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Graph convolutional networks 
fusing motif‑structure information
Bin Wang, LvHang Cheng, JinFang Sheng*, ZhengAng Hou & YaoXing Chang

With the advent of the wave of big data, the generation of more and more graph data brings great 
pressure to the traditional deep learning model. The birth of graph neural network fill the gap 
of deep learning in graph data. At present, graph convolutional networks (GCN) have surpassed 
traditional methods such as network embedding in node classification. However, The existing graph 
convolutional networks only consider the edge structure information of first‑order neighbors as the 
bridge of information aggregation in a convolution operation, which undoubtedly loses the higher‑
order structure information in complex networks. In order to capture more abundant information 
of the graph topology and mine the higher‑order information in complex networks, we put forward 
our own graph convolutional networks model fusing motif‑structure information. By identifying the 
motif‑structure in the network, our model fuses the motif‑structure information of nodes to study the 
aggregation feature weights, which enables nodes to aggregate higher‑order network information, 
thus improving the capability of GCN model. Finally, we conduct node classification experiments in 
several real networks, and the experimental results show that the GCN model fusing motif‑structure 
information can improve the accuracy of node classification.

Deep convolutional Neural network (CNNs)1 has been successfully applied in deep learning tasks such as image 
recognition, speech recognition and machine translation. However, with the development of the Internet, most 
data are presented in the form of graphs, such as social networks, citation networks and traffic networks, etc. 
These graph-structure data cannot be learned by traditional convolution model, hence the deep learning model 
on the graph is generated. Methods based on network embedding, such as DeepWalk etc.2–5 which are applied 
to downstream machine learning-related tasks by learning the low-dimensional embedding representation of 
nodes in Euclidean space in the network. However, these algorithms are unsupervised and not end-to-end mod-
els, and cannot combine node attributes, which lead to their great limitations. The birth of graph convolution 
model is inspired by convolutional neural network. Bruna et al.6 first proposed graph neural network model 
based on spectral domain convolution in their paper. Subsequently, Kipf and  Welling7 proposed GCN that 
became a classical graph convolution network, establishing the bridge between spectral domain graph convolu-
tion and spatial graph convolution. As graph convolution is essentially a Laplacian smoothing operation, its local 
smoothing operation can better aggregate similar  information8,9. Spatial graph convolution  model10–13 got rid 
of the restriction of Laplace matrix and summarized the essence of graph convolution as a process of aggregat-
ing the information of neighbor nodes from the perspective of network topology. Traditional GCNs carry out 
message-passing through edge-structure information to complete graph convolution operation. However, only 
considering the edge-structure information of first-order neighbors loses the higher-order structure information 
in complex networks such as motifs, in addition, GCNs may have the opposite effect on network learning in 
the network data with lots of noise information. Zhu et al.14 proposed H2GCN maintaining high-order network 
information by integrating the output of the middle layer, which was used to improve the performance of GCN 
on homogenous and heterogeneous graphs. Qian et al.15 explores that the performance of GCNs is related to 
the alignment among features, graph, and ground truth. In order to improve the the expression ability of GCNs 
and the generalization ability of the model on different datasets, we propose to integrate the motif-structure 
information into the convolution operation of each layer.

We propose the graph convolution network model MS-GCNs with the motif-structure information integrated, 
and improve the expression ability of the model by integrating the high-order information of motif. Our main 
contributions are as follows: 

(1) We proposed MS-GCNs model, combining the node’s first order neighborhood of edge information and 
motif-structure information to improve the convolution operation. MS-GCNs is the general name of three 
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models, including MS-GCN, MS-SAGE and MS-GAT, which are based on the improvement of GCN, 
GraphSAGE and GAT respectively.

(2) We calculated the same label rates of several real datasets and analyzed the degree of assimilation of nodes 
in the same motif from the perspective of data, which indicated the validity of higher-order information 
of the motif.

