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The reversal phase of the bone-remodeling cycle:
cellular prerequisites for coupling resorption and
formation
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The reversal phase couples bone resorption to bone formation by generating an osteogenic environment at remodeling

sites. The coupling mechanism remains poorly understood, despite the identification of a number of ‘coupling’

osteogenic molecules. A possible reason is the poor attention for the cells leading to osteogenesis during the reversal

phase. This review aims at creating awareness of these cells and their activities in adult cancellous bone. It relates cell

events (i) on the bone surface, (ii) in the mesenchymal envelope surrounding the bone marrow and appearing as a canopy

above remodeling surfaces and (iii) in the bone marrow itself within a 50-mm distance of this canopy. When bone

remodeling is initiated, osteoprogenitors at these three different levels are activated, likely as a result of a rearrangement

of cell–cell and cell–matrix interactions. Notably, canopies are brought under the osteogenic influence of capillaries and

osteoclasts, whereas bone surface cells become exposed to the eroded matrix and other osteoclast products. In several

diverse pathophysiological situations, including osteoporosis, a decreased availability of osteoprogenitors from these

local reservoirs coincides with decreased osteoblast recruitment and impaired initiation of bone formation, that is,

uncoupling. Overall, this review stresses that coupling does not only depend on molecules able to activate osteogenesis,

but that it also demands the presence of osteoprogenitors and ordered cell rearrangements at the remodeling site. It

points to protection of local osteoprogenitors as a critical strategy to prevent bone loss.
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The ultimate reduction of bone physiology and pathology to
the molecular biology is unavoidable and a necessary
condition for a further progress in this field, but this descent
to the ultimate should be balanced by the awareness of the
integrating mechanisms so obvious in the making and
maintenance of the skeleton

(ZFG Jaworski, Calcif Tissue Int 1984; 36:531)

A Role of the Reversal Phase in Coupling Bone Resorption
and Formation

Bone remodeling replaces existing bone matrix by new bone
matrix. This process has a central role in adult bone physiology,
and a malfunction of bone remodeling leads to diseases such as
osteoporosis. Bone remodeling is commonly seen as a two-
step process: bone resorption by osteoclasts followed by bone
formation by osteoblasts. These two events have been a major

research focus for many years, as reflected by the current drugs
used in the clinic.1 However, the most remarkable property of
bone remodeling is probably the subtle coordination between
osteoclasts and osteoblasts.2,3 This coordination allows
keeping bone shape and structure largely unchanged
throughout life, despite the repeated resorption and formation
events the bone is subjected to. It has been recognized for a
long time that this coordination is made possible because of the
organization of osteoclasts and osteoblasts in local bone-
remodeling teams, called basic multicellular units (BMUs).4 The
question why osteoblasts are recruited exactly where and when
osteoclasts have removed bone matrix, has prompted a lot of
research in the recent years, as indicated by the number of
reviews on the coupling mechanism between osteoclast and
osteoblast activities.3,5–8 A major outcome of this research is
the identification of a number of osteogenic molecules likely to
be released by the osteoclasts. They include growth factors
stored in the bone matrix and solubilized through resorptive
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activity, as well as so-called clastokines that can be generated
by ‘non-resorbing’ osteoclasts.8,9

But what are the cells that are subjected to the osteogenic
factors released by the osteoclast? A simple analysis of the
BMU shows that they cannot be bone-forming osteoblasts
themselves, because these osteoblasts are distant from the
osteoclasts (Figure 1). Histomorphometry of iliac crest biopsies
from normal individuals indicates that this distance corre-
sponds to a time interval of several weeks.10 This intermediate
period starting after the osteoclast has left and lasting until bone
matrix starts to be deposited is defined as the ‘reversal
phase’.11,12 It thus concerns the cell activities transforming the
putative osteogenic signals of the osteoclast into bone for-
mation, but these cell activities and the origin of the osteo-
progenitors targeted by these signals are poorly investigated.11

This represents a gap in the knowledge that is required to fully
understand the coupling process, especially when it comes to
adult human cancellous bone and osteoporosis-relevant
conditions.

