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Abstract

Rationale

Multiple clinical trials support the effectiveness of cardiac resynchronization therapy (CRT);

however, optimal patient selection remains challenging due to substantial treatment hetero-

geneity among patients who meet the clinical practice guidelines.

Objective

To apply machine learning to create an algorithm that predicts CRT outcome using elec-

tronic health record (EHR) data avaible before the procedure.

Methods and results

We applied machine learning and natural language processing to the EHR of 990 patients

who received CRT at two academic hospitals between 2004–2015. The primary outcome

was reduced CRT benefit, defined as <0% improvement in left ventricular ejection fraction

(LVEF) 6–18 months post-procedure or death by 18 months. Data regarding demographics,

laboratory values, medications, clinical characteristics, and past health services utilization

were extracted from the EHR available before the CRT procedure. Bigrams (i.e., two-word

sequences) were also extracted from the clinical notes using natural language processing.

Patients accrued on average 75 clinical notes (SD, 29) before the procedure including data

not captured anywhere else in the EHR. A machine learning model was built using 80% of

the patient sample (training and validation dataset), and tested on a held-out 20% patient

sample (test dataset). Among 990 patients receiving CRT the mean age was 71.6 (SD,
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11.8), 78.1% were male, 87.2% non-Hispanic white, and the mean baseline LVEF was

24.8% (SD, 7.69). Out of 990 patients, 403 (40.7%) were identified as having a reduced ben-

efit from the CRT device (<0% LVEF improvement in 25.2%, death by 18 months in 15.6%).

The final model identified 26% of these patients at a positive predictive value of 79% (model

performance: Fβ (β = 0.1): 77%; recall 0.26; precision 0.79; accuracy 0.65).

Conclusions

A machine learning model that leveraged readily available EHR data and clinical notes iden-

tified a subset of CRT patients who may not benefit from CRT before the procedure.

Introduction

Cardiac resynchronization therapy (CRT) is an established therapy for patients with medically

refractory systolic heart failure and left ventricular dyssynchrony[1–5]. Improvement of left

ventricular ejection fraction (LVEF) following CRT implant is associated with a reduction in

heart failure hospitalizations and improved survival. Despite these established benefits, at least

one-third of CRT patients do not experience an improvement in LVEF 6–18 months following

the procedure[6]. Another subgroup of patients die from heart failure or other comorbidities

before the effectiveness of CRT can be measured. These patients are exposed to procedural

risks and cost that may be preventable with improved patient selection [7].

Current consensus guidelines regarding selection for CRT implantation focus on a limited

set of patient characteristics including NYHA functional class, LVEF, QRS duration, type of

bundle branch block, etiology of cardiomyopathy and atrial rhythm (sinus, atrial fibrillation).

There is also a subjective assessment of ‘general health status’, which broadly reflects the

patient’s other comorbidities, although guidance and details regarding making this assessment

are lacking[8,9]. While several clinical factors have been associated with reduced benefit of

CRT, no prediction models are routinely used in clinical practice to support optimal patient

selection[10]. Recent advances in computer science together with the use of Electronic Health

Records (EHR) support ‘machine learning’ algorithms that iteratively learn from complex lon-

gitudinal EHR data[11,12]. Machine learning can integrate with natural language processing

and thereby make use of both the structured (e.g., lab values, medications) and unstructred

free text (e.g., clinical notes) EHR data. Machine learning algorithms that process thousands or

even millions of variables hold the promise to improve on both the precision and usability of

existing prediction models.

We built and tested a machine learning model that incorporates both structured and

unstructured data from the EHR, and applied it to a retrospective cohort of CRT recipients at

two academic hospitals. We aimed to test the effectiveness of machine learning and natural

language processing to predict clinical outcome after CRT.

Methods

Data source

Our primary data source was the Partners HealthCare Research Patient Data Registry[13].