(3) We carried out node classification experiments on different types of real networks. Comparing the effects 
according to relevant indicators, our models outperformed baseline models correspondingly. In addition, 
we specifically analyze the performance of the Wikipedia dataset, and experimentally show that MS-GCNs 
can mitigate the impact of data noise on graph convolution performance.

Related work
A motif is usually defined as a subgraph structure that frequently appears in complex networks, and the frequency 
of its occurrence in the original network is much higher than that of the random network with the same node 
 degree16. And with the maturity of motif detection  algorithm17–21, data mining on complex networks combined 
with motifs has become a research hotspot. In the study of social network, the triangle motif is considered to be 
the basis of constructing social  relationship22. The model proposed by Rossi et al.23 learn network embedding 
to maintain high-order structural information by constructing series of matrices such as motif weight matrix, 
motif transfer matrix and motif Laplacian matrix. The research  of23 achieved good performance in link predic-
tion tasks based on the characteristics of motif and the way of self-defining dataset. Li et al.24 make community 
detection of the reconstructed network by constructing hypergraph based on motif and K connectivity motif 
based on hypergraph. Wang et al.25 proposed the MODEL, redefine the first-order and second-order proximity 
by combining motif, and relearned the embedded representation of nodes by means of autoencoder. The Motif 
based PageRank framework proposed by Zhao et al.26 calculate the probability transition matrix of network nodes 
to measure the importance of nodes.  RUM27 learned the embedding representation of preserving higher-order 
structure of the network by learning the module weight and the motif-based random walk strategy. These works 
prove it from all aspects that motifs as higher-order structure in network play a very important role in extracting 
higher-order information of nodes.

Graph neural networks have successfully applied deep learning to graph structure. Graph convolutional net-
works represented by GCN completed the feature update of target node by aggregating neighbor information in 
first-order  neighborhood7. GraphSAGE deconstructed the convolution operation into two steps of sampling and 
aggregation, and proposed an inductive learning  framework10. GAT introduced self-attention mechanism based 
on first-order neighborhood information aggregation to measure aggregation weights of different  nodes12. Our 
model takes the above three models as the baseline model, introduces the motif-structure information based on 
the first-order neighborhood edge information, and improves the graph convolution operation. In recent years, 
there have been a lot of work on the combination of modular and graph neural network, which have achieved 
good results on different targets. Sankar et al.28 combined the convolutional neural network with the model, 
applied the convolution operation to the heterogeneous graph, and solved the problems of neighborhood con-
volution and weight sharing on the heterogeneous graph. Zhang et al.29 proposed a subgraph-level pre-training 
model by combining the motif with contrastive learning based on graph neural network. Besta et al.30 proposed 
a prediction model based on graph neural network and achieved good accuracy in link prediction through heu-
ristic algorithm. Lee et al.31 combined both the methods of self-attention and motif attention to learn the best 
motif attention through reinforcement learning, so as to improve the semi-supervised node classification model.

The above works not only prove that the motif can keep the higher-order information in the network, but also 
successfully combine the motif with the graph neural network to complete the related learning tasks. Inspired 
by this, our paper integrates the motif-structure information into the graph convolution operation, so that the 
nodes can not only capture the edge information of the first-order neighbors, but also combine the higher-order 
structure information of the network during information aggregation, so as to improve the expression ability 
of the graph neural network.

Preliminaries
Notations. Important symbolic representations of the definitions and formulas are listed in Table 1 for bet-
ter subsequent understanding.

Motif‑structure information. In order to facilitate the use of motif information, two basic motif-structure 
information are proposed: the edge-based motif co-occurrence matrix and the node-based motif information 
dictionary. Since our convolution operations combine the first-order neighborhood edge information and the 
motif-structure information, in order to reflect the higher-order characteristics of the motifs effectively, we select 
m3_1 as 3-node module m3 , and m4_3, m4_4, and m4_5 as 4-node motif m4 as shown in Fig. 1. We choose the 
closed motif as the target of recognition, because the nodes in the closed motif are more similar and closed motif 
are more representative and have higher cohesion. The 3-node motif can capture the higher-order information 
of the first-order neighborhood, while the 4-node motif can capture the higher-order information of the second-
order neighborhood. We improve the graph convolution operation by combining the edge information of the 
first-order neighborhood with motif-structure information, so that the representation ability of the model can 
be further improved.

