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The term “cistrome” refers to the genome-wide location of regulatory

elements associated with transcription factor binding-sites. The cistrome of

key regulatory factors in prostate cancer etiology are substantially

reprogrammed and altered during prostatic transformation and disease

progression. For instance, the cistrome of the androgen receptor (AR), a

ligand-inducible transcription factor central in normal prostate epithelium

biology, is directly impacted and substantially reprogrammed during

malignant transformation. Accumulating evidence demonstrates that

additional transcription factors that are frequently mutated, or aberrantly

expressed in prostate cancer, such as the pioneer transcription factors

Forkhead Box A1 (FOXA1), the homeobox protein HOXB13, and the GATA

binding protein 2 (GATA2), and the ETS-related gene (ERG), and the MYC

proto-oncogene, contribute to the reprogramming of the AR cistrome. In

addition, recent findings have highlighted key roles for the SWI/SNF complex

and the chromatin-modifying helicase CHD1 in remodeling the epigenome

and altering the AR cistrome during disease progression. In this review, we will

cover the role of cistromic reprogramming in prostate cancer initiation and

progression. Specifically, we will discuss the impact of key prostate cancer

regulators, as well as the role of epigenetic and chromatin regulators in relation

to the AR cistrome and the transformation of normal prostate epithelium. Given

the importance of chromatin-transcription factor dynamics in normal cellular

differentiation and cancer, an in-depth assessment of the factors involved in

producing these altered cistromes is of great relevance and provides insight

into new therapeutic strategies for prostate cancer.
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cistromic plasticity, prostate cancer, cistromic reprogramming, transcriptional
regulation, epigenetics
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1 Introduction

Prostate cancer is the second most prevalent cancer in men

worldwide with an estimated 1.4 million new cases globally in

2020 (1). In the United States, it is one of the most commonly

diagnosed cancers among men (2). Despite established

therapeutic strategies such as active surveillance, surgery, or

radiation therapy, prostate cancer is still projected to be the

second leading cause of cancer-related deaths among men in the

United States in 2022 (2).

Trans-acting factors, such as transcription factors, regulate

the transcription of genes upon binding to their DNA

recognition motifs within target cis-regulatory elements (3, 4).

These cis-regulatory elements are flanked by nucleosomes with

specific post-translational modifications to their histone

proteins. These histone modifications specify different

chromatin states and permit or limit the access of these trans-

acting factors to their target cis-acting elements (5). The specific

epigenetic modifications and their roles in regulating chromatin

states in various cancer contexts have been reviewed elsewhere

(6, 7). The term “cistrome” is used to describe the genome-wide

locations of transcription factor binding-sites (8). Therefore, the

cistrome encompasses the complete set of target cis-regulatory

elements, including promoters, enhancers, and silencers that are

bound or marked by these regulatory factors.

Although inherently dynamic, a tightly regulated epigenome

is crucial to maintain cell identity and normal cellular physiology.

Disruption of the established chromatin states, such as the

inactivation of active regulatory elements and/or the reactivation

of inactive regulatory elements, can lead to the establishment of

various oncogenic programs (5). Studying these interactions

and alterations in the context of prostate cancer raises

exciting possibilities. Chromatin remodeling and epigenetic

dysregulation leading to cistromic reprogramming — that is, the

use of alternative cis-regulatory elements— has been increasingly

recognized as a hallmark of prostate cancer initiation and

progression (8–10). The androgen receptor (AR) signaling axis

plays a central role in prostate cancer progression and is the prime

target of modern-day prostate cancer phamacopeia (11, 12).

Transcription factors and epigenetic modifiers may influence

this signaling axis throughout disease progression by way of

reprogramming the AR cistrome. In the following review, we

will discuss the transcription factors FOXA1, HOXB13, GATA2,

ERG, and MYC as they relate to the AR cistrome and its

transcriptional output during prostate cancer evolution.

Similarly, we will discuss the roles that global chromatin

remodelers SWI/SNF and CHD1, as well as the epigenetic

regulator EZH2, play in the reprogramming of the AR cistrome.

Notably, studying the plasticity of the AR cistrome has revealed

several opportunities for therapeutic intervention, and these will

be highlighted in the review as well.
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2 Alterations to the AR cistrome
are central to prostate
cancer progression

AR signaling plays a key role in normal prostate development

as well as in prostate cancer pathogenesis (13). Modulation of AR

signaling underlies prostate cancer progression and can be partly

attributed to the reprogramming of the AR cistrome during

prostate tissue transformation. Indeed, several studies have

illustrated how the AR cistrome, together with AR-dependent

transcriptional networks, evolve throughout clinical disease

stages. For example, by using both normal and primary human

prostate tissue samples, Pomerantz and colleagues showed that the

AR cistrome in primary prostate tumors is distinct from that of

normal tissue (14). Additionally, they subsequently showed that

the AR cistrome is dramatically and further transformed in

metastatic tissues when compared to primary disease (15).

Specifically, they found that the metastatic AR cistrome appears

to reactivate developmental programs of the prostate. The

epigenetic landscape in metastatic castration-resistant prostate

cancer (mCRPC) bears similarity to fetal UGS cells derived from

the human urogenital sinus, from which the prostate eventually

develops (15). In line with this, Wang and Koul found that loss of

the canonical AR transcriptome was associated with tumor

metastasis and poor clinical outcomes (16). Altogether, this

suggests that prostate tumors reactivate decommissioned

developmental programs, thereby achieving the traits necessary

for metastasis. These changes are summarized in Figure 1.

In addition to the changes that occur during progression to

metastatic disease, alterations to the AR cistrome also underly the

development of therapeutic resistance in prostate cancer patients.

With regards to reprogramming of the AR cistrome in response to

androgen deprivation therapy (ADT), Han and colleagues observed

that the AR cistrome remains largely conserved from hormone-

sensitive prostate cancer (HSPC) to CRPC (17). This contrasts the

findings of Pomerantz and colleagues, where they observe a clear

distinction between the AR cistromes of primary prostate cancer and

mCRPC patient samples (15). This discrepancy may be explained by

the types of models used in these studies. Han and colleagues used a

xenograft model of castration-resistance derived from the hormone-

sensitive VCaP cell line (17). On the other hand, Pomerantz and

colleagues examined the AR cistromes of human mCRPC biopsies

and patient-derived xenografts (PDXs) obtained from human

mCRPC samples (15). Thus, the alterations to the AR cistrome

observed by Pomerantz and colleagues in mCRPC, such as those

associated with prostate developmental programs, may be more

relevant for prostate cancer metastasis, rather than the development

of castration-resistance per se. However, reprogramming of the AR

cistrome is observed during the development of resistance to second-

generation AR signaling inhibitors (ARSI), such as enzalutamide or

abiraterone acetate (18, 19). While the AR signaling axis is largely
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conserved in CRPC— mainly due to various adaptive mechanisms

within the cancer cell that preserve the AR transcriptional program

despite low availability of androgens — resistance to ARSI is often

marked by loss of AR and independence from its signaling axis (13,

20). This manifests phenotypically as CRPC with neuroendocrine

features (CRPC-NE), although other subtypes such as the double-

negative (negative for both AR and neuroendocrine markers)

subtype or a stem cell-like subtype have been documented (13,

21). Neuroendocrine prostate cancer (NEPC) occurs very rarely de

novo, accounting for fewer than 2% of all prostate cancers, whereas

treatment-induced NEPC occurs in an estimated 10-17% of CRPC

patients (22). Mechanisms of therapeutic resistance in relation to the

AR signaling axis — including the gain of AR mutations and the

expression of AR splice variants during the transition from HSPC to

CRPC, along with the upregulation of novel lineage-specific

transcription factors in response to ARSI-resistance — have been

more broadly reviewed elsewhere (13, 20). Finally, in addition to

therapies that aim to suppress the AR signaling axis,

supraphysiological levels of testosterone (SPT) that activate the AR

signaling axis are also an effective treatment option in a subset of

patients with CRPC (23). Critically, tumors that respond to SPT

exhibited a distinct AR cistrome compared to tumors that do not

respond to SPT (23). This suggests that differences in the AR

cistrome may underly differential responses to SPT.