Overview of the Putative Effector Cells of the Reversal
Phase in Cancellous Bone

Current knowledge suggests that the coupling activity of the
reversal phase starts with the release of osteogenic signals from
the osteoclasts.3,6,8 These osteogenic signals will first reach the
cells nearest to the osteoclast. These include both bone surface
and bone marrow cells (Figure 2). The bone surface cells are the
bone-lining cells of quiescent bone surfaces that have retracted
to give the osteoclast access to the bone matrix,13–15 as well as
the mononucleated cells on the eroded surface in the wake of
the osteoclast.11 The latter cells are called reversal cells, and
cover at least 80% of the eroded surface, known as the reversal
surface (Figure 1).11 They form a cellular bridge connecting the
resorbing osteoclasts and the bone-forming osteoblasts. As
described earlier,11,16 reversal cells appear as elongated cells
with flattened nuclei. They appear, however, less elongated than
bone-lining cells, and do not show long and thin cell extensions
like the latter. Reversal cells closer to bone-forming osteoblasts
appear more cuboidal compared with those closer to osteo-
clasts. The reversal cells were also clearly identified in a rat
model designed to follow the kinetics of bone remodeling,
where they appear right after the osteoclasts and before the
bone-forming osteoblasts.17

The bone marrow cells directly exposed to the osteogenic
signals released by the osteoclast are the mesenchymal
cells that form an envelope surrounding the red bone
marrow.18–20 They were identified in all species investigated so
far,18 and recently received new attention.21,22 This bone
marrow mesenchymal envelope appears to be lifted at
the level of the osteoclast (Figure 2) and forms a canopy over
the whole remodeling site (Figure 1; Table 1).22 Interestingly,
initiation of bone remodeling also coincides with the induc-
tion of contacts between these canopies and bone marrow
capillaries (Figure 2),23 especially above osteoclasts.22

As the vasculature, perivascular cells and circulating osteo-
progenitors may contribute to osteogenic events in various
situations, their role during the reversal phase deserves
consideration.5,24–27

Finally, if the osteogenic signals released by the osteoclast
cross the canopy and diffuse deeper into the bone marrow, they

may reach a variety of other cells,3,28 including bone marrow
osteoprogenitors.29

Thus bone-lining cells and reversal cells on the bone surface,
bone marrow envelope and canopy cells, as well as capillaries
are all positioned close to the remodeling site and therefore
deserve special attention as potential factors in coupling bone
resorption and formation during the reversal phase. This review
summarizes the knowledge on how these cells may contribute
in converting the osteogenic signals generated at the onset of
resorption into bone formation. The osteogenic signals
themselves, including osteocytic signals, have been the topic of
a number of recent reviews3,5–8 and are not included herein.

Reversal Surfaces

Bone-lining cells, reversal cells and osteoblast recruitment
Bone-lining cells covering quiescent bone surfaces can turn
into bone-forming osteoblasts if stimulated mechanically or by
intermittent parathyroid hormone (PTH).30–32 At resorption
sites, the bone-lining cells retract making way for the osteo-
clast,13–15 but remain closely associated with the osteoclast, as
shown in rat,33 mouse,16 rabbit34 and human (Figure 2) bone. In
mouse bone explants, 90% of the osteoclasts were reported to
show a close apposition with one or more of these cells.16 Cell
extensions enwrapping demineralized collagen fibers were
frequently seen, thereby raising the possibility that the eroded
surface itself may exert an attraction on these cells, in addition
to soluble chemoattractants.35 These observations show that
the eroded surface never remains cell-free and point to the
bone-lining cell as the cell colonizing it immediately after the
departure of the osteoclast.16 They also show how these cells
can be conditioned by both soluble and insoluble osteoclast
products, in the same way as they are activated by
mechanical30 or hormonal stimulation.31,32 However, as dis-
cussed elsewhere,11 the view that the cells colonizing the
eroded surface are osteoblast-lineage cells, has been ques-
tioned for a long time. Some authors consider mononucleated
osteoclasts or phagocytic macrophage-like cells to be involved
at the beginning of the reversal phase, and pre-osteoblasts at
the end.10 A recent study addressed this issue on cancellous
bone of human iliac crest through immunostaining with
osteoblastic and monocytic markers.11 It showed that 97% of
the reversal cells were positive for the osteoblastic marker,
Runx2, and were negative for monocytic markers, including
osteoclast markers. Importantly, also 84% of the reversal cells
immediately next to the osteoclasts were positive for Runx2,
thereby indicating that the cells colonizing the eroded surface
right after the departure of the osteoclasts belong to the
osteoblast lineage. Furthermore, there is evidence for
maturation of these reversal cells into bone-forming osteoblasts
during the progress of the reversal phase, based on the inverse
gradients of osterix, a later maturation marker,36 and of smooth
muscle actin (SMA), a motility marker reported to decrease in
maturing osteoblasts37 (Figure 3).