Definition 1 The edge-based co-occurrence matrix is defined as matrix M, and Mt represents the co-occurrence 
matrix of the corresponding motif mt.
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As shown in Formula (1), Mt(i, j) is the times when Ei,j belongs to a particular motif mt . For 4-node motifs, 
since there are three base motifs, Mt(i, j) is equal to the sum of the number of the three base motifs containing 
both node i and j.

We integrate both 3-node and 4-node motifs simultaneously, and the M matrix is the weighted sum of matrices 
m3 and m4.

Take m3_1 and m4_3 defined in Fig. 1 as an example. The upper part of Fig. 2 is the original network, and 
the lower part of Fig. 2 is the co-occurrence matrix of module body based on M3_1 and M4_3 respectively The 
motif co-occurrence matrix can describe the structural weight information of edges from the side.

(1)Mt(i, j) = #
{
mt contains both vetex i and vetex j

}

(2)M = M3 + rtM4

Table 1.  Table of notations.

Symbol Definition description

G Undirected graph G consists of a set of edges E and a set of nodes V

V Set of all nodes in the graph G

E Set of all edges in the graph G, Ei,j is the edge of node i and j

A Adjacency matrix of graph G

D Diagonal degree matrix of graph G

mt Motif, t represents motif ’s type

Hl Node feature matrix at the l-layer of neural networks

N(i) First-order neighbor of node i

k1 Weight parameter of the first-order neighbor

k2 Weight parameter of higher-order motif-structure information

rt Ratio of the number of 3-node motif to the number of 4-node motif

Figure 1.  3-node motifs and 4-node motifs.

Figure 2.  The motif co-occurrence matrix is constructed according to the specific motif mt.
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Definition 2 The node-based motif information dictionary is defined as Dict, which defines the motif weight 
information of the first-order neighborhood of the central node from the perspective of nodes.

As shown in Formula (3) and (4), Dict[i] is the weight information set of neighbor motif of central node i. 
Dict[i] [j] represents the motif weight of neighbor node j relative to node i. This corresponds to the M(i, j) ele-
ment in the motif co-occurrence matrix.

Proposed method: MS‑GCNs
The essence of convolutional operations in graph convolutional networks is to achieve feature learning through 
message aggregation of each node and its first-order neighbors. As shown in Fig. 3, when the central node 
aggregates neighbor features, its feature information comes not only from itself but also from the features of 
neighboring nodes. Node feature update combines its own features and the features of its first-order neighbors 
as the features of its next layer. By stacking network layers, nodes can aggregate the feature information of the 
distant nodes. The color of nodes represents the label information of nodes.

However, feature aggregation using only edge information of first-order neighbors cannot capture higher-
order information in the neighborhood, because, in most cases, node features in the same module have high 
similarity, which will be shown in the following experiment. Therefore, if the central node only considers the edge 
information, this part of higher-order information will be lost. As shown in Fig. 3, in the node classification task, 
we assume that the features of nodes with same label have high consistency, at the same time, the center node 
and dotted box labels are consistent, in this case, traditional GCN will treat the neighbor nodes indiscriminately 
in the process of information aggregation, as a result, the target node may not be able to aggregate really useful 
information. The first-order neighbor features outside the dotted box are considered as noise information. In 
fact, we should improve the convolution operation by increasing the aggregation weight of the module node 
points in the dotted box, that is, it can improve the prediction accuracy by adding the motif-structure informa-
tion into the convolution process. Based on the above analysis, we fused the module structure information on 
GCN, GraphSAGE and GAT baseline models respectively, and proposed three models, MS-GCN, MS-SAGE 
and MS-GAT. Next, three specific models are discussed and the function of structural information of the motif 
is proved by experiments.