Therefore, reprogramming of the epigenome and chromatin

landscape are increasingly becoming recognized mechanisms of

disease progression and therapeutic resistance. Given the
Frontiers in Oncology 03
abundant evidence supporting the role of epigenetic and

chromatin regulators in prostate cancer progression, we strove

to summarize how a few of these key players converge on the AR

cistrome and the AR transcriptome in this review. Studying how

the AR cistrome is transformed involves examining how the AR

interacts with other key transcription factors in prostate cancer

that can dictate its chromatin binding activity, as well as

examining widespread chromatin alterations which can alter

the AR cistrome more globally. Other mechanisms of altering

the AR cistrome, including AR mutations, the expression of

splice variants, are beyond the scope of this review.
3 Key transcription factors in
prostate cancer regulate
the AR cistrome and its
transcriptional network

3.1 Pioneer transcription factors
influence AR binding events during
disease progression

Pioneer transcription factors are a class of transcription

factors that possess the unique ability to bind DNA motifs

located within condensed regions of chromatin (24). By so

doing, they initiate a process of transcriptional activation by
FIGURE 1

The AR cistrome is reprogrammed during prostate cancer onset and progression. (A) In the normal prostate epithelium, the AR occupies its
normal cistrome, the collective of normal AR binding sites (N-ARB), and controls the AR signaling axis to regulate cellular proliferation, and the
maturation of the prostate gland. Pioneer transcription factors, such as FOXA1 which binds to the forkhead (FKHD) binding motif, contribute to
AR-regulated transcription. (B) In primary prostate cancer, the AR is redirected to a distinct set of tumor-associated AR binding sites (T-ARB),
resulting in aberrant cellular proliferation, transforming the AR into an oncogene. This may be due to genetic or epigenetic disturbances that
disrupt the homeostatic relationship between FOXA1 and the AR in normal prostate epithelium. (C) In metastatic castration-resistant prostate
cancer (mCRPC), the AR cistrome is further reprogrammed, and AR binds to metastatic AR-binding sites (met-ARB), activating decommissioned
developmental programs, seemingly to drive metastasis. FOXA1 binding at these metastatic-associated binding sites precedes the development
of mCRPC.
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recruiting epigenetic modifiers, which increase the accessibility

of the region to other transcription factors (24). Thus, they have

earned the moniker “pioneer”. Owing to their role in governing

and maintaining chromatin states, pioneer transcription factors

have key roles in determining cell identity and cell fate (25).

Several pioneer transcription factors are recognized as

drivers of prostate cancer initiation and progression, including

the forkhead box A1 (FOXA1) transcription factor, the

homeobox protein HOXB13, and the GATA binding protein 2

(GATA2). Their functional characterization, mutations,

aberrant expression patterns, and potential for therapeutic

targeting in prostate cancer settings have been more

exhaustively reviewed elsewhere (24). Here, we provide a

review of the relevance of these factors in prostate cancer

progression with respect to how they modify the AR cistrome.

3.1.1 FOXA1 and the AR
FOXA1 is a direct binding partner of and an extensively

characterized pioneer factor for the AR (24, 26, 27). Indeed,

FOXA1 is crucial to normal prostate development, where it

cooperates with the AR to drive the growth and survival of

normal prostate cells (Figure 1A) (28). A landmark study showed

that FOXA1 plays a crucial role in opening genomic regions and

cooperating with the AR at cell type-specific enhancers to regulate

the expression of androgen-stimulated genes (27). Studies using a

variety of prostate cancer cell lines later demonstrated that FOXA1

overexpression or knock-down reprograms the AR cistrome (29–

32). While FOXA1 is not necessary for AR chromatin binding, it

can redirect the AR to bind at sites harboring the forkhead (FKHD)

motif (31, 32). Moreover, transduction of FOXA1 in an

immortalized prostate epithelial cell line redirected the AR from

binding at normal tissue-associated AR binding sites to instead

occupy tumor-associated AR binding sites (14). Altogether, this

strongly suggests that FOXA1’s pioneering activity contributes to

prostate cancer tumorigenesis by influencing the AR cistrome. A

more recent study showed that the reprogrammed AR cistrome

observed in mCRPC coincides with sites already bound by FOXA1

in normal and primary tumor tissue (15), further supporting a

model where FOXA1 pre-marks a cancer-associated AR cistrome to

facilitate prostate cancer progression (Figures 1B, C). These findings

are in line with the pioneering role of FOXA1, since pioneer

transcription factor binding precedes the binding of downstream

transcription factors. For example, pioneer transcription factors are

known to mark transcriptionally silent but competent genes — in

other words, genes that later become transcriptionally active in

response to an inductive signal (33). This, in combination with the

finding that FOXA1 is a key transcription factor in mCRPCmodels

that rely on the AR signaling axis (21), posits FOXA1 as a crucial

contributor to AR-dependent prostate cancer progression.

Although observed in clinical samples, whether the metastatic AR

cistrome would exist in the absence of the pioneering activity of

FOXA1 has yet to be experimentally evaluated.
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The FOXA1 gene is recurrently mutated in prostate tumors

and FOXA1mutations define a specific molecular subtype in the

TCGA cohort (34). These findings have fueled recent interest in

interrogating the role of FOXA1 mutations on prostate cancer

progression. Interestingly, the frequency of FOXA1 mutations in

primary prostate tumors is much higher in a Chinese cohort of

prostate cancer patients compared to the largely European-

centric cohort of the TCGA, with a frequency of ~41% in the

former cohort compared to 4% in the latter (35), suggesting

ethnic variation with regards to FOXA1 mutations among

prostate cancer patients. FOXA1 is frequently mutated in

mCRPC as well (36, 37). In an aggregate cohort of prostate

cancer patients largely based in institutions located in Western

countries, the frequency of FOXA1 mutations among patients

with primary disease was approximately 8-9% while among

patients with metastatic disease, the frequency of FOXA1

mutations rose to between 12 and 13% (36). Given the

established role of FOXA1 in regulating AR activity in prostate

cancer, much interest has been focused on the interplay between

FOXA1 mutations and the AR cistrome. However, the effect on

the AR cistrome seems to vary depending on the type of FOXA1

mutation studied, and these effects are succinctly summarized in

a review by Teng and colleagues (28).