Another important characteristic of the reversal surfaces in
the context of osteoblast recruitment is that they show a higher
cell density than bone-lining cells on quiescent surfaces.22

Furthermore, this enrichment was recently stressed to be
obligatory for initiation of bone formation, that is, for coupling,
because bone formation is detected only above a certain level
of cell density,22 and because remodeling cycles abort in
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pathological situations where this enrichment does not occur11

(see ‘Functional evidence for a role of reversal surface events in
coupling: lessons from reversal phase ‘arrest’). These recent
quantitative histomorphometric studies thus demonstrate the
earlier proposal that initiation of bone formation requires a
sufficient number of new osteoblasts in the resorption cavity.38

An important issue is where the newly generated cells come
from. Cell proliferation on the bone surface is rarely detected,38

including in human cancellous bone.22 One could consider

osteocytes released by the resorbing osteoclasts39 to con-
tribute to this colonization, as osteocytes were recently shown
to be able to revert into mature osteoblasts,40 but this con-
tribution remains to be proven during the bone-remodeling
process. Thus, the contribution of reversal surface activities to
osteoblastogenesis appears to be more through differentiation,
and the gain in cell number on the bone surface requires
recruitment from other sources (Figure 4) (see ‘Bone-remo-
deling compartment canopies’).

Osteoclast Bone forming osteoblasts

Time 

bone

marrowcanopy

REVERSAL PHASE

several weeks

osteoid

Figure 1 Remodeling unit in human iliac crest biopsy. Remodeling progresses to the left, as indicated by the time axis drawn relative to the bone surface. Histomorphometry
indicates that a period of several weeks separates bone-resorbing osteoclasts from bone-forming osteoblasts (cells on osteoid beneath the blue line).10 This period is called reversal
phase (demarcated by the dotted black lines). Mineralized matrix: blue; osteoid: red. Note the canopy of elongated cells (blue arrowhead) covering the bone-remodeling site. Image
reproduced with permission.11
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Figure 2 Critical components of the reversal phase. (a) Cross-section at the starting point of a remodeling unit. The bone marrow envelope is lifted over an osteoclast on initiation
of bone remodeling. BME: bone marrow envelope; BLC: bone-lining cell; OC: osteoclast; Rv.C: reversal cell. (b) Three-dimensional reconstruction of a bone resorption site in human
iliac crest. The bone surface is shown in yellow, the canopy in semi-transparent purple and the capillary network in blue. OC: osteoclast (red cells on the bone surface). Note the close
apposition between capillaries and the canopy. Bone-lining and reversal cells are not shown. Images reproduced with permission.2

Table 1 Characteristics differentiating the canopies from the rest of the bone marrow envelope22

Bone marrow envelope

Canopy

Activity of neighboring bone Quiescent Remodeling
Physical separation from bone matrix Bone-lining cells Osteoclasts, Rv.Cs, osteoblasts and sometimes a lumen
Physiological status Resting Exposed to osteoclast and capillary osteogenic products
Visibility through light microscopy (in human biopsies) Poor Satisfying, good if immunostained

