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Infectious diseases are considered as a pressing challenge to global public health.
Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as
individualized precision therapy are essential for controlling the spread of infectious
diseases. Aptamers, which were screened by systematic evolution of ligands by
exponential enrichment (SELEX), can bind to targets with high affinity and specificity so
that have exciting potential in both diagnosis and treatment of infectious diseases. In this
review, we provide a comprehensive overview of the latest development of SELEX
technology and focus on the applications of aptamer-based technologies in infectious
diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The
challenges and the future development in this field of clinical application will also be
discussed.
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INTRODUCTION

Infectious diseases which result from pathogenic microorganisms become one of the most important
illnesses in the world (Mosing et al., 2005; Giri et al., 2019). Because of the characteristics of contagion
and epidemic, infectious diseases not only endanger public health but also pose serious threats and huge
losses to social stability and economic development. Over the past decades, the sudden public health
crises including Ebola hemorrhagic fevers, avian influenza, severe acute respiratory syndrome (SARS) or
Middle East respiratory syndrome (MERS), as well as COVID-19, have swept out the world and caused a
significant impact on society inevitably (Del Rio et al., 2014; Liu et al., 2017; Lycett et al., 2020;Wiersinga
et al., 2020; Perra, 2021). Existing pathogen detection methods are difficult to achieve a balance between
timeliness, accuracy and cost to meet the requirements of large-scale population screening. In addition,
the existence of antibiotic-resistant microbes such as multidrug-resistant tuberculosis (MDR-TB),
extensively drug-resistant tuberculosis (XDR-TB) and methicillin-and aminoglycoside-resistant
Staphylococcus aureus (MARSA) brings greater challenges to the prevention and treatment of
infectious diseases (Fauci et al., 2005; Tan Z. M. et al., 2020; Nang et al., 2021). Therefore, there is
an urgent demand to develop rapid, economic, and sensitive early diagnostic assays for pathogens, and
also adequate therapeutics of precision medicine for infectious diseases.
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Aptamers, also known as “chemical antibodies”, are a class of
single-stranded DNAs or RNAs which can target various ligands
through non-covalent bonds. Those aptamers are synthetic
screened in vitro by a selection procedure, commonly known
as Systematic Evolution of Ligands by Exponential Enrichment
(SELEX). DNA aptamers are more stable and widely used, while
RNA aptamers are more likely to form complex structures such as
stem, loop, hairpin, G-quadruplex and so on (Breaker, 1997; Lin
and Patel, 1997; Wu et al., 2017). These folding 3D structures can
increase sequence space coverage and improve space
representation, which are beneficial for aptamer-target
recognition, thus improving the specificity and affinity of the
screened aptamers (Kinghorn et al., 2017). Aptamers have
attracted considerable attention because of their exceptional
merits such as low synthesis cost, easy chemical modification,
high chemical stability and binding affinity, low immunogenicity,
good repeatability and reusability (Hong and Sooter, 2015; Yu
et al., 2021). To date, thousands of aptamers have been identified,
which can be used to identify different targets with high affinity
and specificity, such as small metal ions, organic molecules,
amino acids, proteins, bacteria, viruses, whole cells and even
animals (Cowperthwaite and Ellington, 2008; Zhou and Rossi,
2017). Based on the above advantages, nucleic acid aptamers have
been explored as the most promising molecular recognition
probes to widely applied in the field of the identification of
infectious agents and the therapeutic of infectious diseases.

In this review, the recent advances of SELEX technologies for
aptamer selecting of infectious pathogens will be overviewed.
Then we will focus on a variety of aptamer-based biosensors for
infection detecting and the state-of-the-art aptamer therapeutics
and drug delivery systems in the precision treatment of infectious
diseases. The current challenges and future prospects of aptamers
will also be discussed to provide a direction for the research and
development of aptamers.

DISCOVERY OF SPECIFIC APTAMERS BY
SYSTEMATIC EVOLUTION OF LIGANDS BY
EXPONENTIAL ENRICHMENT
SELEX was originally developed by Gold and Szostak in 1990
(Ellington and Szostak, 1990; Tuerk and Gold, 1990). Before
selecting, an oligonucleotide library consisting of two constant
regions at 5′ and 3′ ends and a random region in the middle should
be synthesized. The primary library usually contains up to
1012–1015 different nucleic acid molecules, of which the random
region is about 20–40 bp, and the constant regions that flanked are
about 20 bp, including restriction endonuclease sites, primer
binding sites and RNA promoter binding sites (Zimbres et al.,
2013; Hong and Sooter, 2015). Currently, both DNA and RNA
libraries are widely used for SELEX due to their distinct advantages.