Altogether, owing to its role in pioneering, or unpacking the

chromatin, for the AR, FOXA1 poses as a key prostate cancer-

specific regulator of disease progression and therapeutic

response. Although historically a challenging protein to target,

recent studies have uncovered post-translational modifications

that positively regulate FOXA1 activity, including demethylation

by lysine-specific demethylase 1 (LSD1) and methylation by

EZH2, thereby positing FOXA1 as a promising target of LSD1

and EZH2 inhibitors (38, 39). Specifically, LSD1 demethylates

lysine residue 270, thereby stabilizing FOXA1-chromatin

interactions (38). On the other hand, EZH2 methylates lysine

residue 295 which leads to de-ubiquitination and enhanced

FOXA1 protein stability (39). While the impacts of these

pharmacological inhibitors on FOXA1 activity and prostate

cancer growth are still limited to the preclinical stage, there

are opportunities to test these findings clinically. LSD1 inhibitors

are undergoing phase 2 clinical trials for other cancer types, and

multiple small-molecular EZH2 inhibitors have been approved

and/or are in clinical trials for other cancer types (39, 40).

Importantly, therapeutic strategies targeting the link between

FOXA1 and the AR would be relevant in disease stages where

AR signaling continues to be critical and where FOXA1

expression remains high, such as primary prostate cancer and

CRPC (Figure 2).

3.1.2 HOXB13 and the AR
HOXB13 is a pioneer transcription factor expressed in

normal and cancerous prostate tissue (41). HOXB13 is rarely

mutated among prostate cancer patients. For example, a targeted
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https://doi.org/10.3389/fonc.2022.963007
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2022.963007
sequencing study of a cohort of 5,083 prostate cancer patients

has shown that 1.4% of prostate cancer patients have a recurrent

G84E mutation in HOXB13, which increases in prevalence to

3.1% among early-onset prostate cancer patients with family

history of the disease (42). However, even when not mutated,

HOXB13 transcript levels are higher in clinical samples of

localized disease compared to adjacent normal tissue,

suggesting that HOXB13 overexpression may be a feature of

primary prostate cancer (41). On the other hand, HOXB13

transcripts are downregulated in mCRPC relative to primary

prostate cancer, which suggests that its involvement in

modifying the AR cistrome may be more relevant to early

stages of the disease (43). A more comprehensive review of

studies that have investigated the oncogenic potential of

HOXB13 in prostate cancer is offered elsewhere (24).

HOXB13, like FOXA1, is a pioneer transcription factor

involved in establishing a cancer-associated AR cistrome (14,
Frontiers in Oncology 05
15). HOXB13 binding sites overlap extensively with tumor-

associated AR binding sites in clinical specimens, and

transduction of HOXB13 in an immortalized normal prostate

epithelial cell line is capable of reprogramming the AR cistrome.

However, co-transduction of FOXA1 and HOXB13 together

ultimately results in the most dramatic shift in the AR

cistrome away from normal prostate-associated AR binding

sites towards tumor-associated AR binding sites (14). Finally,

as with FOXA1, HOXB13 seems to occupy ‘sentinel’ sites in

prostate tissue where AR is destined to bind later during disease

progression (15). Thus, akin to FOXA1, HOXB13 appears to

possess important functions in dictating the AR cistrome,

primarily in localized disease (Figure 2).

Interestingly, HOXB13 seems to have a particular role in

governing the cistrome of the AR splice variant 7 (AR-V7), a

constitutively active AR splice variant that may confer resistance to

AR-targeting therapies (13, 44). While the cistromes of
FIGURE 2

Epigenetic dysregulation and concordant aberrant transcription factor activity result in a reprogrammed AR cistrome and transcriptome to drive
prostate cancer progression. Primary prostate cancer (PCa) is hormone-sensitive (HSPC) and responds to androgen-deprivation therapy (ADT).
Resistance to ADT results in the development of castration-resistant prostate cancer (CRPC), which remains reliant on AR signaling and is
therefore responsive to second-generation AR signaling inhibitors (ARSI; e.g., abiraterone acetate, enzalutamide). However, resistance to ARSI is
accompanied by the onset of CRPC with neuroendocrine features (CRPC-NE), which can be treated with chemotherapy such as docetaxel.
Reprogramming the cancer cell to an ARSI-sensitive state is an attractive therapeutic strategy, and red stars denote key players that may be
targetable to achieve a reversal in treatment-resistance. Note that this is one example of how prostate cancer may be treated, with an emphasis
on how the AR signaling axis is therapeutically targeted. Epigenetic dysregulation underlies prostate cancer progression and the development of
treatment resistance to ADT and second-generation ARSI. CHD1 loss, accompanied by the overexpression and aberrant activities of the SWI/
SNF remodeling complexes, EZH2 and PRC2, result in a plastic epigenome. Epigenomic plasticity also provides cancer cells the opportunity to
develop AR-independent mechanisms of tumor growth when the AR signaling pathway is exposed to more extensive inhibition through ARSI
treatment. This, in combination with the hyper-activity or altered activity of pioneer transcription factors FOXA1 and HOXB13 as well as the
transcription factors ERG, c-MYC and N-Myc, result in enhancer rewiring and reprogramming of the AR cistrome, thereby driving disease
progression and unfavorable therapeutic responses. The pioneer transcription factor GATA2 is a key cofactor for maintaining the AR
transcriptional program during HSPC and CRPC — however, it does not seem to reprogram the AR cistrome in the same way that FOXA1 and
HOXB13 do, suggesting there may be a hierarchy in pioneer transcription factor activity.
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endogenous AR-V7 in two CRPC cell lines grown in hormone-

depleted media were distinct from each other, they both

overlapped with the HOXB13 cistromes of their respective cell

lines (44). HOXB13 is a direct binding partner of AR-V7 and they

cooperatively upregulate a subset of genes in both cell lines,

although the subset of genes is distinct between the cell lines

(44). These results suggest that even though AR-V7 may regulate

heterogenous transcriptional programs in different CRPC tumors,

the colocalization of HOXB13 at AR-V7 binding sites may be a

homogenous and targetable feature (44). How these results fit with

the observation that HOXB13 appears downregulated in mCRPC,

compared to primary prostate cancer, remains to be determined

(43). As described earlier, this discrepancy may be attributed to the

differences in cancer biology between mCRPC and non-metastatic

CRPC disease and the cancer models used to study them. While

some CRPC cell lines may be derived from prostate cancer

metastases and may express CRPC-associated markers, such as

the AR-V7 splice variant, they are imperfect models for studying

metastatic disease.

Altogether, HOXB13 appears to be involved in prostate

oncogenesis as well as in the development of therapeutic

resistance to androgen-targeting therapies via its role in

regulating the AR cistrome and the cistrome of its splice variant,

AR-V7. However, to better dissect the role of HOXB13 in prostate

cancer, both the clinical stage of the disease and the history of AR-

targeting therapies should be considered when evaluating clinical

data. Similarly, the relevance of the cellular and animal models

used to study the role of HOXB13 should also be evaluated against

the clinical outcomes that they are meant to represent. By doing so,

we may find new ways to reconcile seemingly opposing findings

regarding the role of HOXB13 in prostate cancer.

3.1.3 GATA2 and the AR
Finally, GATA2, another pioneer transcription factor, is crucial

for the activation of AR signaling in prostate cancer. As a pioneer

transcription factor, GATA2 makes regulatory regions accessible to

the AR by recruiting the histone acetyltransferase p300 (45).

Furthermore, GATA2 binds to AR-target enhancers prior to

androgen stimulation and AR DNA-binding, further illustrating

its role as a pioneer transcription factor for the AR (45).

Interestingly, previous studies have shown that GATA2 and

FOXA1 co-occupy 55% of all hormone-responsive AR binding

sites in the LNCaP prostate cancer cell line, suggesting a

potential cooperative mechanism between these two pioneer

transcription factors in regulating the AR cistrome (45).