Abbreviation: Rv.Cs, reversal cells. The bone marrow envelope refers to a continuous layer of elongated cells lining the bone marrow. The term canopy refers to the zone
of the bone marrow envelope covering bone-remodeling sites (that is, about 30% of the cancellous bone surface in human adult iliac crest22). Hypertrophy and lifting may
contribute to the better visibility of the canopy. Additional discriminating characteristics are under investigation.
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Reversal cells smoothing out the reversal surfaces: a role of
‘reversal matrix’ in coupling? Reversal cells also modify the
surface of the eroded matrix left behind the osteoclast. Notably,
this modification provides them progressively with a new matrix
environment, which may be critical for the osteoblast
maturation described in ‘Bone-lining cells, reversal cells and
osteoblast recruitment’,41 as well as for the physical connection
between the new and old matrix. This modification can be seen
as a smoothening process, requiring both catabolic and
anabolic activities.11 Cleaning of resorption debris has been
emphasized in several models, and was especially investigated
in situations where excessive amounts of organic material were
allowed to accumulate in the osteoclastic resorption
zone.16,34,42 Interestingly, this cleaning activity corresponds
with the observation that early reversal cells next to osteoclasts
express collagenolytic matrix metalloproteinases (MMPs) that
diffuse into the resorption area, as shown in rabbit43 and rat44

bone. In line with this, early maturation stages of osteoblasts
were reported to correspond with high MMP expression.45,46

Reversal cells contribute also to the generation of cement
lines.16,47,48 These are defined as basophilic material deposited

on the eroded surface. Surprisingly, their composition is poorly
known. They are reported to be rich in mucopolysaccharide and
osteopontin. They may also contain bone sialoprotein and
osteoclast products, such as TRAcP,49 which are factors able to
affect osteoblast-lineage cells and bone formation.41,50

Functional evidence for a role of reversal surface events in
coupling: lessons from reversal phase ‘arrest’. A failure of a
reversal surface event in a given BMU may render initiation of
bone formation in this BMU completely impossible. Such
failures allow to demonstrate even more convincingly the critical
role of reversal cells in the coupling process. For example,
blocking the cleaning of demineralized collagen in a calvaria
model prevented the deposition of new matrix on the eroded
surface.16 This relates perhaps also to impaired bone formation
during bone development when osteoblastic collagen
degradation pathways are knocked out.51 A series of other
examples concern specifically bone remodeling in human adult
bone. Baron et al.52,53 showed that reversal surfaces increase in
biopsy specimens from patients suffering from post-
menopausal or senile osteoporosis, and decrease in those of
normal patients and primary hyperparathyroidism where
coupling is occurring optimally. They proposed therefore that
osteoporotic patients had a prolonged or even aborted reversal
phase, representing uncoupling. Weinstein54 made similar
conclusions in the case of long-term glucocorticoid treatment.
Mosekilde55 performed a scanning electron microscopy
analysis of trabeculae in vertebrae of aged patients. Con-
nected/loaded trabeculae showed bone resorption and for-
mation occurring at the same remodeling site. In contrast,
disconnected/unloaded trabeculae showed resorption without
formation, which was interpreted as due to aborted resorption
cycles. Notably, this observation suggests the involvement of
mechanical forces (may be osteocyte-mediated) in coupling.
Makris and Saffar56 reported concomitant increase in reversal
surface and decrease in formation surface, thus suggesting
uncoupling, during the progress of hamster periodontitis.
Parfitt57 reported that in older people, especially those with
osteoporosis, a significant proportion of the eroded surface is
covered by flat lining cells. He speculated that this may be due
to remodeling cycles that were initiated but aborted before
initiation of bone formation.

In order to definitively establish these interpretations, a
systematic histomorphometry study was recently conducted
on cancellous bone of human iliac crest biopsies of post-
menopausal osteoporosis patients.11 The analysis of serial
sections demonstrated the existence of long stretches of
eroded surface, far away from bone-resorbing osteoclasts and
bone-forming osteoblasts, therefore reflecting remodeling
cycles that became arrested at the reversal phase. These so-
called arrested reversal surfaces represented on average 30%
of the total reversal surface in these postmenopausal osteo-
porosis biopsies, whereas the same study could hardly detect
any arrested reversal surface in primary hyperparathyroidism
biopsies, where coupling is occurring optimally. A direct link
between reversal phase arrest and absence of initiation of bone
formation was also concluded from the activation frequency of
the bone formation phase determined in these biopsies.58