General Systematic Evolution of Ligands by
Exponential Enrichment Scheme
In brief, a typical SELEX comprises three critical stages: 1)
incubate the target molecule with the combinatorial library of

nucleic acids in vitro to form an aptamer-target complex; 2)
partition the complex from the unbound nucleotides and separate
the oligonucleotide chain that binds to the target molecule; 3)
obtain a sub-library by employing PCR (DNA SELEX) or reverse
transcription PCR (RNA SELEX) to amplifying the target-bound
sequence (Figure 1). It is worth mentioning that the negative
target is usually introduced to improve target specificity by
recovering and amplifying the unbound oligonucleotide chain.
In this way, the oligonucleotide chain obtained by iterative circles
of selecting and PCR amplification is the nucleic acid aptamer of
the target. After cloning and sequencing, the identification,
binding ability and the secondary/tertiary structure of aptamer
can be analyzed subsequently.

Novel Approaches for Aptamer Selection
Despite the conventional SELEX technology is well-established,
the process is tedious and time-consuming, which typically takes
up to 20 rounds. At present, various novel SELEX technologies
have been developed to improve the shortcomings of the
conventional one, further accelerate the speed and efficiency of
high-affinity aptamer screening and shorten the selection period.
In this respect, the rapid development of SELEX technology
provides substantial potential for rapid response to public
health emergencies.

The separation of aptamer-bound sequences from the
unbound nucleotides is one of the most critical steps in the
process of SELEX. Thus, the screening process can be accelerated
by optimizing the binding and separation of the target molecule
with libraries. Usually, immobilization is involved in binding the
targets to a carrier and then incubated with the nucleic acid
library (Van Dyke et al., 2016). Common carriers such as
magnetic beads, affinity chromatography columns or
microfluidic chips. Among them, considerable attention has
been given to magnetic beads, as chemical modification of
magnetic beads is easy and the magnetic separation method is
convenient, fast and effective (McKeague et al., 2010; Hunniger
et al., 2014; Xi et al., 2015; Duan et al., 2016; Ma et al., 2018). To
date, a variety of aptamers have been successfully selected by
magnetic SELEX (Oh et al., 2009; Lai et al., 2014; Wu J.-H. et al.,
2018). For example, Hong et al. first proposed a magnetism-
controlled chip for Ebola virus aptamers selection by integrating
the magnetic bead-based SELEX (Mag-SELEX) with a
microfluidic system and by this method they got an aptamer
with low dissociation constants and reducing the selecting round
to three (Hong et al., 2019). Another novel approach called
Capillary Electrophoresis SELEX (CE-SELEX) is based on the
difference of electrophoretic mobility between target bounded
sequence with the unbound one (Mendonsa and Bowser, 2004a;
Mendonsa and Bowser, 2004b). Mosing Renee K et al.
successfully obtained aptamers candidate with high affinity to
human immunodeficiency virus (HIV) reverse transcriptase by
CE-SELEX only after four cycles (Mosing et al., 2005). Although
in vitro SELEX technology for a single target has been quite
mature, especially for proteins, the clinical applications of these
aptamers are still limited. The reason is that the properties of a
recombinant protein are not the same as those of natural proteins,
including conformation, advanced structure and biological
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activity. Besides, aptamers screened for artificial recombinant
proteins may be much less sensitive in identifying natural targets.
To overcome this limitation, cell-SELEX, which employs the

whole cell as a target, was first proposed in 2003 (Daniels
et al., 2003). Recently, a series of aptamers against various
pathogens were generated by cell-SELEX, such as Salmonella

FIGURE 1 | schematic illustration of the aptamer generation by conventional SELEX process.

TABLE 1 | Summary of novel SELEX techniques for aptamer selecting.

Techniques Description Advantages Ref.

