon

microscope can have relatively low axial resolution (on the
order of ten microns) in comparison to its excellent lateral
resolution. As a consequence, the photons collected at
one pixel can in some cases originate from multiple cells
in a range of z-planes. For this reason, cells can appear to
overlap in an imaging video (Fig. 3E). It is crucial that
segmentation algorithms can delineate the true boundary
of “overlapping” cells, which we refer to as “demixing,” so
that the functional activity of each cell can be correctly
extracted and analyzed. In a set of experiments on real
and simulated data, we demonstrated that ABLE can
demix overlapping cells.

On synthetic data containing 25 cells, 17 of which had
some overlap with another cell, we measured the success
rate of ABLE’s segmentation compared to the ground
truth cell locations (Fig. 3A-C), when the algorithm was
initialized on a fixed grid (Fig. 3D). For full description of
the performance metric used, see Materials and Methods,
Metric definitions. Performance was measured over 10
realizations of noise at each noise level. On average, over
all cells and noise realizations, ABLE achieved success
rate �99% when the noise SD was �90 (Fig. 3B). Cells
were simulated with uneven brightness to mimic the do-
nut cells generated by some genetically encoded indica-
tors that are excluded from the nucleus. Consequently,
the correlation-based dissimilarity metric was used on this
data. As a result, pixels with significantly different resting
fluorescence, but identical temporal activity pattern, were
segmented in the same cell (Fig. 3A).

On the publicly available mouse in vivo imaging dataset
of Peron et al. (2015c), ABLE demixed overlapping cells
(Fig. 3E,F). In this dataset, the vibrissal cortex was imaged
at various depths, from layer 1 to deep layer 3, while the
mouse performed a pole localization task (Guo et al.,
2014; Peron et al., 2015a). Some cells appear to overlap,
due to the relatively low axial resolution when imaging at
depth through tissue. When an ROI was initialized in each
separate neuron, ABLE accurately detected the overlap-
ping cell boundaries using the Euclidean distance dissim-
ilarity metric (Eq. 2). On the Neurofinder Challenge (http://
neurofinder.codeneuro.org/) dataset presented below
(see Algorithm comparison on manually labeled dataset),
ABLE demixed overlapping cells when performing seg-
mentation with the correlation-based dissimilarity metric
(Eq. 3; Fig. 3G).

ABLE detects synchronously spiking, densely
packed cells

ABLE detected 207 ROIs from mouse in vitro imaging
data (Fig. 4). Cells in this dataset exhibit activity that is
highly correlated with other cells and the background as
the brain slice was electrically stimulated (at rate 10 Hz for
2 s every 40 s) during imaging. When the cell interior and
narrowband time courses are highly correlated, the exter-
nal velocity of the active contour (Eq. 9) derived from the
Euclidean distance dissimilarity metric (Eq. 2) is driven by
the discrepancy between the baseline intensities of the
subregions. This is evident when we consider the average
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time course of the cell interior (fin) and exterior (fout) as a
sum of a stationary baseline component, the resting flu-
orescence, and an activity component that is zero when a
neuron is inactive, such that f in � bin � a in and fout �
bout � aout. The time course of a pixel x is I�x� � bx �
ax. Substituting these expressions into Equation 9, for
pixels not in another cell, we obtain the external velocity
V�x� � ��bx � bin��2 � ��bx � bout��2 � R, where the
residual, R, encompasses all terms with contributions
from the activity components. When the cell and the
background are highly correlated, meaning that the dis-
crepancy between activity components is low and, con-
sequently, the contribution from R is comparatively small,
the external velocity will drive the contour to include pixels
with baselines more similar to the interior than the back-
ground. As a result of this, ABLE detected ROIs despite
their high correlation with the background (Fig. 4C). Further-
more, inactive ROIs were detected (Fig. 4H-J), when their
baseline fluorescence allowed them to be identified from the
background (Fig. 4I).