Furthermore, the cells on arrested reversal surface were flat and
found at a twofold lower cell density compared with the cells on
the so-called active reversal surface next to osteoclasts and

Reversal cells

Early Late

Runx2

Osterix

SMA

Ki67

Osterix

P3NP

Canopy
cells

Reversal
cells

Reversal cells

Active Arrested

Runx2

Osterix

SMA

Figure 3 Osteoblast differentiation and proliferation at reversal sites. (a) Gradients
of markers between canopy cells and reversal cells. Ki67: proliferation marker; P3NP:
early differentiation marker. Data from ref. 22. (b and c) Gradients of markers between
early (that is, next to the osteoclasts) and late (that is, next to osteoblasts depositing
osteoid) reversal cells, and between active and arrested reversal cells. See text. Data
from ref. 11.
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bone-forming osteoblasts.11 They resembled thereby bone-
lining cells on quiescent surfaces. They expressed also sig-
nificantly less osterix, and SMA, compared with active reversal
cells (Figure 3). These cell numbers and differentiation char-
acteristics taken together with the observations of ‘Bone-lining
cells, reversal cells and osteoblast recruitment’ indicate that a
lack of osteoblast recruitment on the reversal surface of a BMU
results in the absence of initiation of bone formation.

Ofnote, absenceof initiationofbone formation isnot taken into
account by classical histomorphometry, as the magnitude of
bone formation is only evaluated at the sites of ongoing bone
formation.11 The same holds true for important parameters such
as activation frequency.11 As discussed elsewhere,11 there
should thus be awareness that bone may show three concurrent
types of remodeling cycles, all starting with resorption, but one
where bone replenishment is complete, one where it is
incomplete, and one where the replenishment process has not
started. The relative frequency of each type of remodeling cycles
depends on the physiological/pathlogical situation.

Bone-remodeling Compartment Canopies

Bone marrow envelopes, canopies and osteoblast
recruitment. The bone-lining cells coating quiescent surfaces
are covered by flat (o0.1 mm) mesenchymal cells showing very
long and overlapping cell extensions.22 They form an envelope

surrounding the whole bone marrow.18–21 Importantly, these
cells can differentiate into mature osteoblasts, as shown in
culture experiments performed with cells isolated from the bone
marrow envelope of human bone marrow plugs.21 The origin
and role of bone marrow envelope cells in remodeling of adult
human cancellous bone has recently been discussed.22

Morphologically, the bone marrow envelope cells appear much
like the bone-lining cells, and have sometimes been considered
as a multilayer of bone-lining cells.59 However, there are also
reasons to consider them as a distinct anatomical entity, since
they do not physically interact with the bone matrix itself as do
the bone-lining cells, and dissociate from bone-lining cells
when taking marrow plugs out of the bone,18,19,21 or as seen in
images of the marrow–bone interface, where they are lifted over
the osteoclast (Figure 2).22 Accordingly, they appear as a
canopy covering nearly all the osteoclasts in human trabecular
bone of normal individuals,2,22,58,60 and extend over the whole
surface undergoing bone remodeling (Figures 1 and 4)
(Table 1). Lifting of the bone marrow envelope may result from
transmigration of pre-osteoclasts beneath the bone marrow
envelope,61 and/or from an upward osteoclast-induced
retraction when the osteoclast moves over the bone surface—
similarly to the lateral induced retraction of bone-lining
cells.13,15 It happens that a lumen (sometimes with ery-
throcytes) is seen between the canopy and the BMU
cells.2,22,58,62,63 This lumen has been speculated to have a

bone
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forming

osteoblasts
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osteogenic factors