Research Patient Data Registry gathers data from multiple hospital electronic record systems

at Partners HealthCare, a large network in Massachusetts, and includes greater than 20 years

of data from 4.6 million patients. The database contains over 227 million encounters, 193

Machine learning for CRT outcome prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0222397 October 3, 2019 2 / 13

Care Research Center (NPCRC - http://npcrc.org/)

and a Pilot Award from the Palliative Care Research

Cooperative Group (PCRC - https://

palliativecareresearch.org/) funded by the National

Institute of Nursing Research U24NR014637. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exists.

https://doi.org/10.1371/journal.pone.0222397
http://npcrc.org/
https://palliativecareresearch.org/
https://palliativecareresearch.org/


million billing diagnoses, 105 million medications, 200 million procedures, 852 million lab val-

ues, and over 5 million unstructured clinical notes, which include outpatient visit notes, inpa-

tient admission and consultation notes, cardiology reports, and others. Patient-level data are

available for research projects after peer-reviewed proposal review. This study was approved

by the Partners Human Research Committee Prior to analyzing the dataset, Partners Human

Research Committee waived the requirement for informed consent because we used retrospec-

tive EHR data and most patients included in the study had died.

Study population

Patients undergoing CRT implantation between January 2004 and December 2015 at Massa-

chusetts General Hospital and Brigham and Women’s Hospital were eligible. Cases were iden-

tified using CRT procedure codes ICD9 00.50, ICD9 00.51, CPT 33224, CPT 33225 or CPT

33226. We included patients who received an initial CRT device, either CRT pacemaker

(CRT-P) or CRT with implantable cardioverter defibrillator (CRT-D). We excluded from anal-

ysis patients who did not have a baseline measurement of LVEF within 60 days of the proce-

dure, follow-up LVEF measurement between 6 months to 18 months post-procedure and were

alive at 18 months, or who received a CRT within 18 months of the end of the dataset’s time

window. We did not require follow-up LVEF on patients who died within 18 months of CRT

device placement.

Primary outcome

The primary outcome was defined as<0% improvement in LVEF 6–18 months following

CRT implantation or death within 18 months of CRT. The baseline LVEF was the value mea-

sured closest to the procedure date and within 60 days before CRT. All LVEF values were

extracted using regular expression natural language processing from echocardiogram or car-

diac catherization reports. We manually confirmed that the extracted values were correct by

viewing the report using Localturk, an open source implementation of Amazon’s Mechanical

Turk API[14]. If multiple LVEF measurements were available at each time point, the measure-

ment obtained closest to the procedure date was used as the baseline LVEF and the measure-

ment obtained closest to 12 months following the procedure as the follow up LVEF.

Patient death within 18 months after CRT was considered reduced CRT benefit regardless

of LVEF. In fact, we did not require follow-up LVEF for patients who died because of missing

data. Post-procedure LVEF was often not measured before death and therefore, we do not

report change in LVEF for these patients. Date of death was obtained using the social security

death index available in Research Patient Data Registry.

Study variables

Research Patient Data Registry contains both structured and unstructured data.

Structured data. Table 1 details the longitudinal EHR data that was used to build the fea-

ture vectors. In addition to demographic information (e.g., sex, age), we used structured EHR

data available before the CRT procedure including billing codes, encounter information (i.e.,
visit type, length of stay), laboratory reports (e.g., lab values), medication lists and cardiology

reports (e.g., LVEF, QRS).

The Clinical Classifications Software (CCS) developed by the Healthcare Cost and Utiliza-

tion Project (HCUP) was used to transform each individual International Classification of Dis-

eases, Ninth Revision, Clinical Modification (ICD-9 CM) code into a hierarchy of disease[15].

For example, the ICD-9 CM diagnosis code for Endocardial fibroelastosis is 425.3, but using

CCS we converted this into the code 7.2.2, where 7 represents “Disease of the Circulatory
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System,” 7.2 represents “Heart Disease,” and 7.2.2 represents “Cardiomyopathy.” A one-hot

encoding was created for each level in the hierarchy and they were then concatenated into a

single vector, allowing us to simultaneously represent a disease like Endocardial fibroelastosis

as “Disease of the Circulatory System,” “Heart Disease,” “Cardiomyopathy,” and “Endocardial

fibroelastosis.” Once we had a vector for each diagnosis in a patient’s medical history, we

summed these vectors and normalized their values to binary numbers, where 1 represented

any history of disease at that level of the hierarchy and 0 represented no history of disease at

that level of the hierarchy. The resulting diagnosis vector then represented each patient’s diag-

nosis history.