Magnetic bead-based
SELEX

Immobilize the targets on the magnetic bead,
accelerate the process by magnetic separation

Simple and fast operation; short cycle; low cost Lou et al. (2009), Oh et al. (2009), Oh et al.
(2011), Zhou et al. (2013b), Hunniger et al.
(2014), Lai et al. (2014), Lai and Hong (2014),
Lin et al. (2015), Ansari et al. (2017), Han et al.
(2017), Paniel et al. (2017), Wu et al. (2018a),
Hong et al. (2019), Leblebici et al. (2019)

Capillary
Electrophoresis
SELEX

According to the difference of electrophoretic
mobility between target bounded sequence with
the unbound one

Quick; economic; high efficiency; easy
operation without washing procedures

Mendonsa and Bowser (2004b), Mosing et al.
(2005), Mosing and Bowser (2009), Cella et al.
(2010), Ruff et al. (2012), Jing and Bowser
(2013), Yang and Bowser (2013), Dong et al.
(2015), Zhu et al. (2019a), Zhu et al. (2019b)

Cell-SELEX Employ the whole cell as targets Remain the conformation and bioactivity of
protein; obtain aptamers without knowing the
molecular target on the cell surface; no need to
purify protein before selection; explore new
surface protein and biomarkers

Duan et al. (2012), Nagarkatti et al. (2012),
Dwivedi et al. (2013), Kim et al. (2013), Bitaraf
et al. (2016), He et al. (2019), Song et al.
(2019), Gao et al. (2020), Saad et al. (2020),
Lin et al. (2021)

Capture-SELEX Immobilize the oligonucleotides on the solid
substrate to further capture the targets

Simple operation of target immobilization; retain
the natural structure of the target; especially
suitable for small molecular targets

Stoltenburg et al. (2012), Duan et al. (2013),
Spiga et al. (2015), Duan et al. (2017), Paniel
et al. (2017), Lauridsen et al. (2018),
Boussebayle et al. (2019a), Boussebayle et al.
(2019b)

In vivo SELEX Use living animal models as selection targets or
conditions to generate aptamers

Aptamers were selected in a whole organism
ideally; it holds promise for drug delivery and
treatment in vivo

van Bel et al. (2014), Urak et al. (2016), Zhuo
et al. (2017), Wang et al. (2018), Chen et al.
(2019), Sola et al. (2020)

High-throughput
sequencing SELEX

Conventional SELEX in conjunction with high-
throughput sequencing system, sequencing
across all the selection round instead of the
last one

predominant efficiency and applicability Roulet et al. (2002), Dittmar et al. (2012), Reiss
et al. (2012), Ditzler et al. (2013), Dao et al.
(2016), Ruan et al. (2017), Nitta et al. (2019),
Asif and Orenstein (2020), Fan et al. (2020),
Ishida et al. (2020)
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typhimurium, Escherichia coli, Vibrio parahaemolyticus,
Trypanosoma cruzi, and so on (Duan et al., 2012; Nagarkatti
et al., 2012; Dwivedi et al., 2013; Kim et al., 2013; Bitaraf et al.,
2016; Saad et al., 2020). In addition to the methods mentioned
above, many other innovative SELEX strategies have also been
developed in the past decades, such as capture-SELEX, in vivo
SELEX, high-throughput sequencing SELEX and so on. The
principles and characteristics of those techniques are
summarized in Table 1.

SELEX technology determines that the aptamer target
molecules have a very wide range which covers a huge range
from metal ions, compounds, peptides, nucleic acids, proteins to
cells, and even includes some complex targets, such as viruses,
bacteria and other pathogens. Based on SELEX technology,
aptamers obtained from specific substances of the pathogens
such as surface proteins or key enzymes in physiological
processes, are expected to be used for pathogen diagnosis or
infection treatment.

APPLICATION OF APTAMERS BIOSENSOR
IN INFECTIOUS DISEASES DIAGNOSIS

Most infectious diseases progress rapidly, and a clear diagnosis is
key for effective treatment. Also, efficient pathogen detection
methods help control the spread of infectious diseases. Therefore,
early, accurate and rapid pathogen diagnosis is of great
significance. Currently, the routine diagnostics for infectious
pathogen are bacterial culture, polymerase chain reaction
(PCR) and immunological detection (Lampel et al., 2000;
Byrne et al., 2009; Arvanitis et al., 2014; Rohr et al., 2016;
Balmaseda et al., 2017). These approaches are relatively
mature, but they inevitably have limitations such as time-
consuming, high cost, and tedious operation. Alternatively,
although antibody is indispensable in most routine tests, it
inevitably meets many limitations, such as laborious and
expensive production and identification, batch-to-batch
variation, and its biological activity is susceptible to the
environment such as pH and temperature (Jayasena, 1999;
Nimjee et al., 2005; Rosenbaum et al., 2012; Yu et al., 2021).