Indeed, studies have shown that GATA2 can enhance both the

AR cistrome and the FOXA1 cistrome by promoting AR and

FOXA1 binding at androgen-regulated enhancers (46).

However, unlike FOXA1, GATA2 does not seem to reprogram

the AR cistrome by directing the AR to bind at a novel set of

binding sites. Instead, the primary role of GATA2 appears to be

that of an amplifier of AR DNA-binding in hormone-responsive

disease stages (Figure 2) (46).
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GATA2 has been implicated in later-stage, lethal prostate

cancers as well. Notably, GATA2 expression is progressively

elevated from primary disease to CRPC in clinical specimens

(47). In addition, the upregulation of GATA2 is associated with

chemoresistance in the prostate cancer cell lines DU145 and

22Rv1, and GATA2 expression is likewise highest in CRPC

patients treated with chemotherapy (47). At the CRPC stage

where AR signaling is often still central to tumor growth,

GATA2 continues to act as a crucial cofactor for AR

transcriptional activity and colocalizes with both full-length AR

and AR splice variants on the chromatin (48, 49). Thus, as is the

case during HSPC, GATA2 contributes to prostate cancer growth

during CRPC by amplifying the AR transcriptional program. Yet,

GATA2 was found to regulate a set of AR-independent genes in a

castration-resistant and chemotherapy-resistant xenograft model

of prostate cancer (47). This subset of genes was enriched in men

with lethal prostate cancer and patients who had received

chemotherapy (47). Therefore, upon advancement to lethal

stages of the disease, these AR-independent GATA2 functions

may become increasingly relevant.

Emerging strategies to therapeutically target GATA2 in

prostate cancer include the GATA2 small molecule inhibitor

K7174 which suppresses the expression of AR, AR splice

variants, and AR target genes via a posttranscriptional

mechanism of inhibition (48). K7174 also significantly reduces

tumor growth in a murine xenograft model of CRPC (48).

Dilazep, a vasodilator that is used to treat patients with

hypertension, cardiovascular, and renovascular disorders, is a

second pharmaceutical agent that blocks GATA2 DNA-binding,

suppresses the expression of AR, and reduces tumor growth in a

murine xenograft model of CRPC (50). These therapeutic

options have not yet been tested clinically for men with

prostate cancer, however.
3.2 ERG and the AR

Fusions of androgen-regulated genes with the ETS-related

gene ERG are among the most common genomic alterations in

prostate cancer. This commandeering, or hijacking, of promoter

elements results in AR-regulated ERG overexpression (34).

These gene fusions account for 46% of patients in the TCGA

primary prostate cancer cohort (34). The most common gene

fusion partner is TMPRSS2, although fusions with other

androgen-regulated genes such as SLC45A3 and NDRG1 have

also been reported (34).

In prostate cancer, the ERG protein also cooperates with the

AR to influence disease progression. Primary prostate tumors

that harbor a TMPRSS2-ERG gene fusion possess a unique set of

active cis-regulatory elements (CREs) compared to tumors

lacking this genomic rearrangement (51), suggesting a

potential link between ERG and cistromic reprogramming.

These CREs were preferentially bound by other key prostate
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cancer transcription factors, including FOXA1 and the AR.

Interestingly, the reprogramming was observed in VCaP cells,

which harbor the TMPRSS2-ERG gene fusion, but not in 22Rv1

cells which lack the gene fusion (51). This suggests that ERG

expression modulates the cistromes of FOXA1 and the AR

leading to altered transcriptional programs (51).

Notably, TMPRSS2-ERG fusions often occur in combination

with PTEN loss and TP53 mutations in both primary prostate

cancer and CRPC (52). As such, several studies have sought to

characterize the role of ERG within these specific genetic

contexts. Using a genetically engineered mouse model that

conditionally overexpresses the ERG transgene in the prostate

luminal epithelium, Chen and colleagues showed that ERG

expression amplifies AR chromatin binding without affecting

its expression level (53). They also showed that while Pten loss

itself suppresses AR signaling, ERG expression in the genetic

background of Pten loss partially restores the AR transcriptome

(53). They attribute this to a pioneer factor-like role of ERG,

wherein pre-established enhancers are first bound by ERG, then

by the AR (53). Subsequently, Blee and colleagues showed that, in

the context of Pten/Tp53 alterations, ERG is important for

maintaining the luminal epithelial lineage in prostate cancer

cells by repressing the expression of cell cycle genes and

upregulating AR pathway genes (52). Correspondingly,

overexpression of ERG re-sensitizes androgen-refractory, PTEN

null, LNCaP (LNCaP-RF) xenografts to enzalutamide (52).

Together these findings suggest that the partial restoration of

the AR transcriptome by ERG expression in tumors with PTEN

loss is responsible for the re-sensitization of these tumors

to enzalutamide.

Recently, an organoid model derived from the Pten-null, ERG-

overexpressing mice described by Chen and colleagues was used to

investigate the effects of knocking out ERG in the context of Pten-

null prostate cancer (54). Pten-null organoids exhibited loss of

lumen structures and formed solid 3D spheres, reminiscent of

prostatic intraepithelial neoplasia (PIN) (54). Combined PTEN

loss and ERG overexpression led to the formation of finger-like

protrusions that phenotypically resemble invasive adenocarcinoma

(54). Interestingly, knocking out ERG in ERG-overexpressing,

Pten-null organoids did not cause prostate cancer organoids to

revert to their Pten-null organoid phenotype, but instead led to an

almost normal, glandular-like morphology (54). Chromatin

immunoprecipitation followed by next-generation sequencing

(ChIP-seq) revealed that while ERG overexpression leads to a

dramatic change in the AR cistrome in Pten-null organoids, the AR

cistrome remains relatively unchanged following ERG knock-out

(54). Nevertheless, ERG knock-out leads to significant reversal and

dampening of the AR signature without downregulating its

expression (54). This suggests that ERG overexpression leads to

more permanent alterations to AR chromatin binding and results

in partial restoration of AR signaling in the context of PTEN loss.

Nonetheless, ERG also appears to regulate AR-dependent

transcriptional targets through another mechanism. Using rapid
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(RIME), disrupted protein-protein interactions between the AR

and transcriptional machinery, including RNA polymerase II and

various elongation factors (54), were identified following ERG

knock out. Indeed, ERG itself was found to significantly interact

with the AR in ERG-overexpressing Pten-null organoids (54).

Therefore, in addition to priming the AR cistrome for partial

restoration of AR signaling in the context of PTEN loss, ERG may

also function as a crucial AR cofactor that contributes to the

transcriptional activation of AR target genes.

Thus, akin to FOXA1, HOXB13, and GATA2, ERG can also

influence the AR cistrome. Of note, studies have also found a

repressive role of ERG on the AR transcriptional program in

VCaP cells (55, 56). Despite these findings, ERG did confer greater

enzalutamide sensitivity in VCaP cells and in a VCaP-based in

vivomodel of bone tumor growth compared to ERG knock-down

groups (55–57). These conflicting reports regarding the role that

ERG plays on modifying the AR transcriptional program may be

partially explained by the different genetic models used (58). For

example, VCaP cells express PTEN, whereas the described mouse

models were engineered on a PTEN loss background.