(3)Dict[i] =
{
Motif weights of nodes in N(i) relative to i.

}

(4)Dict[i][j] = M(i, j)

Figure 3.  The color of the node represents the label feature information of the node. The central node 
completes a convolution operation by aggregating the first-order neighbor information. After each convolution 
operation, the central node completes its own feature update operation, and the updated feature matrix is used 
as the input of the next convolution.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10735  | https://doi.org/10.1038/s41598-022-13277-z

www.nature.com/scientificreports/

MS‑GCN. MS-GCN takes GCN as the basic model. For GCN model, the multi-layer node feature aggrega-
tion formula is as follows:

The Ã is the self-loops added on the basis of adjacency matrix A. D̃ is the diagonal degree matrix of Ã(i.e., D̃i,i = ∑
j Ãi,j

 ). We define Asym = D̃
−1
2 Ã D̃

−1
2  as the normalized Laplace matrix of A, and accordingly Msym can be 

calculated. Hl represents the matrix of node features at the l-layer, Wl represents the learnable parameter matrix. 
As shown in Formula (5), through matrix operation, each node can aggregate the feature information of its 
neighbor nodes. On the basis of 5, MS-GCN adds edge-based motif co-occurrence matrix M, simultaneously 
integrates higher-order motif information and edge information of first-order neighbors by introducing k1 and 
k2(i.e., k1+k2=1), k1 and k2 are essentially two learnable parameters of feedforward neural network, which are 
used to adjust the weight of edge-structure and motif-structure information. M integrates the weight information 
of m3 and m4 simultaneously (Formula (6) and (7)).

MS‑SAGE. The main contribution of GraphSAGE is to put forward an inductive graph convolution network 
model, decompose the graph convolution operation into two operations of sampling and aggregation, and gen-
eralize the general operation of graph convolution. MS-SAGE builds on this with a node-based motif informa-
tion dictionary to improve aggregation operations (Definition 2.). As shown in Formula (8), the motif informa-
tion dictionary does not affect the sampling process of neighbor nodes. After sampling, weighted aggregation is 
carried out according to the corresponding weights of neighbor nodes in the motif information dictionary, then 
the next-layer feature representation of the node is updated (Formula (9)). The aggregation operation here cor-
responds to the MEAN operation of GraphSAGE.

It is worth mentioning that when GraphSAGE conducts batch training model, it needs to sample the two-order 
neighbors of nodes at a time. MS-SAGE consider both m3 and m4 motifs, which is also built on the two-order 
neighbors of nodes, therefore it can realize batch training by identifying the motif of two-order closed subgraph. 
It is consistent with the inductive model concept of GraphSAGE.

MS‑GAT . The main contribution of GAT is that it can learn the attention score of the first-order neighbor 
nodes, which comes from the attention of the attributes of the first-order neighbor nodes, which can also be 
understood as attribute attention. Based on GAT, MS-GAT introduces high-order model structure information 
and adds structure weight information to the original attribute weight information, which can enrich the expres-
sion ability of GAT model.

The purpose of GAT is to learn the attribute attention score of ei,j as node j to i (Formula (10)). MS-GAT 
introduces motif structure information on this basis of GAT, M is the edge-based motif co-occurrence matrix 
(Formula (11)), simultaneously integrates adjacent matrix A and module matrix M, The new attention score αi,j 
(Formula (12)) is combined with the structure weight and attribute weight by the attention layer, and the atten-
tion score is taken as the new weight of feature aggregation (Formula (13)).