Similarly, the SNOMED clinical terminology was used to transform each individual medi-

cation into a hierarchy of medications by creating one-hot encodings for the RxNorm medica-

tion classes[16]. The resulting medication vector then represented each patient’s medication

history.

The encounter vector was produced using the last five patient visits prior to the device

implantation. For each encounter, the visit type (0 for outpatient and 1 for inpatient), the

length of stay, and the number of additional diagnoses were extracted, resulting in 15 different

features (5 encounters x 3 variables). We also included the summaries of these features, encod-

ing them as the inpatient ratio, the average length of stay, and the average number of diagnoses

code.

We also created a laboratory vector to represent the laboratory results throughout the

patient’s history. For each available lab test, the laboratory vector included total number of

entities, total counts of abnormal events (too high or too low), and the most recent lab testing

values.

The variables used in the CRT clinical practice guidelines including LVEF, QRS, LBBB pat-

tern, sinus rhythm, and NYHA class were not available as structured data fields in Research

Patient Data Registry. We therefore encoded them into a cardiology vector, after extracting

them via natural language processing regular expressions followed by manual review by physi-

cian (CL) from electrocardiogram reports (QRS, LBBB, sinus rhythm), echocardiogram or car-

diac catherization reports (LVEF), and clinical notes (NYHA class).

Unstructured data. To assess whether unstructured clinical texts could contribute to

increase the prediction accuracy, we first used natural language processing techniques to

explore the relationship between words in the clinical notes and the primary outcome. After

applying minor preprocessing steps to reduce the noise (i.e. words were lowercased; stop

words, numbers, special characters and low-frequency bigrams were removed (frequency<5),

we calculated the association between the bigrams (i.e., two-word sequences) and the primary

outcome with local mutual information (LMI) [17]. LMI measures the interdependency

Table 1. Structured data vectors utilized in machine learning algorithms.

Data source Variables

Demographics Sex; age at implant; race

Billing codes ICD-9-CM

Encounter data Visit type; length of stay; number of diagnosis codes; inpatient ratio; average length of stay;

average number of diagnosis codes

Laboratory

reports

Lab values; most recent and trend

Medication list Medication and drug class

Cardiology

reports

LVEF; QRS; LBBB; Sinus rhythm; most recent and trend

https://doi.org/10.1371/journal.pone.0222397.t001
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between words and labels, while also adjusting for the word frequency to avoid bias toward

rare events. For a given bigram (w) and a label (l), LMI is formulated as:

LMI w; lð Þ ¼ p w; lð Þ � logð
pðljwÞ
pðlÞ
Þ

where p lwð Þ ¼ countðw;lÞ
countðwÞ ; p lð Þ ¼ countðlÞ

jDj ; p w; lð Þ ¼
countðw;lÞ
jDj . |D| is the number of the occurences of

the bigrams in the dataset.

We encode each clinical note as a weighted average of the word embeddings[18] which are

vectors representing the semantics of the words that appear in the note. We train a word2vec

continuous bag-of-words model on clinical notes from Research Patient Data Registry, using

Python packaged with Gensim for word embeddings[19]. We did not use pre-trained word

embeddings or train on a public dataset because we wanted medical specific word embeddings.

We estimated the weight of each word in the note using the word frequency-inverse document

frequency (tf-idf), which keeps track of the word relevance in the document. Word tf-idf

weights a word’s term frequency by a factor inversely proportional to the number of docu-

ments in the entire corpus in which that word appears, adjusting for the fact that some words

are more frequent than others.