The algorithm was automatically initialized on this da-
taset with 250 ROIs, initializations in the bar (an artifact
that can be seen in the top right of Fig. 4A) were prohib-
ited. Of the initialized ROIs, 19 were pruned automatically
during the update phase of the algorithm as (1) their
interior time course was not sufficiently different from that
of the narrowband (3 ROIs), (2) they merged with another

region (2 ROIs), or (3) they crossed the minimum and
maximum size thresholds (14 ROIs).

Algorithm comparison on manually labeled dataset
We compared the performance of ABLE with two state

of the art calcium imaging segmentation algorithms, con-
strained nonnegative matrix factorization (CNMF) (Pnev-
matikakis et al., 2016) and Suite2p (Pachitariu et al.,
2016), on a manually labeled dataset from the Neurofinder
Challenge (Fig. 5). The dataset, which can be accessed at
the Neurofinder Challenge website (http://neurofinder.
codeneuro.org/), was recorded at 8Hz and generated us-
ing the genetically encoded calcium indicator GCaMP6s.
Consequently, we apply ABLE with the correlation-based
dissimilarity metric (Eq. 3), which is well suited to neurons
with low baseline fluorescence and uneven brightness. As
the dataset is large enough (512 � 512 � 8000 pixels) to
present memory issues on a standard laptop, we run the
patch-based implementation of CNMF, which processes
spatially-overlapping patches of the dataset in parallel.
We optimize the performance of each algorithm by
selecting a range of values for each of a set of tuning
parameters and generating segmentation results for all
combinations of the parameter set. The results are visu-
alized on the correlation image and the parameter set that
presents the best match to the correlation image is se-
lected. This process is representative of what a user may

Figure 3. ABLE demixes overlapping cells in real and simulated data. With high accuracy, we detect the true boundaries of
overlapping cells from noisy simulated data, the detected contours for one realization of noise with SD (�) 60 are plotted on the
correlation image in A. Given an initialization on a fixed grid, displayed on the mean image in D, we detect the true cell boundaries
with success rate of at least 99% for � � 90 (B). The central marker and box edges in B indicate the median and the 25th and 75th
percentiles, respectively. For noise level reference, we plot the average time course from inside the green contour in A at various levels
(C). ABLE demixes overlapping cells in real GCaMP6s mouse in vivo data, detected boundaries are superimposed on the mean image
(E, F) and correlation image (G), respectively.
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do in practice when applying an algorithm to a new da-
taset.

ABLE achieved the highest success rate (67.5%) when
compared to the manual labels (Table 3). For a definition
of the success rate and other performance metrics used,
see Materials and Methods, Metric definitions. ABLE
achieved a lower fall-out rate than Suite2p and CNMF
(Fig. 5C), 67.5% of the ROIs it detected matched with the

manually labeled cells. Some of the “false positives” were
consistent among algorithms (Fig. 5C) and corresponded
to local peaks in the correlation image (Fig. 5D), whose
extracted time courses displayed stereotypical calcium
transient activity (Fig. 5E). A subset of these ROIs may
thus correspond to cells omitted by the manual operator.
The highest proportion of the manually labeled cells were
detected by Suite2p, which detected the greatest number

Figure 4. ABLE detects synchronously spiking, densely packed cells from mouse in vitro imaging data. The boundaries of the 207
detected ROIs are superimposed on the thresholded maximum intensity image (A) and the correlation image (D). For all correlation
data we use Pearson’s correlation coefficient. ABLE detects ROIs that exhibit high correlation with the background (C) and
neighboring synchronously spiking ROIs (B). B, Neuropil-corrected extracted time courses of the 207 ROIs (each plotted as a row of
the matrix) along with the video mean raw activity and the time points of the electrical stimulations. C, Histogram of the correlation
coefficient between the mean raw activity of the video and the extracted time series of each ROI. ABLE detected both active (E-G)
and inactive ROIs (H, I). We display the contours of the two detected ROIs on the correlation image (E, H), the mean image (F, I) and
the corresponding extracted time courses (G, J).