Aptamers have a very wide range of target molecules, which can
be designed for early disease markers, creating conditions for the
early detection of pathogens. At the same time, aptamers can be
rapidly chemically synthesized in batches with a long shelf-life for
storage at room temperature. The comparison of main
characteristics between antibodies and aptamers is shown in
Table 2.

Due to those advantages, abundant research has integrated
aptamers into biosensors as molecular recognition elements over
the past decades. The biological signals received by aptamers can
be transformed into the optical signal or electrical signal by the
signal converter, then the output signal will be amplified by the
electronic system and further be used for the detection of
pathogenic microorganisms qualitatively or quantitatively.
According to the pathogenic targets, we category these
aptamer-based biosensors into three classes: bacteria, viruses
and others.

Detection of Bacteria
The current diagnostic gold standard of bacterial identification is
still bacterial culture, subsequent biochemical identification and
serological typing (Rauch and Nauen, 2003; Andini et al., 2018;
Takeuchi et al., 2018). However, they are time-consuming,
usually several days, and have some limitations in the
identification of some certain species. In addition, it is less
convenient for point-of-care detection. To meet this need,
aptamer-based biosensors were widely developed. As an
example, an electrochemical sensor for the detection of
Mycobacterium tuberculosis reference strain H37Rv ATCC
27294 using aptamer technology was introduced by Zhang X.
et al. (2019). In this method, H37Rv aptamers layer modified on
the bare Au interdigital electrode are recognition probe and
oligonucleotides modified with gold nanoparticles (AuNPs-
DNA) are signal probe. When H37Rv bacteria was present, it
competitively bounds to aptamers, and the displacement of
AuNPs-DNA dramatically changing the conductivity. The
detection limit of this method is 100 CFU/ml, and it can be
used for rapid detection of H37Rv only in 2 h. In one of recent
studies, electrochemical aptasensor was devloped for the
detection of Escherichia coli O157:H7 (E. coli) (Qaanei et al.,
2021). In this system, the aptamer is employed to improve the
selectivity while a reduced graphene oxide–poly (vinyl alcohol)
and gold nanoparticles nanocomposite (AuNPs/rGO–PVA/
GCE) is used to raise the sensor sensitivity. Consequently, this
aptasensor is able to detect E. coli as low as 9.34 CFU/ml, with an
excellent specificity.

Detection of Viruses
Many infectious diseases are caused by viral infection, such as
acquired immunodeficient syndrome (AIDS), influenza and
COVID-19, which has dealt a heavy blow to the world in
2020. These pathogens widely distribute in open systems and
are endanger human health and the public environment. For
example, the current COVID-19 pandemic in more than 100
countries around the world has infected an untold number of
people and caused large numbers of deaths. Thus, it is urgently
desirable for cost-effective, rapid and reliable diagnostic methods.

TABLE 2 | The characteristics comparison of nucleic acid aptamers and
antibodies (Jayasena, 1999; Zhou and Rossi, 2017; Zhuo et al., 2017; Yu
et al., 2021).

Features Antibodies Aptamers

Substance polymer peptide nucleic acid
Specificity high high
Affinity high high
Immunogenicity high no humoral

immunity
Production cost high low
Stability unstable stable
Potential target limited to immunogenic

molecules
no limitation

Development time 6–18 weeks 2–6 weeks
Modification limited convenient
Batch-to-batch
variation

high low
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Woo et al. designed an aptamer-based fluorescent sensor to detect
SARS-CoV-2 RNA in human nasopharyngeal samples (Woo
et al., 2020). They intelligently designed a one-pot, ligation-
dependent isothermal reaction cascade that consists of a
ligation reaction by SplintR ligase and subsequent
transcription by T7 RNA polymerase. When target RNA
existing, the RNA aptamers of the isothermal reaction
products bind to fluorescent dyes and produce a significant
fluorescence signal. The detection limit is 0.1 aM.
Interestingly, only by redesigning the hybridization regions of
the probes, a series of viruses including influenza viruses, MERS
and SARS can be detected by this method. Another recent
approach was proposed by Liu et al. (2020), which designed a
qPCR amplification reaction triggered by two aptamers probes
for ultrasensitive detection of serum COVID-19-associated
antigens. This method exhibits excellent detection performance
and can be conducted within 2 h. In another study by Babamiri
et al. (2018), aptamer against HIV-1 was used for the
development of an electrochemiluminescence (ECL) sensor.
This aptamer-based biosensor showed excellent sensitivity and
specificity, with a detection limit as low as 0.3 fM, and can be
successfully applied to clinical serum samples analysis.