osteogenic factors
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- cell proliferation
- uptake of pericytes
- cell delivery to Rv.S
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Figure 4 Osteoblastogenesis at bone-remodeling sites. (a) Osteoblastogenesis routes. The reversal bone surface can be seen as a recruitment platform for pre-osteoblasts.
Colonization originates from bone-lining cells and canopy cells (see ‘Reversal surfaces’ and ‘Bone-remodeling compartment canopies’, respectively). Final differentiation occurs on
the bone surface, whereas proliferation occurs mainly in the canopy. Note the time axis: canopy cells triggered by osteoclasts (and capillaries) will later cover reversal surface, and
later, bone-forming osteoblasts. OC: osteoclast. (b) Scheme drawing the attention on the proximity of osteogenic triggers (yellow lightning symbol) and osteoblast-lineage cells (blue)
at the starting point of the remodeling cycle. Lighter and darker blue correspond to, respectively, less- and more-differentiated osteoblastic cells. The local convergence between
these triggers and osteoprogenitors activates the process coupling resorption and formation. This model provides a simple explanation of why bone is replenished at the places
where osteoclasts have removed it. BLC: bone-lining cell; OC: osteoclast; Rv.Cs: reversal cells.
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functional meaning.2,23,62,63 Ongoing research is analyzing this
possibility and exploring the mechanism that may regulate fluid
distribution at this level. Mechanical resistance of the canopy is
supported by the presence of collagen fibers between the
canopy cells.21,22 In human cancellous bone, these canopies
show numerous contacts with capillaries (Figure 2),2,22,23

especially above osteoclasts, and in a rat study, intermittent
PTH was also shown to induce the presence of capillaries next
to remodeling sites of cancellous bone.64 Thus upon initiation of
bone remodeling, canopy cells are ideally positioned to be
exposed to osteogenic products provided by osteoclasts and
capillaries5,24,26,27 (Figures 2 and 4), including oxygen known
to promote proliferation.65 Even a third osteogenic influence
may result from the stretching that occurs when they are lifted,
as mechanical forces are well-known regulators of
osteogenesis.66

As discussed in detail,22 several lines of evidence support
that the canopies actually contribute to the enrichment of the
reversal surfaces in osteoprogenitors (Figure 4). First, evidence
was gained from combined measurements of cell density,
proliferation and osteoblast differentiation markers. Canopy
cells proved to be two to three times more proliferative and at an
earlier differentiation stage, compared with reversal cells
(Figure 3). Furthermore, the bone marrow region within 50 mm of
the canopy was enriched in proliferative cells, putative
osteoblast progenitors and capillaries surrounded by pericytes,
when compared with quiescent surfaces.23 It was proposed
that these osteoprogenitors might be delivered to the canopy,
and from there to the bone surface23 where they might dif-
ferentiate into functional osteoblasts.5 The actual influence of
the capillaries on the canopies is strongly supported by the
highly significant correlations between the number of capillary–
canopy contacts and the density of bone-forming osteo-
blasts,22 taken as an index of their recruitment. Also the effect of
osteoclasts is supported by the relation between the length of
the osteoclast–canopy overlap and the shortness of the reversal
phase in odanacatib-treated rabbits.67 More indications of the
role of canopy in osteoblast recruitment come from the
association between canopy deficiency and deficient bone
formation in diverse pathological situations as explained in
‘Functional evidence for a role of canopies in coupling: lessons
from canopy deficiency’.

The above observations focused on the reversal phase, but of
note, the canopy extends over bone-forming osteoblasts,
which is actually the cell layer commonly considered to consist
of osteoprogenitors, and where cell proliferation was also
mentioned in mouse68 and rat.31,69 This proliferation was sti-
mulated by intermittent PTH.31 There should be awareness that
these cells are part of the canopy and are the cells that were
conditioned by osteoclasts and capillaries at the earlier stage of
the remodeling cycle (Figure 4a). These osteoprogenitors allow
continued recruitment during the bone-formation phase.