Figure 5. We compare the segmentation results of ABLE, CNMF (Pnevmatikakis et al., 2016), and Suite2p (Pachitariu et al., 2016) on
a manually labeled dataset from the Neurofinder Challenge. On the correlation image, we plot the boundaries of the manually labeled
cells color-coded by the combination of algorithms that detected them (A), undetected cells are indicated by a white contour. Suite2p
detected the highest proportion of manually labeled cells (B), whereas ABLE had the lowest fall-out rate (C), which is the percentage
of detected regions not present in the manual labels. Some algorithm-detected ROIs that were not present in the manual labels
are detected by multiple algorithms (D) and have time courses which exhibit stereotypical calcium transient activity (E). The
correlation image in D is thresholded to enhance visibility of local peaks in correlation. In E, we plot the extracted time courses
of the ROIs in D.
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of cells not detected by any other algorithm (Fig. 5B). A
small proportion (13.2%) of cells were detected by none
of the algorithms. As can be seen from Figure 5A, these
do not correspond to peaks in the correlation image, and
may reflect inactive cells detected by the manual opera-
tor.

Spikes are detected from ABLE-extracted time
courses with high temporal precision

Typically, after cells have been identified in calcium
imaging data, spiking activity is detected from the ex-
tracted cellular time courses and the relationship between
cellular activity (and, if measured, external stimuli) is an-
alyzed. On a mouse in vitro dataset (21 videos, each 30 s
long), we demonstrated that time courses from cells au-
tomatically segmented by ABLE allow spikes to be de-
tected accurately and with high temporal precision (Fig.
6). The dataset has simultaneous electrophysiological re-
cordings from four cells (the electrodes can be seen in the
mean image Fig. 6A), which enabled us to compare in-
ferred spike times from the imaging data with the ground
truth. We performed spike detection automatically with an
existing algorithm (Reynolds et al., 2016; Oñativia et al.,
2013). On average, over all cells and recordings, 78% of
ground truth spikes are detected with a precision of 88%
(Fig. 6D). The error in the location of detected spikes is
less than one sample width, the average absolute error
was 0.053 (s).

Discussion
In this article, we present a novel approach to the

problem of detecting cells from calcium imaging data. Our
approach uses multiple coupled active contours to iden-
tify cell boundaries. The core assumption is that the local
region around a single cell (Fig. 1A, inside the dashed box)
can be well approximated by two subregions, the cell
interior and exterior. The average time course of the re-
spective subregions is used as a feature with which to
classify pixels into either subregion. We assume that pix-
els in which multiple cells overlap have time courses that
are well approximated by the sum of each cell’s time
course. We form a cost function based on these assump-
tions that is minimized when the active contours are
located at the true cell boundaries. Our results on real and
simulated data indicate that this is a versatile and robust
framework for segmenting calcium imaging data.

The cost function in our framework (Eq. 4) penalizes
discrepancies between the time course of a pixel and the
average time course of the subregion to which it belongs.
To calculate this discrepancy, we use one of two dissim-
ilarity metrics: one based on the correlation, which com-
pares only patterns of temporal activity, the other based
on the Euclidean distance, which implicitly takes into
account both pattern and magnitude of temporal activity.
When the latter metric is used, our cost function is closely
related to that of Chan and Vese (2001). If we were to take
as an input one frame of a video (or a 2D summary
statistic such as the mean image), the external energy in
our cost function for an isolated cell would be identical to
the fitting term of Chan and Vese (2001). The lower-
dimensional approach is, however, not sufficient for seg-
menting cells with neighbors that have similar baseline
intensities. By incorporating temporal activity, we can
accurately delineate the boundaries of neighboring cells
(Fig. 3A).

We evolve one active contour for each cell identified in
the initialization. Contours are evolved predominantly in-

Table 3. Algorithm success rate on manually labeled dataset

Success rate (%) Precision (%) Recall (%)
ABLE 67.5 67.5 67.5
CNMF 63.4 60.7 66.5
Suite2p 63.7 56.5 73.1

On a manually labeled dataset from the Neurofinder Challenge, we compare
the performance of three segmentation algorithms: ABLE, CNMF (Pnevma-
tikakis et al., 2016), and Suite2p (Pachitariu et al., 2016), using the manual
labels as ground truth.