More importantly, some viruses have multiple subtypes and
mutant quickly, which are highly infectious and transmissible
pathogens (Shim, 2011; Li et al., 2019; Ma and Ma, 2020).
Therefore, the detection of mutation is becoming a top
priority in the field of methodological research. At present,
molecular methods such as PCR and DNA sequencing are
powerful tools to obtain information on mutant status, but
these methods could not satisfy the expectation for extensive
disease screening because of the need for special equipment and
expensive consumables (Escadafal et al., 2014; Ma et al., 2015).
Recently, Wang et al. established a highly sensitive platform for
detecting SARS-CoV-2 and its mutated variants based on a
CRISPR-Cas13 transcription amplification principle (Wang
et al., 2021). They employed light-up RNA aptamers as the
sensitive output of amplification signals, achieving sensing of
as low as 82 copies of SARS-CoV-2. Moreover, this platform was
applied to strictly identify the key mutation of the SARS-CoV-2
variant, D614G, which increases viral stability and flexibility and
further enhances replication and transmission.

Detection of Other Pathogens
Aptamer-based biosensors are used to detect several other
pathogens alternatively. Protozoan parasite infection remains
one of the major public health problems in some
underdeveloped and developing countries with poor sanitation
and economic backwardness. Thus, the application of detections
that require expensive equipment or complex laboratory sites is
significantly limited in these areas. In this case, a deal of aptamer-
based biosensors has been developed for the identification of
parasites due to their low cost, simplicity, portability (Lee et al.,
2012; Singh et al., 2019a; Singh et al., 2019b; Frezza et al., 2020;
Minopoli et al., 2020). Take the diagnosis of malaria as an
example, Singh et al. established instrument-based and
instrument-free approaches for pan malaria and P. falciparum
species based on aptamers specific to Plasmodium lactate

dehydrogenase (PLDH) and Plasmodium falciparum glutamate
dehydrogenase (PfGDH) respectively (Singh et al., 2019a). They
successfully overcame the false-negative limitation of traditional
microscopic examination of Giemsa-stained thick blood films
and achieved an ultrasensitive detection with a low cost (∼0.10 $
per test) (Mikhail et al., 2011; Thongdee et al., 2014; Bin Dajem,
2015; Sumari et al., 2016; Habyarimana and Ramroop, 2020). In
addition, Fu developed an indirect blocking enzyme linked
aptamer assay (ib-ELAA) for the detection of Mycoplasma
gallisepticum (M. gallisepticum), which was the major
pathogen of chronic respiratory disease (Fu et al., 2021b; Fu
et al., 2021a). In this method, they initially screened out the
aptamer Apt-236 which can bind to PvpA protein of M.
gallisepticum with high affinity, and further integrated Apt-236
into ib-ELAA and successfully applied in the detection of clinical
chicken sera sample. Similarly, a great many of aptamer-based
methods for the detection of pathogenic parasites (Homann et al.,
2006; Bruno et al., 2014; Ospina-Villa et al., 2018; Ospina, 2020),
mycoplasma (Fu et al., 2014; Liu Y. et al., 2019; Wan et al., 2020),
several fungal species (McKeague et al., 2010; Barthelmebs et al.,
2011; Ma et al., 2014; Wu S. et al., 2018; Liu M. et al., 2019; Han
et al., 2021) have also been developed.

The comparison of representative aptasensor performance in
the detection of the various pathogen is summarized in Table 3.