Furthermore, ERG overexpression is itself insufficient for

prostate cancer initiation and ERG gene fusions often co-occur

with loss of function alterations to PTEN/TP53 in both primary

and metastatic prostate cancer. Therefore, it is possible that the

genetic background of the tumor dictates the oncogenic

consequences of ERG overexpression (52, 53). PTEN loss is

additionally associated with anti-androgen insensitivity and the

suppression of AR signaling, whereas VCaP cells are hormone-

sensitive (52, 53, 55). Therefore, the tumor’s reliance on AR

signaling may also dictate the role that ERG plays during

disease progression. Nevertheless, there is convincing evidence

that the oncogenic consequences of ERG overexpression are

intimately tied to its ability to modulate the AR cistrome and

AR signaling (Figure 2).

Despite initial promise in pre-clinical models, reports regarding

the efficacy of androgen-targeted therapies in prostate cancer

patients harboring TMPRSS2-ERG gene fusions have not been

conclusive (59, 60). Since, the genetic background of the tumor

may dictate how ERG influences AR activity, as described above, we

propose that the results from patient cohorts may be obfuscated by

mixed genetic backgrounds of patient tumor samples. Further

characterization of the role that ERG plays in PTEN-intact

prostate cancers and/or in hormone-sensitive prostate cancers

may reveal their interwoven molecular dependencies and the

molecular mechanisms driving disease progression potentially

leading to new treatment stratification schemes.
3.3 c-MYC and the AR

The proto-oncogene c-MYC (MYC) is overexpressed in

around 8% of primary prostate cancer cases in the TCGA
frontiersin.org

https://doi.org/10.3389/fonc.2022.963007
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2022.963007
cohort and up to 37% in metastatic disease (58, 61). Previous

work has produced conflicting results regarding the influence of

MYC on the AR transcriptome. Barfeld and colleagues described

an antagonistic relationship between MYC and AR, and showed

that androgen stimulation of hormone-sensitive prostate cancer

cell lines led to a reduction in MYC at the transcript and protein

levels (62). Reciprocally, MYC overexpression paired with

androgen stimulation led to the downregulation of androgen-

induced genes (62). However, results from a different study

conducted by Bai and colleagues suggest a positive regulatory

network between MYC and AR (63). Specifically, the AR and its

isoforms were found to be positively correlated with MYC

expression in primary prostate cancer and in CRPC (63).

Furthermore, mCRPC samples with high AR expression were

highly enriched for two hallmark MYC gene sets (63). Knocking

down MYC in various human prostate cancer cell lines led to

decreased expression of full-length AR and its splice variants,

along with decreased expression of their target genes (63).

Interestingly, both studies showed that there was no direct

interaction between MYC and the AR, suggesting that MYC

regulates AR target gene expression via an indirect mechanism

(62, 63).

More recent evidence also suggests that MYC represses the

AR transcriptional signature, and that the AR in turn suppresses

MYC expression (64). In support of an antagonistic relationship

between MYC and AR, the authors showed that genes

upregulated following MYC-depletion in vitro were enriched

for androgen-activated genes. On the other hand, MYC

overexpression, in vitro, repressed global AR activity (64).

Similarly, androgen deprivation and castration of tumor-

bearing mice resulted in the upregulation of MYC in VCaP

cells and VCaP xenografts, respectively. Androgen treatment

repressed MYC expression in VCaP cells and VCaP xenografts

of castrated mice (64). Additionally, the authors demonstrated

that androgen-dependent downregulation of MYC occurred via

a disrupted interaction between a prostate-specific super-

enhancer and the MYC promoter in response to androgen

stimulation (64). Altogether, the results provide further

evidence of opposing functions for the AR and MYC in

prostate cancer, as well as the role that chromatin remodeling

plays in this dynamic.

In a concordant study by Qiu, Boufaied and colleagues, MYC

overexpression in the murine prostate was shown to suppress AR

transcriptional activity (65). In patients with CRPC where the AR

was still expressed, AR activity was likewise negatively correlated

with MYC expression. In line with previous reports, the

suppression of the AR transcriptional program driven by MYC

overexpression did not seem to be mediated by downregulation

of the AR itself nor by disengagement of the AR from chromatin

(62, 64, 65). Instead, evidence from pre-clinical models points to

RNA polymerase II proximal pausing at AR-regulated genes as

the potential mechanismmediatingMYC-driven downregulation

of the AR transcriptional signature (65). Altogether, the results
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AR and MYC with transcriptional cofactor redistribution or

sequestration as the primary mechanism driving MYC-

dependent downregulation of the AR transcriptional signature.

Of clinical relevance, Qiu, Boufaied and colleagues revealed

that a low AR and high MYC transcriptional signature in patient

tumors was associated with shorter time to biochemical

recurrence, increased risk of metastatic disease, and higher

likelihood of developing resistance to ARSI treatment (65).

Therefore, targeting MYC may be a viable therapeutic strategy

in advanced prostate cancer patients, particularly those who have

progressed to stages of the disease that are no longer sensitive to

ARSI (Figure 2). Supportingly, pharmacological inhibition of

MYC results in restored sensitivity to enzalutamide in cell lines

and xenograft models that were previously enzalutamide-

resistant (63, 66). Interestingly, this study by Holmes and

colleagues also showed co-loss of FOXA1 and AR chromatin

binding at promoter-distal regions in response to

pharmacological MYC inhibition, suggesting that MYC

inhibition may reprogram the AR cistrome by disturbing the

cistrome of its cofactor and pioneer transcription factor FOXA1

(66). Thus, dissection of the interplay between MYC and AR has

also uncovered potential avenues for therapeutic development.

While MYC is a proto-oncogene relevant in a wide variety of

cancers, it has also been a challenging protein to target due to its

nuclear localization, biochemistry, and its physiological relevance

in normal tissues (67). Nevertheless, a suite of direct and indirect

methods of targeting MYC are being developed and optimized,

many of which were summarized by Whitfield and colleagues

(67). Notably, inhibitors of the Bromodomain and Extra-Terminal

motif (BET) proteins have remarkable downregulatory effects on

MYC by disrupting super-enhancer regulatory networks that

regulate its expression (68). However, BET inhibitors often have

effects that extend well beyond their impact on MYC. For

example, in in vitro models of prostate cancer, the BET

inhibitor JQ1 interacts with FOXA1 and prevents it from

repressing genes implicated in epithelial-to-mesenchymal

transition, resulting in invasive phenotypes (69). Interestingly,

JQ1 also has effects on HOXB13 and GATA2, blocking

transcription at the HOXB13 promoter, and inhibiting GATA2

DNA-binding respectively (70, 71). However, it should be noted

that BET inhibitors encompass a large class of pharmaceutical

agents that target BET proteins through heterogenous

mechanisms. For example, JQ1 competitively binds to the

bromodomain and displaces BET proteins from the chromatin

while the small-molecule BET inhibitor dBET6 targets BET

proteins for proteasomal degradation (72). The differences in

biological mechanisms also accompany differences in biological

outcomes. While JQ1 preferentially downregulates super

enhancer-associated genes, including MYC, dBET6 does not

exhibit this bias, instead resulting in a more global reduction of

transcriptional elongation and different oncological outcomes in

vivo compared to treatment with JQ1 (72). However, this was
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shown in models of T-cell lymphoblastoma, and studies on the

impact of dBET6 treatment on MYC-driven prostate cancer are

still lacking. Nevertheless altogether, these studies demonstrate

that, although they can negatively impact MYC transcriptional

activity, BET inhibitors do not exclusively target MYC and their

mechanisms of action are multiple.