Node classification. We used Softmax to normalize the final representation xi of the node for node classi-
fication. The softmax is defined as softmax(xi)= exp(xi)∑

iexp(xi)
 . For semi-supervised multiclass classification, we then 

(5)Hl+1
= σ( D̃

−1
2 Ã D̃

−1
2 Hl Wl)

(6)A′
= k1Asym + k2Msym

(7)Hl+1
= σ(A′ H

l
Wl)

(8)
Hk
N(v) = WeightedAGGk( H

k−1
u , ∀u ∈ N(u) )

= W ·Mean
(
Dict[v][u] ·Hk−1

u , ∀u ∈ N(u)
)

(9)Hk
v = σ (Wk

· CONCAT( Hk−1
v , Hk

N(v)))

(10)ei,j = a(Whi , Whj)

(11)A′
= AGG(A,M)A′

i,j = MAX(Ai,j ,Mi,j)

(12)αi,j = softmax(ei,j ⊙ A′) =
exp(ei,j)∑

kǫNi
exp(ei,k)

(13)hi = σ



�

j∈Ni

αi,jWhj



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evaluate the cross-entropy error over all labeled examples, where F is the output channels, and Z= 
∑

iexp(xi) is 
applied row-wise and yL is the set of node indices that have labels (Formula (14))

Experiment and analysis
Quantitative analysis of dataset. In the experimental part, we firstly conducted quantitative analysis on 
the node similarity in the same motif. We define the motif same-label rate LR as the proportion of motif with 
consistent node tags in all motifs of the dataset. There are 6 real datasets used for node classification experiments, 
as shown in Table 2, we have counted each indicator of the datasets.  Cora32,  Citeseer32 and  Pubmed32 are cita-
tion network, where nodes in the dataset represent the document, edges represent the reference relationship of 
the document, node features represent the bag vector of document features, and each node has a unique label 
to represent the category of the document;  CoauthorCS33 is the co-author network of Computer Science, where 
nodes represent the authors, edges represent the co-author relationship of the paper, node features represent 
paper keywords for each author’s papers, and class labels indicate most active fields of study for each author; 
 AmazonPhoto33 is the co-purchase graph, where nodes represent goods, edges indicate that two goods are fre-
quently bought together, node features are bag-of-words encoded product reviews, and class labels are given 
by the product category;  Wikipedia15 is the web page citation network, where nodes represent web page, edges 
represent the citation relationship of the web page, node features represent the bag vector of web page features, 
each node has a unique label to represent the category of the web page.

Figure 4 shows the original edge information, m3_1 and m4_5 motif information of Cora dataset respectively. 
It can be seen intuitively that the motif structure plays an indispensable role in the formation of the network, 
which indicates that nodes directly have high-order information except edges. In addition, according to the data 
analysis in Table 3, no matter 3-node motif or 4-node motif, the nodes in one motif have highly similarity in 
each dataset. This confirms the qualitative analysis of MS-GCNs from the perspective of data. Therefore, we can 
improve the graph convolution operation by combining the motif structure information, so as to improve the 
feature aggregation ability of nodes and make the model have better expression ability.

Benchmark algorithm. We verify the effectiveness of the model by performing node classification tasks on 
three datasets. The benchmark algorithm is as follows:

• DeepWalk: A random walk based network embedding method combined with natural language processing 
(NLP) is used to learn low-dimensional embedding of nodes in networks and semi-supervised learning  tasks2.

(14)L = −
∑

l∈yL

F∑

f=1

Ylf lnZlf

Table 2.  Statistics of dataset.

Dataset Nodes Edges Classes Features Training nodes Validation nodes Test nodes

Cora 2708 5429 7 1433 140 500 1000

Citeseer 3327 4732 6 3703 120 500 1000

Pubmed 19717 44,338 3 500 60 500 1000

CoauhtorCS 18,333 81,894 15 6805 300 500 17,583

AmazonPhoto 7487 119,043 8 745 160 240 7087

Wikipedia 1858 8444 5 100 100 150 1608

Figure 4.  The network composition of m3_1 and m4_5 modules in Cora dataset is visualized.
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• MLP: A model based on fully connected neural network uses network structure directly as node features in 
deep learning model training for semi-supervised learning tasks.

• LP: A semi-supervised model based on Gaussian random field performs node classification task by learning 
the features of paired nodes in weighted  graph34.