Functional evidence for a role of canopies in coupling:
lessons from canopy deficiency. The evidence for a role of
canopies mentioned in ‘Bone marrow envelopes, canopies and
osteoblast recruitment’ is mainly based on control conditions or
primary hyperparathyroidism where virtually all reversal
surfaces are covered by a canopy.22,23,62 Interestingly, the
extent of canopy coverage over remodeling sites has been
shown to vary in several pathological situations, including

multiple myeloma,2,70 glucocorticoid-induced osteoporosis60

and postmenopausal osteoporosis,58 thereby offering the
possibility to analyze the consequences of diminished canopy
coverage in a wide variety of disease situations. Of note, in each
of these distinct pathologies, diminished canopy coverage
above reversal surfaces was found to coincide with a smaller
extent of bone-forming surfaces. Furthermore, deficient
canopy coverage above reversal surface in post-
menopausal11,58 and glucocorticoid (unpublished) osteo-
porosis was found to coincide with arrested reversal surfaces
lined with cells at a low density, thus directly indicating deficient
osteoblast recruitment with absence of initiation of bone for-
mation. Other situations further support a role of canopies in
coupling. Age, which is known to negatively affect osteoblast
recruitment, also negatively affects canopy coverage over
remodeling sites.22 Bisphosphonates, which are known to
negatively affect bone formation, also negatively affect canopy
coverage above osteoclast surfaces.67 Bone with yellow bone
marrow, where bone formation is reduced, was reported not to
show bone marrow envelope.71 Correlations between bone
formation and canopies in these many diverse situations are
unlikely to be mere coincidence, and therefore support the
critical contribution of canopies in delivering osteoprogenitors
to reversal surfaces, thereby allowing bone formation to be
initiated, that is, coupling.

Conclusion

The reversal phase has been overlooked for a long time,
although it is the remodeling step coupling bone resorption and
formation.11 Recently, a lot of interest was shown for the
identification of ‘coupling’ molecules,3,5–8 but the search for the
coupling mechanism paid little attention to the related cell
activities and to their tissular context, as for instance the BMUs
of adult cancellous bone. The present review creates aware-
ness of several critical cellular aspects occurring in this specific
tissue environment. (i) First of all, this review highlights pre-
viously unrecognized cellular agents of the remodeling cycle:
canopies and capillaries, in addition to reversal cells recently
shown to be osteoblast-lineage cells (Figure 4). (ii) It highlights
previously unrecognized changes in cell–cell and cell–matrix
interactions induced at the onset of bone remodeling. Contacts
between bone-lining cells and bone marrow envelope are
disrupted, whereas contacts are established between early
reversal cells and osteoclasts, and between canopies,
osteoclasts and capillaries (Figure 4). These respective
interactions may relate to interruption of dormancy of the bone-
lining cells and the bone marrow envelope cells, and induction
of osteogenic activity in the reversal cells and in the canopy
cells. Induction in the canopy may involve: paracrine inter-
actions between canopies, osteoclasts and capillaries,5,24,26,27

mechanical signals resulting from canopy lifting and stretch-
ing;66 increased oxygen tension due to proximity of capil-
laries;65 and canopy–capillary contacts may also indicate
transfer of pericytes23 or circulating osteoprogenitors.25 (iii)
Concerning cell–matrix interactions, reversal cells are exposed
to newly uncovered epitopes on the eroded surface, which are
in turn modified by these cells while they differentiate into
mature bone-forming osteoblasts. (iv) This review clearly shows
that osteoblast recruitment is a prerequisite for initiation of bone
formation, that is, for coupling. Canopies and reversal surfaces
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mainly contribute through, respectively, proliferation (or cell
transfer) and differentiation (Figure 4). (v) Importantly, in a
variety of bone diseases including osteoporosis, canopies are
disrupted and cannot fulfill their obligatory role of local provider
of osteoprogenitors. Destruction of local osteoprogenitors may
explain why myeloma- or arthritis-induced osteolytic lesions do
not heal,70,72 despite the high levels of osteoclasts and their
putative release of osteogenic factors.3,5–8

Overall, this review shows that the generation of osteogenic/
coupling molecules at the onset of the remodeling cycle is not
sufficient for securing osteoblast recruitment and coupling.
A complementary prerequisite is the availibity of local osteo-
progenitors to be triggered by the coupling molecules
(Figure 4). Thus, anabolic drugs will not work at the bone sites
that are devoid of osteoprogenitors. Therefore, promoting
survival of local osteoprogenitors deserves attention when
willing to prevent bone loss in situations such as aging, glu-
cocorticoid treatment, menopause, multiple myeloma or
arthritis.
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