Machine learning

Several machine learning classifiers, including logistic regression, support vector machine,

random forest and gradient boosting classifiers were trained to predict reduced benefit of CRT

using Python, scikit-learn[20] and XGBoost package[21]. The patient sample was divided into

a training and validation (80% sample) dataset and a test (20% sample) dataset. For each classi-

fier, a hyperparameter search was performed and the model with the best Fβ score on 3-cross

validations was selected. Once the final model had been selected, it was run on the held-out

20% test dataset to obtain final performance metrics. The test dataset was not used at any step

in model building. The overview of the pipeline is shown in Fig 1.

Fig 1. Overview of computational method.

https://doi.org/10.1371/journal.pone.0222397.g001
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Statistical analysis

Baseline characteristics were described using proportions, means +/- SD, and medians as

appropriate. The prediction models were evaluated by precision (positive predicted value),

recall (sensitivity), and a weighted F-measure, Fβ, established performance metrics in machine

learning. True Positives (TP) were defined as the number of CRT correctly classified as ineffec-

tive (i.e., reduced benefit measured by change in LVEF or death); False Negatives (FN) as the

number CRT treatments classified as effective that were actually ineffective; False Positives

(FP) as the number of CRT treatments classified as ineffective that were actually effective.

precision ¼
TP

TPþ FP
; recall ¼

TP
TP þ FN

; accuracy ¼
TPþ TN

TP þ TN þ FP þ FN

To reduce the number of false positive, we trained the model to favor precision over recall.

To this end, a weighted F-measure (Fβ) was used to weigh precision higher than recall,

beta = 0.1.

Fb ¼ 1þ b
2

� �
�

precision� recall
b

2
� precisionþ recall

Reproducible research statement

The code used in the paper is publicly available at https://github.com/lindvalllab/MLCRT.

Results

Patient characteristics

We identified 2,641 eligible CRT recipients using procedure billing codes. 1,651 of the 2,641

patients were missing either a baseline or follow up LVEF measurement in the acceptable time

ranges, or received CRT with 18 months of the end of the dataset’s time window, and were thus

excluded from further study. The final study sample included 990 patients. We manually con-

firmed that these patients received CRT for the first time by reviewing their procedure reports.

The baseline demographic and clinical characteristics of the study sample are presented in

Table 2. The mean age of CRT device recipients was 71.6 years old, with the majority of individ-

uals being male (78.1%) and non-Hispanic white (87.2%). The most common comorbidities

included non-ischemic heart failure (80.2%), coronary artery disease (74.6%), ventricular

arrhythmia (60.3%) and atrial fibrillation (50.8%). 37.8% of implant recipients had left bundle

branch block. Baseline diagnostic studies showed mean LVEF of 24.8%, creatinine of 1.69,

sodium of 137.4 and hemoglobin of 12.4. A majority of patients were on beta-blockers (92.3%),

and angiotensin converting enzyme inhibitors or angiotensin receptor blockers therapy (77.3%).

Primary outcome

Out of 990 patients, 403 (40.7%) were identified as having a reduced benefit from the CRT

device: 249 patients died within 18 months of device implantation (25.2%) and 154 had <0%

improvement in LVEF post-procedure (15.6%). 587 patients were non-progressors, defined as

�0% improvement in LVEF post-procedure (59.3%). Thus, physicians selected patients for

CRT implantation who subsequently responded to therapy with an accuracy of 0.59. Recall

(i.e., sensitivity) and precision (i.e., positive predictive value) could not be calculated for the

empiric physician-selected CRT strategy because all patients who were included in this study

received CRT. The baseline demographic and clinical characteristics of patients stratified by

the primary outcome are presented in Table 2.
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Model performance