• ICA: A semi-supervised model based on structured logistic regression to learn the relationship between 
 nodes35.

• MoNet: A convolutional neural network model combined with deep learning is applied to network data to 
complete relevant  tasks36.

• GCN: A simplified spectral domain graph convolutional neural network model is introduced to accomplish 
information aggregation of nodes’ first-order neighbors, and it is successfully applied to semi-supervised 
node classification  model7.

• GraphSAGE: An inductive graph convolution network model abstracts the graph convolution operation into 
two steps of sampling and aggregation, and realizes the batch training of graph convolution network on large 
 dataset10.

• GAT: A first-order neighbor attribute attention model is studied based on  GCN12.
• MCN: A graph convolution network model based on motif attention and self-attention is proposed to learn 

the optimal motif structure through reinforcement  learning30.

Experiment results and analysis
In this paper, the processor model is AMD Ryzen 5 3600 6-core Process 3.59 GHz, 15.9 GB memory, and GPU 
model is RTX 2060.

We can observe the experimental results in Table 4. For the baseline model, we use the parameters and evalua-
tion methods introduced in the original paper to conduct experiments. For GCN and MS-GCN models, we adopt 
two-layer network model, and hidden layer dimension is 16, learning rate is 0.01, L2 is 0.0005; For GraphSAGE 
and MS-SAGE models, a two-layer network model was adopted, for Cora and Citeseer dataset, a hidden layer 
dimension of 128 was adopted. and for Pubmed dataset, a hidden layer dimension of 256 was adopted, with 
learning rate of 0.01, batch size of 16, and L2 of 0.0005. For GAT and MS-GAT models, a two-layer network 
model is adopted, with 8 hidden layers, 8 attention heads, 0.005 learning rate and 0.0005 of L2. It can be seen 
from Table 4 that our MS-GCNs model has achieved good results in all dataset. We illustrate the function of the 
motif on node feature aggregation by quantifying the node label of the model.

We conducted parameter analysis for the MS-GCN model, and analyzed the fitting relationship between 
k1 and k2 with accuracy and loss values , respectively. The results are shown in Figs. 5 and 6, The results of the 
remaining datasets are in the Appendix (Figs. 8, 9, 10, 11).

We visualize the parameters of MS-GCN on three datasets respectively, and show the fitting relationship 
between accuracy and loss values and parameters k1 and k2 from two dimensions of training set and valida-
tion set respectively. It can be found from the curve trend that both k1 and k2 tend to be stable when the model 

Table 3.  LR of dataset.

Dataset LR of m3 LR of m4

Cora 82.65% (1005/1216) 83.26% (2628/3156)

Citeseer 79.68% (694/871) 79.68% (694/871)

Pubmed 76.53% (7857/10267) 74.09% (92,147/124,368)

CoauhtorCS 78.51% (67,365/85,799) 78.79% (313,623/398,061)

AmazonPhoto 77.80% (558,133/717,400) 72.19% (27,144,880/37,603,623)

Wikipedia 55.13% (6687/12,130) 51.93% (21,625/50,375)

Table 4.  Summary of results in terms of classification accuracies (citation networks).

Method Cora (%) Citeseer (%) Pubmed (%)

MLP 55.1 46.5 71.4

DeepWalk2 67.2 43.2 65.3

LP34 68.0 45.3 63.0

ICA35 75.1 69.1 73.9

MCN30 83.5 73.3 79.3

GCN7 81.5 70.3 79.0

MS-GCN 83.4 71.6 79.9

GraphSAGE10 78.9 59.0 75.0

MS-SAGE 80.0 62.0 78.2

GAT 12 83.0 72.5 77.8

MS-GAT 84.3 73.3 78.5
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converges, and the parameter values of k1 and k2 of the three datasets can be stable within the range of 0.4–0.6, 
indicating that when GCN conducts feature aggregation, it needs to maintain both the high-order motif structure 
information and the original edge information of first-order neighborhoods.