APPLICATION OF APTAMERS IN
INFECTIOUS DISEASES TREATMENT

At present, the therapeutic of infectious diseases is mainly based
on the principle of symptomatic treatment or specific anti-
pathogen treatment. However, antimicrobial resistance, high
viral genomes mutation variability and escaping the host
immune response make most medications and vaccines
inefficient (Finlay and McFadden, 2006; Labella and Merel,
2013; Dunning et al., 2014a; Fall-Malick et al., 2014; Ferir
et al., 2014; Lazarevic, 2014; Marascio et al., 2014; Sahu, 2015;
Wandtke et al., 2015). It is worth mentioning that the effect of
antiviral therapy is not ideal for all patients and side effects caused
by many existing antiviral drugs may lead to other diseases than
primary affection. For instance, the most effective therapy for
patients with hepatitis C (interferon alfa-2b plus ribavirin)
benefits only about 50% of cases (Manns et al., 2001; Sarhan
et al., 2020), whereas such therapeutic regimen usually be
associated with numerous adverse effects (Fried, 2002;
Nishimura et al., 2002; Fisher et al., 2004; Negro, 2010;
Pazienza, 2011; Gull et al., 2019). Many studies confirmed that
aptamer, as a promising candidate, can target the key molecules
in bacterial physiological processes or viral surface proteins, and
treat the infection effectively by inhibiting viruses penetrating the
cells, disrupting the activity of enzymes related to viral replication
or regulating immune response (Bellecave et al., 2008; Gopinath
et al., 2012; Hwang et al., 2012; Torabi et al., 2020).

Aptamer-Based Therapeutics
Precision medicine holds great promise to harness the benefits of
aptamers that can bound to targets with high specificity and
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affinity for targeted treatment of a variety of diseases. Such
therapeutic aptamers function mainly in the following two
ways: 1) aptamers function as antagonists to disrupt the
function of a pathologic target protein and block the
interaction of disease-associated targets by specifically binding
to target; 2) aptamers function as agonists to increase the ability of
the target receptors. For instance, Lee et al. reported an RNA
aptamer against the Hepatitis C virus (HCV) nonstructural
protein 5B can effectively inhibit HCV replication and
suppressed HCV infectious virus particle formation (Lee et al.,
2015). HIV integrase is considered necessary for retroviral
replication, which is a primary target for the therapy of AIDS
(Shoji et al., 2002). Thus, aptamers as potential anti-HIV
integrase inhibitors have drawn much attention from
researchers. Pang and his colleague designed an anti-HIV
lentivirus vector consist of shRNA, ribozyme and RNA decoy
(Pang et al., 2018). By screening aptamers against integrase and
incorporating these aptamers in shRNA, they successfully
observed interference and inhibition to transcription of HIV
in cell cultures. Also, many other aptamers against Tat
protein, gp120, reverse transcriptase, nucleocapsid protein
were developed for further exploit research of antivirus
therapy (Mufhandu et al., 2012; Aeksiri et al., 2014; Nguyen
et al., 2020; Zhang et al., 2020). COVID-19 has wreaked havoc all
over the world, but no specific treatment has been developed yet.
Liu and his colleague developed an aptamer that specifically
targets the spike protein of the coronavirus SARS-CoV-2,
which is the critical role of viral infection (Liu et al., 2021).
When the receptor-binding domain (RBD) of the spike protein of

the coronavirus SARS-CoV-2 binds to the human angiotensin-
converting enzyme 2 (ACE2), an infection cascade is triggered
(Schmitz et al., 2021). They proved that this aptamer effectively
protects host cells from infection by blocking the interaction
between spike protein and ACE2 receptor. This exciting report is
fueling hope in the field of COVID-19’s therapy, it also brings up
new opportunities for aptamer-based treatment.

Despite aptamer-based therapy shows huge potential, their
inherent physicochemical characteristics affect pharmacokinetic
properties in some way, which may limit their widespread clinical
application. The most critical problems are nuclease degradation
and rapid renal filtration. Unmodified nucleic acid aptamers have
an average half-life of fewer than 10 min for the susceptibility to
nucleases which abundantly exist in biological fluids (Lakhin
et al., 2013). To increase its biostability and prolong the in vivo
half-life, chemical modifications are typically introduced such as
replacing 2′-OH with fluoro (F), amino (NH2), or O-methyl
(OCH3) groups at the 2′ position (Morita et al., 2018). Since the
average diameter of 5–30 kDa aptamers is less than 5nm, which is
smaller than the glomerular filtration threshold (i.e., 30–50 kDa),
aptamers are inevitably rapidly excreted through renal filtration
(Guo, 2010; Morita et al., 2018). To overcome this disadvantage,
many macromolecular substances such as proteins, cholesterol,
liposomes, high molecular mass PEG or nanomaterials are
involved to modify aptamers, and there is indeed a significant
improvement in some reports (Fisher et al., 1976; Drolet et al.,
2000; Rusconi et al., 2004; Burmeister et al., 2005; Chen et al.,
2015; Heo et al., 2016). However, chemical modification is a
double-edged sword. Serious allergic responses caused by

TABLE 3 | Comparison of aptasensor performance in the detection of various pathogen.