Figure 6. Spikes are detected from ABLE-extracted time courses with high accuracy. On an in vitro dataset (21 imaging videos, each
30 s long), we demonstrate spike detection performance compared to electrophysiological ground truth on time courses extracted
from cells segmented by ABLE. We plot the labeled cells (A) and corresponding boundaries detected by ABLE (B) on the mean image
of one imaging video. The extracted cellular time courses and detected spikes are plotted in C. Spike detection was performed with
an existing algorithm (Reynolds et al., 2016; Oñativia et al., 2013). On average over all videos, 78% of spikes are detected with a
precision of 88% D.
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dependently, with the exception of those within a few
pixels of another active contour (see Materials and Meth-
ods, External velocity). In contrast to previous approaches
to coupling active contours (Dufour et al., 2005; Zimmer
and Olivo-Marin, 2005), we do not penalize overlap of
contour interiors. This is because low axial resolution
when imaging through scattering tissue can result in the
signals of multiple cells being expressed in one pixel. We
therefore permit interiors to overlap when the data are
best fit by the sum of average interior time courses. Using
this method, we can accurately demix the contribution of
multiple cells from single pixels in real and simulated data
(Fig. 3).

ABLE is a flexible method: we include no priors on a
region’s morphology or stereotypical temporal activity.
Due to this versatility, ABLE segmented cells with varying
size, shape, baseline intensity and cell type from a mouse
in vivo dataset (Fig. 2). Moreover, only two parameters
need to be set by a user for a new dataset. These are the
expected radius of a cell and �, the relative strength of the
external velocity compared to the regularizer (Eq. 5). To
permit ABLE to segment irregular shapes such as cell
bodies attached to dendritic branches (Fig. 2A), the
weighting parameter, �, must be set sufficiently high to
counter the regularizer’s implicit bias toward smooth con-
tours.

Unlike matrix factorization (Maruyama et al., 2014;
Pnevmatikakis et al., 2016) and dictionary learning (Diego
Andilla and Hamprecht, 2014), which fit a global model to
an imaging video, our approach requires only local infor-
mation to evolve a contour. To evolve an active contour,
ABLE uses temporal activity from an area around that
contour with size on the order of the radius of a cell. This
allows us to omit from our model the spatial variation of
the neuropil signal and baseline intensity inhomogene-
ities, which we assume to be constant on our scale. Our
local approach means that the algorithm is readily paral-
lelizable and, in the current implementation, runtime is
virtually unaffected by video length (Table 1) and in-
creases linearly with the number of cells.

Like any level set method, the performance of ABLE is
bounded by the quality of the initialization, if no seed is
placed in a neuron it will not be detected, if a seed
is spread across multiple neurons they may be jointly
segmented. In this work, we developed an automatic
initialization algorithm that selects local peaks in the cor-
relation and mean images as candidate ROIs. This ap-
proach, however, can lead to false negatives in dense
clusters of cells in which the correlation image can appear
smooth. In future work, an initialization based on temporal
activity, rather than a 2D summary statistic, could overcome
this issue. Our algorithm included minimal assumptions
about the objects to be detected. To tailor ABLE to a specific
data type (e.g., somas vs neurites), it is possible to incorpo-
rate terms relating to a region’s morphology or stereotypical
temporal activity into the cost function. Furthermore, the
level set method is straightforward to extend to higher di-
mensions (Dufour et al., 2005), which means our framework
could be adapted to detect cells in light-sheet imaging data
(Ahrens et al., 2013).

Here, we have presented a framework in which multiple
coupled active contours detect the boundaries of cells
from calcium imaging data. We have demonstrated the
versatility of our framework, which includes no priors on a
cell’s morphology or stereotypical temporal activity, on
real in vivo imaging data. In this data, we are able to detect
cells of various shapes, sizes, and types. We couple the
active contours in a way that permits overlap when this
best fits the data. This allows us to demix overlapping
cells on real and simulated data, even in high noise sce-
narios. Our results on a diverse array of real datasets
indicate that ours is a flexible and robust framework for
segmenting calcium imaging data.
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