To demonstrate the effect of MS-GCNs on different types of networks, we conducted node classification 
experiments on other networks as well, and the experimental results are shown in Table 5. From the results in 
the table, we can see that the accuracy of MS-GCNs is improved on all three networks compared with traditional 
GCNs, especially, MS-SAGE achieves the best classification effect on all three datasets. This result indicates that 
our model has good generalization ability and is capable of handling different types of networks. It is worth notic-
ing that on the Wikipedia dataset, all models except the GraphSAGE and MS-SAGE models do not outperform 
the MLP which is a problem of data alignment, inspired by the work of Qian et al. To better reflect the role of 
model structure information, we filtered the motif information from the Wikipedia dataset and only used the 
same-label motif for our experiments, and the experimental results are shown in Table 6, from which we can 
see that the classification accuracy was further improved when we used the same-label motif. This indicates that 
the motif-structure information can mitigate the effect of noise information of datasets on the performance of 
graph convolution operation.

As shown in Fig. 7, we compared the performance of MS-GCN and GCN, MS-SAGE and GraphSAGE, mS-
GAT and GAT in six datasets in groups. Compared with the original algorithm, the prediction accuracy of the 
three improved algorithms of MS-GCNs in each dataset has been improved to some extent. According to the spe-
cific results in Tables 4 and 5, compared with GCN, MS-GCN improved 1.9%, 1.3% , 0.9%, 0.9%, 0.5% and 1.1% 
in the six datasets respectively. MS-SAGE improved by 1.1%, 3.0% and 3.2%, 1.1%, 2.8% and 1.1% respectively; 

Figure 5.  Cora: Fitting relationship between train_acc, train_loss and parameters.

Figure 6.  Cora: Fitting relationship between val_acc, val_loss and parameters.

Table 5.  Summary of results in terms of classification accuracies (other networks). Significant texts are in 
bold.

Method CoauthorCS (%) AmazonPhoto (%) Wikipedia (%)

MLP 88.3 44.9 65.9

GCN 91.1 90.9 52.8

MS-GCN 92.0 91.4 53.9

GraphSAGE 91.3 91.4 66.3

MS-SAGE 92.4 94.2 67.4

GAT 90.5 85.7 62.6

MS-GAT 92.1 87.5 64.7
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Compared with GAT, MS-GAT improved 1.3%, 0.8% , 0.7% , 1.6%, 1.8% and 2.1% respectively.It shows that the 
prediction of the algorithm is accurately and effectively improved after adding the motif information.

Conclusion
In this paper, graph convolution network models MS-GCNSs (MS-GCN, MS-SAGE, MS-GAT) based on motif-
structure information are proposed. By detecting the motif-structure information, we integrate it into the graph 
convolution operation, therefore the first-order neighbor and high-order motif information are considered 
simultaneously to improve the information aggregation capability of graph convolution network.

We conduct node classification experiments on three citation datasets of Cora, Citeseer and Pubmed, and 
compare them with the baseline model, and the MS-GCNs proposed in this paper achieved good results. This 
shows that the representation ability of graph convolutional network is improved after the introduction of motif-
structure information.

Data availibility
All the datasets are available publicly and can be accessed from https:// github. com/ shchur/ gnn- bench mark/ 
tree/ master/ data.

Appendix: More experimental results analysis
See Figs. 8, 9, 10, 11.

Table 6.  Summary of the effect of LR motif on classification accuracies. Significant values are in bold.

Method Wikipedia (%)

MS-GCN 53.9

MS-GCN (LR) 55.3

MS-SAGE 67.4

MS-SAGE (LR) 68.3

MS-GAT 64.7

MS-GAT(LR) 65.9

Figure 7.  The accuracy of GCN and MS-GCN, GraphSAGE and MS-SAGE, GAT and MS-GAT were compared 
in groups.

https://github.com/shchur/gnn-benchmark/tree/master/data
https://github.com/shchur/gnn-benchmark/tree/master/data
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