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Introduction
Spinal cord injury (SCI) often results in devastating motor 
and/or sensory dysfunction (Anderson and Hall, 1993; Galup-
po et al., 2015). This is often accompanied by other compli-
cations such as inflammation, insufficient microcirculation, 
ischemic reperfusion, elevation of excitatory amino acids, 
Ca2+ overload and cell apoptosis (Fernandez et al., 1993). A 
number of exogenous and endogenous substances aid func-
tional recovery after SCI (Yang et al., 2014; Zhang et al., 2015). 
Panax notoginseng saponins (PNS), extracted from Panax no-
toginseng, a perennial herb of the Acanthopanax gracilistylus 
family, inhibit neuronal apoptosis, inflammation, and focal 
ischemia (Happel et al., 1981; Friedman et al., 1995; Hu et 
al., 1996, 1997, 2005), and may therefore be beneficial in the 
treatment of SCI (Jakeman et al., 1998; Ikeda et al., 2002). 

Nerve growth factor (NGF) and brain-derived neuro-
trophic factor (BDNF) are members of the neurotrophin 
family. They are important for neuronal survival and neu-
rotransmission (Hao and Yang, 1986; Lessmann et al., 2003; 
Li et al., 2007) and enhance sprouting of corticospinal axons 
(Liu et al., 1991; Lykissas et al., 2007). BDNF also protects 
damaged neurons by increasing the expression of myelin 
basic protein and promoting Schwann cell and peripheral 
myelin formation, as well as enhancing regenerative activity 
(Ma et al., 1997, 1999). However, whether NGF and BDNF 
are involved in the neuroprotective effect exerted by PNS af-

ter SCI remains unclear.
Therefore, in the present study, we examined whether PNS 

would improve functional recovery in rats after spinal cord 
transection, and if so, whether this would be associated with 
increased expression of NGF and BDNF. 

Materials and Methods
Animals 
A total of 60 specific-pathogen-free adult male and female 
Sprague-Dawley rats, weighing 200–220 g, were provided 
by the Experimental Animal Center of Kunming Medical 
University, China (license No. SCXK (Dian) 2005-0008). The 
care and treatment of the animals were in accordance with 
the guidelines provided by the National Institutes of Health, 
USA, and all protocols were approved by the Ethics Com-
mittee of Kunming Medical University, China. All efforts 
were made to minimize animal discomfort and reduce the 
number of rats used. 

The rats were equally and randomly divided into four 
groups: sham-operated, SCI alone, SCI + normal saline (NS), 
and SCI + PNS.  

Establishment of spinal cord transection model 
The rats were anesthetized intraperitoneally with a mix-
ture of ketamine (50 mg/kg) and diazepam (2.5–5 mg/kg). 
Skin and muscle were separated, and a laminectomy was 
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performed. The dura mater was cut, and the spinal cord 
was completely transected with a pair of microscissors at 
the level of the T10 vertebra. A piece of Gelfoam (Pfizer Inc., 
New York, NY, USA) was placed at the cut ends of the cord 
to ensure completeness of the transection, and the muscles 
and skin were then sutured. In the sham-operated group, the 
skin was incised only. 

PNS administration 
Thirty minutes after SCI, rats in the SCI + NS group re-
ceived a single intraperitoneal injection of normal saline 
(0.5 mL/kg), and rats in the SCI + PNS group received in-
travenous PNS (100 mg/kg; aqueous solution, 25 mg/mL; 
approval No. GYZZ Z53020662; KPC Pharmaceuticals, Kun-
ming, Yunnan Province, China) through the tail vein.

Evaluation of hindlimb locomotor function
Locomotor function was evaluated using the 21-point Basso, 
Beattie, and Bresnahan (BBB) open-field locomotor scale. 
Three independent observers conducted the test, and the 
mean of the three scores was used for each trial. Rats were 
tested for 4 minutes at a time. The evaluation was conducted 
before surgery and 1, 3, 7, 14, 21 and 30 days after surgery.

Immunohistochemistry
At 1 and 7 days after surgery, five rats in each group were 
anesthetized intraperitoneally with sodium pentobarbital 
(50 mg/kg), then perfused with 0.1 M PBS through the as-
cending aorta until the outflow was colourless, followed by 
300 mL of 4% paraformaldehyde. Spinal cord was obtained 
from the injury site, postfixed in 4% paraformaldehyde for 
24 hours, and stored in 20% sucrose solution at 4°C until 
the specimens sank to the bottom of the container. The spi-
nal cords were frozen and cut into sections 12 µm thick in a 
freezing microtome (CM1900; Leica, Nussloch, Germany). 