Small molecules that directly target MYC and its interaction

with cofactor MAX, resulting in its proteasomal degradation,

have also been developed and tested in a MYC-driven prostate

cancer murine model, exhibiting remarkable anti-tumor effects

(73). Another novel approach to target MYC in prostate cancer

is through dietary modifications, as high-fat diets, more

specifically high animal, or saturated fat diets, have been

shown to enhance a MYC-driven transcriptional program

(74). We propose that investigating the mechanistic link

between high-fat diets and advanced prostate cancer would

offer more options for designing effective treatment modalities

for prostate cancer patients where MYC may play a key role in

driving disease progression and mediating therapeutic

resistance. Therefore, with a stronger understanding of the

mechanisms mediating MYC-dependent disruption of AR

signaling, we can better optimize and design tools for targeting

its role in advanced disease.
4 Chromatin and epigenetic
regulators alter the AR cistrome and
contribute to disease progression

4.1 The chromatin modifying
helicase CHD1

The chromatin modifying helicase CHD1 is a chromatin

remodeler that has been implicated as a tumor suppressor in

primary prostate cancer, as CHD1 is recurrently deleted in

primary prostate tumors (75, 76). Data from a human AR

positive prostate cancer cell line, LNCaP, reveals that the set of

AR and CHD1 interacting proteins overlap considerably, and

CHD1-bound enhancer regions are highly concurrent with those

bound by the AR (76). The CHD1 cistrome also overlaps with

the cistromes of FOXA1, HOXB13, and ETV1. Each of these

transcription factors has an established role in regulating AR-

dependent transcription (76), which raises the possibility that

CHD1 cooperates with other transcription factors to regulate the

AR cistrome and AR signaling. Strikingly, deletion of CHD1 in

LNCaP cells leads to reprogramming of the AR cistrome and the

resulting CHD1-null AR cistrome is enriched for HOXB13

motifs (76). Therefore, CHD1 may play a role in redistributing

AR across the genome by regulating chromatin accessibility. The

loss of CHD1 in LNCaP and in patient tumors was also

accompanied by the activation of what appears to be a CHD1-

null subtype-specific AR transcriptional signature (76).

Therefore, it appears that CHD1 acts as a tumor suppressor by
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preserving the integrity of the AR cistrome, whereas its loss leads

to the reprogramming of the AR cistrome and an altered AR-

associated transcriptome. However, further investigation of the

tumor-suppressive functions of CHD1 in CHD1-intact prostate

cancers is warranted. Seeing that the CHD1 cistrome overlaps

with the cistromes of several transcription factors implicated in

driving disease progression, it would be curious to understand

the nature of the interactions between CHD1 and these

transcription factors, and how CHD1 cooperates with these

transcription factors to regulate the AR cistrome in the normal

prostate and during prostate cancer onset.

Indeed, in the context of mCRPC and resistance to ARSI,

CHD1 appears to take on a new role. Specifically, low CHD1

mRNA levels were associated with shorter time to cancer

progression among patients treated with ARSI including

enzalutamide and apalutamide (77). CHD1 loss in vitro and in

vivo similarly accompanied enzalutamide-resistant prostate

cancer growth (77). Mechanisms underlying resistance to

ARSI are varied, and are reviewed more thoroughly elsewhere

(13). However, in this case, CHD1 loss did not appear to restore

AR signaling in the context of therapeutic resistance to ARSI.

Instead, profiling of the transcriptional and chromatin landscape

of enzalutamide-resistant tumors by RNA-seq and by an assay

for transposase-accessible chromatin paired with next-

generation sequencing (ATAC-seq) revealed that CHD1 loss

led to widespread chromatin remodeling and the upregulation of

divergent transcriptional outputs (77). These findings support a

model of prostate cancer progression whereby the dysregulation

of chromatin remodelers results in a plastic epigenomic state

that permits master transcription factors to expand or adopt an

altered cistrome (Figure 2). In the absence of ARSI, this allows

the AR cistrome to evolve and continue driving AR-dependent

prostate cancer growth, while in the presence of ARSI this

enables other transcription factors to rise in dominance and

drive cancer progression.
4.2 The chromatin remodelling
complex SWI/SNF

The switch/sucrose-nonfermentable (SWI/SNF) complexes

are chromatin remodelers that reposition nucleosomes using a

catalytic subunit, either SMARCA4 or SMARCA2 (78). The

SWI/SNF complex is a known cofactor of the AR and

contributes to AR-dependent gene regulation in prostate

cancer (79–82). Indeed, targeting the interaction between AR

and SWI/SNF disrupts AR-dependent prostate cancer cellular

proliferation (82, 83). In addition to being involved in AR-driven

prostate adenocarcinoma, SWI/SNF is also involved in ARSI-

refractory disease as well. The SMARCA4 (BRG1) subunit, as

well as neuron-specific SWI/SNF subunits BAF53B, BAF45B,

and CREST, are significantly overexpressed in NEPC compared

to CRPC adenocarcinoma, thus positioning SWI/SNF as a
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regulator of lineage plasticity (84). Indeed, Cyrta and colleagues

postulate that specialized forms of the SWI/SNF complex may be

assembled in prostate cancer cells depending on their phenotype

(84). Thus, it appears that SWI/SNF activity plays an important

role in prostate cancer progression during both AR-dependent

disease stages and ARSI-refractory disease stages (Figure 2).

Recently, it has been shown that targeting SWI/SNF activity

blocks the enhancer-binding activity of transcription factors

involved in prostate cancer progression, and results in a

remarkable reduction in tumor growth in a mouse model of

CRPC (85). Mechanistically, this is due to a rapid loss in

chromatin accessibility that ensues proteolysis-targeting chimera

(PROTAC)-mediated degradation of SMARCA4 and SMARCA2,

particularly at enhancer regions (85). This is accompanied by the

loss of DNA binding of several key transcription factors in

prostate cancer progression, including the AR, FOXA1 and ERG

(85). Accordingly, degradation of the SWI/SNF catalytic subunits

led to the downregulation of AR, FOXA1, and ERG-regulated

genes, as well as the downregulation of these transcription factors

themselves, disrupting their enhancer circuitry in these cells (85).

Multiple core components of the SWI/SNF complex interact with

the AR, FOXA1, and ERG (85). Indeed, in addition to interacting

with the AR to enable AR-dependent gene regulation, the SWI/

SNF complex can be hijacked by ERG to target ERG-binding sites

(86). Therefore, it seems that the SWI/SNF complex cooperates

with these other factors to regulate enhancer-dependent

transcriptional networks that are implicated in prostate

cancer pathogenesis.

These findings position SWI/SNF as an exciting target in

prostate cancer, where enhancer and cistromic reprogramming

have been shown to play pivotal roles in disease progression.

Indeed, the PROTAC degrader of SMARCA2 and SMARCA4,

named AU-15330, also inhibited and, at times, reversed tumor

growth in various xenograft models when administered either

alone or in combination with enzalutamide. Importantly, no loss

in body weight or histological evidence of toxicity in other

organs was observed (85). AU-15330 is effective in inhibiting

the growth of enzalutamide-resistant cell lines (85), however

whether this is driven by the loss in chromatin accessibility at

enhancers important for driving ARSI resistance warrants

further investigation. Nevertheless, these results illustrate the

key roles of non-coding regulatory elements in prostate cancer,

and that targeting chromatin remodelers which regulate their

accessibility is a viable therapeutic strategy.
4.3 The enhancer of zeste homolog
2 EZH2

The enhancer of zeste homolog 2 (EZH2) is a catalytic core

subunit of the polycomb repressive complex 2 (PRC2) (39). Its

canonical role is that of a transcriptional silencer, depositing

Histone 3 Lysine 27 (H3K27) trimethyl (H3K27me3) marks
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across the genome, in cooperation with the Suppressor of Zeste

12 Protein Homolog (SUZ12) and Embryonic Ectoderm

Development (EED) subunits of the PRC2 complex (39).