Type of
pathogen

Target Aptamer Detection
method

Lod Linear
range

Detection
time

Specificity Ref.

Bacteria Mycobacterium
tuberculosis

H37Rv aptamers Electrochemical 100 CFU/ml 1×102–1 ×
107 CFU/ml

2 h 90% Zhang et al.
(2019a)

Staphylococcus
aureus

S.aureus aptamer Fluorescent 39 CFU/ml 80–8 ×
106 CFU/ml

NR high Cai et al. (2019)

L. monocytogenes LM6-116 Fluorescent 10 CFU/ml 10–1 ×
106 CFU/ml

NR high Guo et al. (2020)

Escherichia coli E1 Fluorescenct 3.7 ×
102 CFU/ml

6×103–3.75 ×
106 CFU/ml

135 s high Zhang et al.
(2019b)

Viruses SARS-CoV-2 D614G variants
aptamer

Fluorescent 82 copies 100–1,000 copies 20 min high Wang et al. (2021)

HIV-1 HIV aptamer ECL 0.3 fM 3.3 fM–0.3 nM NR high Babamiri et al.
(2018)

HBV HBsAg aptamer Chemiluminescent 0.05 ng/ml 1–225 ng/ml NR high Xi et al. (2018)
Influenza Influenza

nucleoprotein
aptamer

lateral flow
immunoassays

0.26 pg/ml 0.01–10 ng/ml 10 min high Kang et al. (2019)

Norovirus Aptamer-6-FAM,
Bt-Apt-Fc

Microfluidic 100 pM 100 pM - 3.5 nM 35 min high Chand and
Neethirajan,
(2017)

Other
pathogens

P. falciparum PLDH/PfGDH
aptamers

Colorimetric 0.55 pM/
1.34 pM

1 pM - 100 nM 35 min high Singh et al.
(2019a)

Trypanosoma cruzi Apt68 PCR 0.33
parasites/ml

NR NR high Dunning et al.
(2014b)

Leishmania Leishmania
aptamer

Fluorescent ∼100 ng/
2 ml sample

0–1,000 ng ∼1 h NR Bruno et al. (2014)

NR, not report.
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biomaterial, non-specific immune activation, tissue toxicity
caused by drug metabolism and other undesirable side effects
have been reported (Geary et al., 2003; Waring, 2010; Wong and
Goldberg, 2014; Lincoff et al., 2016; Morita et al., 2016). Thus, it is
necessary to cautiously improve and optimize the formulations or
administration routines of aptamer therapy.

Aptamers as Intelligent Chemical
Drug-Delivery Systems
The other ingenious anti-infective therapeutic strategy is to
employ aptamers as intelligent messengers of therapeutic
agents, such as small interfering RNA molecules and
ribozymes (Dey et al., 2005; Romero-López et al., 2012; Zhu
et al., 2012; Wandtke et al., 2015). In the broad area of drug
delivery system, aptamers have also been extensively sought after
due to the inherited merits: relatively small physical size, versatile
structure, quick chemical production, flexible chemical
modification, high stability, and lack of immunogenicity.
Through chemical modification and bioconjugation, a variety
of therapeutic agents increase their stability and bioactivity
without change the primary characteristics (Fattal et al., 2018).
The targeting of aptamer increases the local drug concentration,
thus improving the therapeutic efficacy whilst reducing the
systemic toxic and side effects of the drug. Therefore, many
cell-specific aptamers are explored to conjugate with chemical
entities including chemotherapeutic agents, siRNA, nanoparticles
for targeted delivery of drugs.