Every tenth section was processed for immunohistochem-
istry. Sections were washed in PBS three times for 30 min-
utes each time, and incubated for 30 minutes in 0.3% hydro-
gen peroxide at room temperature to block any endogenous 
peroxidase activity. After three more PBS washes, sections 
were incubated in PBS containing 0.3% Triton X-100 and 5% 
normal goat serum at 37°C for 30 minutes, then incubated 
for 48 hours at 4°C with rabbit anti-rat NGF monoclonal 
antibody (1:500; Chemicon, Santa Cruz, CA, USA) and 
rabbit anti-rat BDNF monoclonal antibody (1:500; Chemi-
con) containing 2% normal goat serum and 0.3% Triton 
X-100. All sections were then washed with PBS as before 
and incubated with biotinylated goat anti-rabbit IgG (1:200; 
Chemicon) at 37°C for 1.5 hours. Following three further 
washes in PBS for 30 minutes, the sections were incubated 
with an avidin-biotin-peroxidase reagent (1:100; ABC Elite, 
Vector Laboratories, Burlingame, CA, USA) for 2 hours at 
room temperature, and the antibodies were visualized in a 
staining solution containing 0.04% 3,3′-diaminobenzidine, 
0.06% nickel sulfate and 0.06% hydrogen peroxide, for 5 
minutes. After washing, sections were mounted, dehydrat-
ed, coverslipped, and observed under a light microscope, 

and analyzed with the HPIAS-1000 Image Analysis System 
(Olympus, Tokyo, Japan). As a negative control, 0.05 M 
PBS was used instead of primary antibodies. The numbers 
of NGF- and BDNF-immunoreactive cells in the ventral 
horn of the spinal cord were counted as described in our 
previous reports (Li et al., 2008). The total number of im-
munoreactive neurons in each section was counted at 100× 
magnification (Panter et al., 1990; McTigue et al., 1998; Na-
miki et al., 2000). 

Statistical analysis
Data are expressed as the mean ± SD. One-way analysis of 
variance was performed using SPSS17.0 software (SPSS, 
Chicago, IL, USA). A value of P < 0.05 was considered statis-
tically significant.

Results
PNS improved hindlimb locomotor function in rats after 
spinal cord transection
All rats had a BBB score of 21 before surgery. After surgery, 
at all time points, the BBB score was significantly lower in all 
three groups that underwent spinal cord transection than in 
the sham-operated group (P < 0.01 or P < 0.05). The BBB 
score was higher in the PNS group than in the SCI group 
from 7 to 30 days after injury (P < 0.05). There was no dif-
ference in BBB score between the SCI and SCI + NS groups (P 
> 0.05; Table 1). 

NGF and BDNF upregulation in the ventral horn of rats 
after spinal cord transection
Immunohistochemistry revealed large BDNF-immunore-
active neurons distributed mainly in the spinal cord gray 
matter. NGF immunoreactivity was distributed largely in the 
neuronal cytoplasm and in glial cell nuclei, whereas that of 
BDNF was present only in the neuronal cytoplasm. The sh-
am-operated group showed few NGF- and BDNF-immuno-
reactive neurons in the ventral horn of the spinal cord. There 
were more NGF- and BDNF-immunoreactive neurons in the 
SCI group than in the sham-operated group 7 days after in-
jury (P < 0.01), and more at 7 days than at 1 day after injury 
in the SCI group (P < 0.01). A greater number of NGF- and 
BDNF-immunoreactive neurons were observed in the SCI + 
PNS group than in the SCI or SCI + NS groups (P < 0.01 or 
P  < 0.05; Table 2). 

Discussion
We have shown here that, compared with saline, administra-
tion of PNS to rats after spinal cord transection resulted in 
elevated NGF and BDNF expression in the transected cords, 
and that this correlated with improved hindlimb motor 
function.

Previous studies have demonstrated the beneficial effects 
of PNS on aging, central nervous system disorders, and 
neurodegenerative diseases (Qin et al., 2006). However, few 
studies to date have addressed the effects of PNS on SCI, 
and the mechanisms underlying these effects remain poorly 
understood. We therefore addressed these questions in the 
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present study. 
Antioxidant, anti-inflammatory, anti-apoptotic, immuno-

stimulatory, and anti-excitotoxic activities have previously 
been suggested as mechanisms underlying the therapeutic 
effects of PNS (Qin et al., 2006). Indeed, such activities are 
important in functional recovery, inhibiting apoptotic and 
inflammatory reactions, decreasing free radicals and excit-
atory amino acids, and lowering calcium deposits (Tuszynski 
et al., 1997; Yao and Li, 2002; Wang et al., 2005; Wu et al., 
2005; Radad et al., 2006). Our results indicate that PNS 
administration after spinal cord transection increases the 
number of NGF- and BDNF-immunoreactive cells in the 
cord. NGF and BDNF promote robust axonal sprouting, 
which may provide neuroprotection and enhance regener-
ative activity after SCI (Yoon et al., 1998; Zhao et al., 2001; 
Zhu et al., 2003; Zhang et al., 2007). Therefore, PNS-induced 
increases in NGF and BDNF expression may help restore 
hindlimb motor function. 

In summary, our results show that administration of PNS 
to rats after spinal cord transection improves motor func-
tion, and suggest that the underlying mechanism involves 
an increase in the expression of two essential neurotrophins, 
NGF and BDNF. The present study will serve as a platform 
from which to launch more collaborative projects between 
clinicians and basic scientists to develop a concrete strategy 
for the use of PNS in the treatment of SCI. Future studies 
comparing the effects of PNS with other drugs used in the 
treatment of SCI, such as methylprednisolone (Albayrak et 
al., 2015), are warranted.
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