In our experiment, the gradient boosting classifier gave the best Fβ score in the 3-fold cross-

validation, and it was adopted to determine the performance on a held-out sample of 200

patients from the 990 total sample. All results presented here were obtained from running the

final machine learning model on the test dataset. Our final machine learning model, which uti-

lized both structured features and natural language processing bigrams from the clinical notes,

identified 26% of the patient population who experienced reduced CRT benefit with a preci-

sion of 79% (Fβ (β = 0.1): 77%; recall 0.26; precision 0.79; accuracy 0.65). As expected, our

model has a significantly higher precision compared to the recall since we were optimizing

over F with β = 0.1. This beta value can be tailored according to different clinical needs. Fig 2

shows the final model performance with the precision-recall curve and receiver operating

characteristic (ROC) curve, both of which illustrates the trade-off between false positives and

false negatives under different discriminative thresholds. Table 3 lists the top LMI-ranked

bigrams related to the reduced benefits: they are mostly clinically relevant phrases describing

pathophysiology (e.g., volume overload, ventricular tachycardia), organ dysfunction (e.g., renal
failure) or treatments (e.g., warfarin sodium). The pictograph in Fig 3 demonstrates frequen-

cies of patients predicted to have reduced CRT benefit by the model and their actual clinical

outcome.

Discussion

Machine learning applied to EHR data identified a subgroup of patients who were unlikely

to benefit from CRT. We built a machine learning model that utilized structured data (e.g.,

labs, medications, billing codes) and nondiscrete text data from clinical notes (i.e., bigrams)

Table 2. Baseline patient characteristics. All values were obtained prior to CRT implant.

All

(n = 990)

Reduced CRT benefit

(n = 403)

CRT non-progressor

(n = 587)

p-value

Age, mean (SD), y 71.6 (11.8) 72.2 71.2 0.21

Female, % 21.9 17.6 24.9 <0.001

Non-Hispanic white, % 87.2 85.1 88.6 <0.001

Medical history, %

Non-ischemic heart failure 80.2 71.2 86.4 <0.001

NYHA class II or III 94.9 89.7 96.9 <0.001

Coronary artery disease 74.6 80.7 71.2 <0.001

Left bundle branch block 37.8 24.8 46.8 <0.001

Ventricular arrhythmia 60.3 62.3 58.9 <0.001

Atrial fibrillation 50.8 57.6 46.2 <0.001

Diabetes mellitus 32.7 40.0 27.8 <0.001

Diagnostic studies, mean (SD)

LVEF, (%) 24.8 (7.69) 28.1 23.9 <0.001

QRS duration, (ms) 153.3 (33.3) 152.1 154.0 <0.001

Resting heart rate, (bpm) 82.5 (38.9) 82.8 82.2 0.44

Creatinine, (mg/dL) 1.69 (1.17) 1.63 1.76 0.35

Sodium, (mEq/L) 137.4 (3.9) 137.4 137.4 0.93

Hemoglobin, (mg/dL) 12.4 (2.0) 12.0 12.8 <0.001

Medications, %

Beta-blocker 92.3 92.3 92.3 0.98

ACE/ARB 89.4 88.8 89.8 0.53

https://doi.org/10.1371/journal.pone.0222397.t002
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available in the EHR before the CRT procedure. The model predicted the binary outcome

‘reduced CRT benefit’ for each patients and identified 26% of patients who experienced <0%

improvement in LVEF or died before 18 months with a positive predictive value of 79%.

Although our initial model requires optimization and training on additional dataset to

improve the performance, further model building may yield machine learning methods suit-

able to be deployed in routine clinical care to augment shared decision making prior to CRT

placement.

Accurate patient selection is important to minimize morbidity and mortality related to the

device, and to control healthcare costs[7]. It will only become more important as the popula-

tion of heart failure patients continues to grow. However, more than a decade of work has

shown that it is not easy to identify new predictors of CRT response[6,22–24]. For example, a

multicenter prospective study, Predictors of Response to CRT Trial (PROSPECT), found that

no single echocardiographic measure of dyssynchrony could be recommended to improve

patient selection for CRT[10]. The amount of data available in the EHR is massive, and is rap-

idly expanding. Analysis of these data using methods from computer science can allow for dis-

covery of complex patterns that are clinically important, but difficult for the human mind to

identify. Machine learning does not require prior assumptions about causative variables and

allows for an exploration of all available data for non-linear patterns[12]. In our study, we

utilized both structured EHR data and unstructured clinical text data. Patients with chronic

Fig 2. Precision-recall curve and ROC curve of the final model.

https://doi.org/10.1371/journal.pone.0222397.g002
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illnesses, such as heart failure, often accrue hundreds of clinical notes over their illness course.