EZH2 is notably upregulated in localized prostate cancer and

particularly in metastatic prostate cancer compared to benign

tissue (87). The oncogenic functions of EZH2 have been

attributed to its ability to silence tumor suppressor genes (88).

For example, Burkhart and colleagues demonstrated increased

EZH2 expression and H3K27me3 levels in genetically

engineered mouse models of prostate cancer relative to age-

matched wild-type mice (89). Supporting the role of EZH2 in

prostate cancer progression, a study by Labbé and colleagues

found that prostate cancer patients with high EZH2 and DNA

topoisomerase 2 alpha (TOP2A) expression had a distinct

transcriptome that was coupled with shorter time to

biochemical recurrence and progression to metastatic disease

(90). In addition, EZH2-mediated trimethylation of endogenous

retroviral DNA sequences leads to the inhibition of interferon-

stimulated genes (ISGs) (91). Endogenous retroviral DNA

sequences normally form double stranded RNAs (dsRNAs)

that contribute to ISG activation. The loss of EZH2 catalytic

function, by chemical inhibition, led to increased dsRNA levels,

loss of H3K27me3 and concurrent gain of H3K27 acetylation

(H3K27ac), a marker of transcriptional activation, at 302 genes

containing endogenous retroviral sequences in in vitro and in

vivo models of prostate cancer (91). This was accompanied by

the upregulation of ISGs. Ultimately, Morel and colleagues

demonstrate that ISG upregulation in response to EZH2

inhibition re-sensitizes tumors to checkpoint inhibitor therapy

(91). Thus, EZH2 is an important player in prostate cancer

initiation, progression, and therapeutic response, owing partially

to its role in modulating the epigenomic landscape and ensuing

tumor transcriptome via its catalytic methyltransferase

function (Figure 2).

Notwithstanding its canonical role as a transcriptional silencer,

EZH2 has several non-canonical functions in prostate cancer, which

complicate therapeutic attempts to target it. For example, in

addition to methylating histones, EZH2 also methylates FOXA1

and prevents its proteasomal degradation (39). Furthermore, EZH2

has an important role as a transcriptional co-activator in CRPC

which is independent of its role as part of the PRC2 complex (92,

93). Specifically, EZH2 cooperates with the AR at a subset of

promoter regions to activate transcription in an androgen-

independent in vitro model of CRPC (93). Interestingly, this is

independent of its involvement in the PRC2 complex, yet

dependent on its intact methyltransferase domain (93). Of note,

EZH2 also contributes to the expression of AR transcriptional

signatures in models of both primary prostate cancer and CRPC

via a different mechanism that is independent of both PRC2 and its

methyltransferase activity (92). Therefore, in addition to its role as

an epigenetic modifier that modulates prostate cancer cistromes,

EZH2 also acts through additional direct and indirect mechanisms

to regulate AR-driven prostate cancer progression (Figure 2).
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Moreover, EZH2 contributes to the development of

enzalutamide resistance by way of reprogramming AR binding

activity. In enzalutamide-resistant cells, the AR was shown to

interact with and co-occupy sites bound by a non-canonical

polycomb complex consisting of EZH2 and SUZ12 but lacking

EED (18). These co-occupied sites were often open, accessible

chromatin regions, and converged on a set of transcriptional

programs governing stem cell plasticity and neuronal

differentiation (18). In this model, EZH2 was essential for

establishing the lineage-infidelity state that resulted from

sustained enzalutamide treatment (18). Interestingly, Dardenne

and colleagues illustrated an alternative mechanism of treatment

resistance and progression to NEPC, whereby EZH2 cooperates

with N-Myc to downregulate AR target genes without disrupting

AR expression (94). Specifically, Dardenne and colleagues

showed that N-Myc directly binds with the AR at AR-bound

enhancers, an interaction that is largely dependent on complex

formation with EZH2 and SUZ12 (94). N-Myc overexpression

led to an increase in EZH2 binding and H3K27 trimethylation at

AR-binding sites (94). This is consistent with the canonical role

of EZH2 as a histone methyltransferase. Altogether, these results

suggest that the interactome of EZH2 is dynamic and responds

to various therapeutic challenges in cooperation with the

transcription factors that are available, to bring about

divergent outcomes involving the AR.

These studies demonstrate the importance of chromatin and

epigenetic remodelers in governing prostate cancer progression

and attest to the diverse mechanisms of therapeutic resistance

that are both AR-driven and AR-independent. In addition, they

highlight the role that chromatin and epigenetic regulators play

in influencing tumorigenic changes to the AR cistrome. It is

tempting to hypothesize that targeting these chromatin and

epigenetic regulators, which lie at the heart of therapeutic

resistance, could re-sensitize tumors to ARSI. For example,

treatment with EZH2 inhibitors in various in vitro and in vivo

prostate cancer models of PTEN and RB1 loss sensitized cells

and tumors to enzalutamide (95). The roles of epigenetic

regulators and remodelers are dynamic in prostate cancer

progression, which highlights the need to evaluate genetic and

epigenetic dependencies of prostate tumors in robust models

that mimic the diversity of human prostate cancer patient

backgrounds, especially in advanced, therapeutic-resistant

stages such as NEPC.
5 Discussion

5.1 Tying it all together: The epigenome,
the cistrome, and prostate
cancer biology

Researchers have long sought to understand how ubiquitous

genomes are translated into cell-type specific transcriptional
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networks. This is especially relevant in cancer contexts, where

formerly faithful transcriptional networks often appear to be

hijacked during tumorigenesis. In this review, we have provided

examples of how the activities of transcription factors and

epigenetic and chromatin remodelers are altered, and how

these, in collaboration with the AR and its cistrome, ultimately

affect prostate cancer progression. Together, these studies

portray the chromatin and epigenetic landscapes in prostate

tumors as dynamic and responsive to external stimuli.

It is abundantly clear that prostate cancer biology is distinct

from normal prostate biology, and furthermore, that prostate

cancer biology continues to evolve throughout disease

progression and in response to therapeutic challenges. Pioneer

transcription factors, including FOXA1, HOXB13, and GATA2,

as well as the transcription factor ERG, have prominent roles to

play in earlier, hormone-sensitive stages of the disease and in

CRPC where AR signaling remains a mainstay of prostate tumor

growth. MYC overexpression, which is observed in primary

prostate tumors as well, has a profound role in the progression

to a CRPC disease stage by counterbalancing the transcriptional

activity of the AR and driving resistance to ARSI. The epigenetic

and chromatin regulators CHD1, SWI/SNF, and EZH2 likewise

play important roles in the evolution of the AR cistrome and

prostate cancer biology. Notably, CHD1 deletion is an early

prostate cancer event, resulting in the loss of integrity of the AR

cistrome. Interestingly, in the face of therapeutic challenge with

ARSI, CHD1 loss seems to then allow alternative master

transcription factors to dominate, leading to AR-independent

mechanisms of tumor growth. Finally, SWI/SNF and EZH2 have

relevant roles in both AR-dependent and AR-independent

disease stages, partially owing to their ability to adopt different

complex formations. In particular, the role of EZH2 in prostate

cancer is multi-faceted, in that it can both promote and repress

AR transcriptional activity during CRPC and in response to

ARSI respectively, depending on the specific subunits it adopts

and the cofactors that it interacts with. The relevance of each of

these factors at various stages of prostate cancer disease

progression is summarized in Figure 2.