For the development of aptamers as drug-delivery systems,
one example is anti-gp120 aptamer for the treatment of AIDS
(Zhou J. et al., 2013). A viral surface protein, gp120, is closely
related to viral infection. HIV-1 infects target cells through
binding gp120 to cellular receptor CD4 and chemokine
receptors such as CCR5 or CXCR4. In this research, Zhou and
his colleague employed an anti-gp120 aptamers as siRNA delivery
vehicles, effective delivery viral inhibiting siRNA in vivo and
potent inhibition of HIV-1 replication. Similarly, Pan et al.
designed an ingenious system which employed bispecific
circular aptamers (bc-apts) to specifically tether protein
cargoes and cellular membrane proteins (Pan et al., 2020).
This strategy achieved the specific delivery of functional
therapeutic proteins, and the deactivation of functional
proteins was also avoided. Furthermore, the bioactivity of the
drug in the lesion was specifically increased. Yan et al. reviewed
the design and application of aptamers as drug-delivery systems
in the photodynamic platform of targeted therapy (Yan et al.,
2021). In this review, they focused on the application of aptamers-
targeted photodynamic therapies which achieve controlled and
accurate delivery of therapeutic drugs to the lesion sites and
obtained excellent photodynamic therapy efficiency. Another
advantage of an aptamer-based targeted delivery system is that
it can delay the evolution of resistance and improve the efficiency
of the antimicrobials on already resistant pathogens. Ucak et al.
used Staphylococcus aureus-specific aptamer to functionalize
methicillin, which is an antibiotic for serious infectious caused
by Gram-positive bacteria (Ucak et al., 2020). By limiting the
amount and dosage during therapy, they proved that the novel

delivery system was significantly effective in reducing minimum
inhibitory concentration (MIC) values. Therefore, the aptamer-
based targeted delivery system is a promising method for the
treatment of infections caused by antibiotic-resistant bacteria. In
addition to the examples above, multiple types of research have
shown the extraordinary ability of aptamer in drug target-
delivering (Nimjee et al., 2005; Shiang et al., 2013; Hahn,
2017; Chonco et al., 2018; Fattal et al., 2018; Tan X. et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

Taking advantage of low cost, easy chemical modification, high
specificity and binding affinity, low immunogenicity, aptamers
have been used as an alternative to antibodies in the development
of aptamer-based technologies in the past decades. The
development of biomedical technology has enabled a
comprehensive exploration of the screening technologies and
practical applications of aptamers. In this review, we
comprehensively discussed the recent progress in the
development of SELEX technology and aptamer-based applied
research in various types of infectious diseases.

Up to now, aptamers were intensively integrated into the
biosensor strategies as molecular recognition elements.
Compared with conventional diagnosis methods, aptamers-
based biosensors strategies had obvious advancement in
sensitivity and reliability which could improve diagnostic
performance, thus lead to intervention at an earlier stage
and avoid the spread of infectious diseases. Furthermore, as
a class of single-stranded nucleic acid, aptamers showed
outstanding advantages on cost and manufacturability, so
that the development of aptamer-based biosensors could be
conducive promote the popularization and improvement of
infectious diseases diagnosis techniques in community
hospitals. Last but not the least, the portability makes
biosensors an alternative to traditional methods in point-of-
care diagnostics and even more diverse medical settings such as
epidemic areas. Aptamers could be also applied in biotherapy
and drug-delivery systems. Due to low immunogenicity and
high targeting ability, aptamer-based therapy could increase
the drug concentration in local lesions, thus improve the
therapeutic effect and reduce the toxic and side effects of
drugs. Aptamers were also intelligent in solving problems of
antimicrobial resistance and viral genomes mutation
variability. Therefore, aptamers are expected to be promising
in the therapeutic of infectious diseases.

However, there remain several challenges limiting the clinical
application of aptamers. Firstly, aptamers for some complex
pathogens are still limited because of the limitations of the
current SELEX technology. Nevertheless, those problems can
be ameliorated by optimizing the critical factors in the SELEX
process in near future, such as the concentration of target
molecules, the separation method of aptamers, PCR reaction
conditions, the number of screening rounds and so on.
Besides, the biostability and toxicity of aptamers, as well as the
degradation of unmodified aptamers by nuclease in serum and
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rapid removal by renal filtration remain to be explored. The side
effects caused by the metabolism of aptamer are also a problem to
be reckoned with. Therefore, significant refinements of
biochemical modification and rigorous administration routines
of aptamer-based therapy are still needed in future research.
Fortunately, in spite of all the challenges mentions above, the
transition from aptamer-based basic research to clinical
application is taking place, although slowly.

Overall, we foresee a promising prospect for aptamer-based
technologies in precision medicine of infectious diseases. Shortly,
with many research and development activities going on in this
field, we envision that practical and commercial biosensors and
novel drugs for clinical diagnosis and precise therapy are very
close to realization, and consequently, that will significantly
reduce the human diseases and economic burdens.
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