These notes contain data from clinical visits that is interpreted and compressed by clinicians,

emphasizing important events and assessments. Machine learning with natural language

processing provides novel opportunities to utilize this untapped source of data in predictive

modeling.

Clinical implications

Machine learning that utilizes EHR data has the potential to support personalized clinical deci-

sions for patients. Validated models that run in the background of the EHR could enable rec-

ognition of numerous marginal risk factors, which by themselves may not reach significance,

but put together can provide a more individualized risk prediction. This is clinically important

because these methods could augment current guidelines-based approach. Clinicians often

encounter patients with demographic and clinical characteristics that differ from the patients

who participated in the studies that formed the evidence basis for the guidelines[25,26]. Thou-

sands of CRT procedures are performed in the United States alone every month and so oppor-

tunities for refined decision support tools should be pursued.

Table 3. Examples of bigrams extracted from clinical notes, listed in order of relative importance ranked by local

mutual information.

Bigram

heart failure

aortic valve

renal function

renal failure

volume overload

60 tablet

coronary artery

warfarin sodium

congestive heart

take tablet

renal insufficiency

lung cancer

followed dr

artery disease

ventricular tachycardia

mean gradient

chf exacerbation

phone call

chf ef

allopurinol 100

heart failure

aortic valve

renal function

renal failure

volume overload

60 tablet

coronary artery

warfarin sodium

https://doi.org/10.1371/journal.pone.0222397.t003
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Though these methods are novel in this specific context, they are not unprecedented in car-

diology. For example, a study that analyzed clinical data of 378,256 patients from United King-

dom family practices showed that a machine learning model successfully predicted 7.4% more

cases of cardiovascular events compared to the American College of Cardiology guidelines

[27]. Machine learning has also been shown to better predict 5-year all-cause mortality for

patients who underwent coronary computed tomographic angiography for evaluation of sus-

pected coronary artery disease compared to clinical or coronary computed tomographic angi-

ography metrics alone[28]. Additionally, a recent study utilized data from the COMPANION

trial to build a random forest model that predicted all-cause mortality or heart failure hospital-

ization in CRT pateients[29]. We expand upon that work by building a model that utilized

both structured and clinical text data from the EHR.

Limitations

Our study provides proof of concept, yet several limitations hinder its current applicability in

clinical care. First, the model was designed, validated and tested on retrospective data from

patients who received CRT implants. Our model has not been validated in a setting where phy-

sicians are trying to determine CRT implantation in heart failure patients. Second, our study

did not distinguish between the type of CRT implant: CRT-D and CRT-P. Past studies have

shown a mortality difference between the two groups. The vast majority of CRT implants in

the United States, including Partners HealthCare, are CRT-D[30]. Third, our model used EHR

data from one academic healthcare system. There are institutional and provider differences in

Fig 3. Illustration of envisioned clinical utilization of machine learning prediction.

https://doi.org/10.1371/journal.pone.0222397.g003
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quantity and quality of EHR data. Differences in geographic and institutional patient popula-

tions may make our machine learning model perform poorly in other settings. Even if our

model could be applied to other healthcare systems that would require modifications of the

code to work on data from different EHR systems. Fourth, predictors are not causes; caveats of

epidemiological research including confusing correlation with causation still apply[31]. Also,

although we included structured and unstructured EHR data, additional parsing from imaging

[32], electrocardiography (e.g., QRS index[33,34]), and echocardiogram reports (e.g., left ven-

tricular end diastolic dimension) may have improved the model performance. A persistent

source of uneasiness with machine learning models is that they achieve results in a “black-box”

manner[35]. Machine learning models often lack explanatory power and the pathophysiologi-

cal relation between patient-level variable and CRT response remain unclear. Significant

efforts are underway to develop interpretable machine learning models[36].

In summary, machine learning identified a subset of CRT patients who may not benefit

from CRT. Machine learning models that utilize big EHR data including clinical text data may

be used in the future to support patient selection and shared decision making.
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