It should be noted that there are other molecular

mechanisms that contribute to the development and

maintenance of the AR cistrome in prostate cancer as well.

Although beyond the scope of this review, AR amplifications

themselves have been shown to influence the AR cistrome in

prostate cancer settings (96). In addition, mutations of the

speckle type BTB/POZ protein SPOP, observed in about 10%

of localized primary prostate cancers, have also been shown to

drive the development of an oncogenic AR cistrome (34, 35, 97,

98). Interestingly, unlike the transcription factors and epigenetic

regulators described in this review, SPOP is not a DNA-binding

protein, and instead exerts its influence on the AR, at least in

part, by regulating is ubiquitin-mediated degradation (99).

Therefore, beyond creating or eradicating accessible sites on

the chromatin for the AR to bind, and beyond directly recruiting
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the AR to particular genomic loci, other mechanisms can also

contribute to an oncogenic AR cistrome.

Although the precise timelines of these molecular events

may be challenging to dissect, recognizing the alterations to the

epigenome and the AR cistrome that accompany disease

progression can point to vulnerabilities in prostate cancer. A

dynamic and plastic epigenome during disease progression hints

that these alterations may be reversible. For example, emerging

evidence suggests that global changes to chromatin underly

resistance to ARSI and progression to AR-independent disease

stages. One possible strategy to avert these lethal clinical

outcomes would be to reprogram and restore the epigenome

to an AR-dependent state in order to re-sensitize tumors to

ARSI, as demonstrated by Ku and colleagues (Figure 2) (95).

Recent technological advances have made it possible to

systematically interrogate transcription factor cistromes

through genome-wide CRISPR screens (100), and integrate

epigenomic maps and gene expression data from multiple

patients and cancer cell lines (14, 15, 21, 64, 101, 102). Paired

with pharmacological advances that enable us to specifically

target different factors in prostate cancer development, such as

PROTACs, we are in a position where we can fine-tune the usage

of these pharmaceutical agents to best suit the unique molecular

profiles that we observe among patients and across different

disease stages.
5.2 Concluding remarks

To summarize, while effective therapeutic options exist for

most prostate cancer patients, resistance to ADT and ARSI

remains an ongoing challenge among patients who progress to

advanced stages of the disease. Reprogramming of the AR

cistrome and subsequent alterations in AR-dependent gene

expression underly prostate cancer progression. This plasticity

is driven by key transcription factors, including FOXA1,

HOXB13, GATA2, ERG, and MYC, as well as epigenomic and

chromatin remodelers including SWI/SNF, CHD1, and EZH2.

While these factors often subvert attempts to control the disease,

they also present opportunities to exploit novel tumor

dependencies. By uncovering mechanisms underlying

epigenomic plasticity that challenge our standard treatments,

we may uncover new ways to target this plasticity.
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58. Labbé DP, Brown M. Transcriptional regulation in prostate cancer. Cold
Spring Harb Perspect Med (2018) 8(11):a030437. doi: 10.1101/cshperspect.a030437

59. Graff RE, Pettersson A, Lis RT, DuPre N, Jordahl KM, Nuttall E, et al. The
Tmprss2: Erg fusion and response to androgen deprivation therapy for prostate
cancer. Prostate (2015) 75(9):897–906. doi: 10.1002/pros.22973

60. Rezk M, Chandra A, Addis D, Møller H, Youssef M, Dasgupta P, et al. Ets-
related gene (Erg) expression as a predictor of oncological outcomes in patients
with high-grade prostate cancer treated with primary androgen deprivation
therapy: A cohort study. BMJ Open (2019) 9(3):e025161. doi: 10.1136/bmjopen-
2018-025161

61. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al.
Substantial interindividual and limited intraindividual genomic diversity among
tumors from men with metastatic prostate cancer. Nat Med (2016) 22(4):369–78.
doi: 10.1038/nm.4053

62. Barfeld SJ, Urbanucci A, Itkonen HM, Fazli L, Hicks JL, Thiede B, et al. C-
myc antagonises the transcriptional activity of the androgen receptor in prostate
cancer affecting key gene networks. EBioMedicine (2017) 18:83–93. doi: 10.1016/
j.ebiom.2017.04.006

63. Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, et al. A positive role of
c-myc in regulating androgen receptor and its splice variants in prostate cancer.
Oncogene (2019) 38(25):4977–89. doi: 10.1038/s41388-019-0768-8

64. Guo H, Wu Y, Nouri M, Spisak S, Russo JW, Sowalsky AG, et al. Androgen
receptor and myc equilibration centralizes on developmental super-enhancer. Nat
Commun (2021) 12(1):7308. doi: 10.1038/s41467-021-27077-y

65. Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma AM, et al. Myc drives
aggressive prostate cancer by disrupting transcriptional pause release at androgen
receptor targets. Nat Commun (2022) 13(1):2559. doi: 10.1038/s41467-022-30257-z

66. Holmes AG, Parker JB, Sagar V, Truica MI, Soni PN, Han H, et al. A myc
inhibitor selectively alters the myc and max cistromes and modulates the
epigenomic landscape to regulate target gene expression. Sci Adv (2022) 8(17):
eabh3635. doi: 10.1126/sciadv.abh3635

67. Whitfield JR, Beaulieu M-E, Soucek L. Strategies to inhibit myc and their
clinical applicability. Front Cell Dev Biol (2017) 5:10. doi: 10.3389/fcell.2017.00010

68. Delmore Jake E, Issa Ghayas C, Lemieux Madeleine E, Rahl Peter B, Shi J,
Jacobs Hannah M, et al. Bet bromodomain inhibition as a therapeutic strategy to
target c-myc. Cell (2011) 146(6):904–17. doi: 10.1016/j.cell.2011.08.017

69. Wang L, Xu M, Kao C-Y, Tsai SY, Tsai M-J. Small molecule Jq1 promotes
prostate cancer invasion via bet-independent inactivation of Foxa1. J Clin Invest
(2020) 130(4):1782–92. doi: 10.1172/JCI126327

70. Chaytor L, Simcock M, Nakjang S, Heath R, Walker L, Robson C, et al. The
pioneering role of Gata2 in androgen receptor variant regulation is controlled by
bromodomain and extraterminal proteins in castrate-resistant prostate cancer.Mol
Cancer Res (2019) 17(6):1264–78. doi: 10.1158/1541-7786.Mcr-18-1231

71. Nerlakanti N, Yao J, Nguyen DT, Patel AK, Eroshkin AM, Lawrence HR,
et al. Targeting the Brd4-Hoxb13 coregulated transcriptional networks with
bromodomain-kinase inhibitors to suppress metastatic castration-resistant
prostate cancer. Mol Cancer Ther (2018) 17(12):2796–810. doi: 10.1158/1535-
7163.Mct-18-0602

72. Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, et al. Bet
bromodomain proteins function as master transcription elongation factors
independent of Cdk9 recruitment. Mol Cell (2017) 67(1):5–18.e9. doi: 10.1016/
j.molcel.2017.06.004

73. Han H, Jain AD, Truica MI, Izquierdo-Ferrer J, Anker JF, Lysy B, et al.
Small-molecule myc inhibitors suppress tumor growth and enhance
immunotherapy. Cancer Cell (2019) 36(5):483–97.e15. doi: 10.1016/
j.ccell.2019.10.001
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