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ABSTRACT Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving
attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR)
models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p
with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The
list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an
overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and
present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.

MODERN animal and plant breeding schemes select
individuals based on predictions of genetic merit.

Rapid genetic progress requires that such predictions are
accurate and that they can be produced early in life. Fam-
ily-based predictions of genetic values have been used suc-
cessfully for selection in plants and animals for many
decades; however, there is a limit on the annual rate of
genetic progress that can be attained with family-based pre-
diction. Molecular markers allow describing the genome of
individuals at a large number of loci, and this opens possi-
bilities to derive accurate prediction of genetic values early in
life. The first attempts to incorporate marker information
into predictions were based on the presumption that one
can localize causative mutations underlying genetic varia-
tion. This approach, known as QTL mapping (Soller and
Plotkin-Hazan 1977; Soller 1978), led to the discovery of
a few genes associated to genetic differences of traits of
commercial interest. However, the impact on practical
breeding programs has been smaller than initially envisaged

(Dekkers 2004; Bernardo 2008). Several factors contributed
to this: first, with a few exceptions, the proportion of the
variance accounted by mapped QTL has commonly been
small. Second, the financial resources required to develop
the populations needed to map QTL were considerable, lim-
iting the adoption of this technology (see Dekkers 2004,
Bernardo 2008, Collard and Mackill 2008, and Hospital
2009 for insightful discussions of lessons learned from
QTL studies in animal and plant breeding).

There is a general consensus that most traits are affected
by large numbers of small-effect genes (see Buckler et al.
2009, for examples of traits in maize affected by large num-
bers of small-effect loci) and that the prediction of complex
traits requires considering large numbers of variants concur-
rently. The continued advancement of high-throughput gen-
otyping and sequencing technologies allowed the discovery
of hundreds of thousands of genetic markers (e.g., single-
nucleotide polymorphisms, SNPs) in the genomes of humans
and several plant and animal species. Such dense panels of
molecular markers allow exploiting multilocus linkage dis-
equilibrium (LD) between QTL and genome-wide markers
(e.g., SNPs) to predict genetic values. Although earlier con-
tributions exist (Nejati-Javaremi et al. 1997; Haley and
Visscher 1998; Whittaker et al. 2000), the foundations of
genome-enabled selection (GS) were largely defined in
the ground-breaking article by Meuwissen et al. (2001),
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who proposed to incorporate dense molecular markers into
models using a simple, but powerful idea: regress pheno-
types on all available markers using a linear model. And in
recent years this approach has gained ground both in animal
(VanRaden et al. 2009) and plant breeding (Bernardo and
Yu 2007; Crossa et al. 2010).

With high-density SNP panels the number of markers (p)
can vastly exceed the number of records (n), and fitting this
large-p with-small-n regression requires using some type of
variable selection or shrinkage estimation procedure. Owing
to developments of penalized and Bayesian estimation pro-
cedures, as well as advances in the field of nonparametric
regressions, several shrinkage estimation methods have been
proposed and used for whole-genome regression (WGR) and
prediction (WGP) of phenotypes or breeding values. How-
ever, the relationships between these methods have not been
fully addressed and many important topics emerging in em-
pirical applications have been often overlooked. In this article
we provide an overview of parametric Bayesian methods as
applied to GS (Methods), a discussion of selected topics that
emerge when these models are used for empirical analysis
(Selected Topics Emerging in Empirical Applications), and a dis-
cussion of lessons learned in the past years based on a litera-
ture review of simulation and empirical studies (Lessons
Learned from Simulation and Empirical Data Analysis).

Methods

Early proposals for implementing GS (Meuwissen et al.
2001) used linear regression methods. More generally, one
can regress phenotypes on marker covariates using a regres-
sion function, f ðxi1; xi2; :::; xipÞ that may be parametric or not
so that yi ¼ f ðxi1; xi2; :::; xipÞ þ ei. Here, the regression func-
tion, fðxi1; xi2; :::; xipÞ, should be viewed as an approximation
to the true unknown genetic values, fgigni¼1, which can be
a complex function involving the genotype of the ith indi-
vidual at a large number of genes as well as cryptic inter-
actions between genes and between genes and
environmental conditions. Therefore, in a WGR model resid-
uals feigni¼1 represent random variables capturing nongenetic
effects, plus approximation errors, gi 2 fðxi1; xi2; :::; xipÞ, which
can emerge due to imperfect LD between markers and QTL
or because of model misspecification (e.g., unaccounted
interactions).

The linear model appears as a special case with
f ðxi1; xi2; :::; xipÞ ¼ mþPp

j¼1xijbj, where m is an intercept,
xij is the genotype of the ith individual at the jth marker
(j = 1, . . . , p), and bj is the corresponding marker effect.
Alternatively the regression function could be represented
using semiparametric approaches (Gianola et al. 2006; de
los Campos et al. 2010a) such as reproducing kernel Hilbert
spaces (RKHS) regressions or neural networks (NN). There-
fore, a first element of model specification in WGR is
whether genetic values are approximated by using linear
regression procedures or using semiparametric methods. In
this article we focus on linear regression models; a review

and a discussion about nonparametric procedures can be
found in Gianola et al. (2010).

With modern genotyping technologies the number of
markers, and therefore the number of parameters to be
estimated, can vastly exceed the number of records. To
confront the problems emerging in these large-p with small-
n regressions, estimation procedures performing variable se-
lection, shrinkage of estimates, or a combination of both are
commonly used. Therefore, a second element of model choice
pertains to the type of shrinkage estimation procedure used.
Next, we discuss briefly the effects of shrinkage on the statis-
tical properties of estimates and subsequently review some of
the most commonly used penalized and Bayesian variable
selection and shrinkage estimation procedures.

Effects of shrinkage on the mean-squared error
of estimates

The accuracy of an estimator can be measured with the
squared Euclidean distance between the estimated, û, and
the true value of the parameter, u. In the case of scalars this
is simply the squared deviation: kûð yÞ2uk2 ¼ ½ûð yÞ2u�2.
Here, we write ûð yÞ to stress that the estimator is a function
of the sampled data. The mean-squared error (MSE) is the
expected value (over possible realizations of the data) of the
squared Euclidean distance, MSEðûÞ ¼ E½ûð yÞ2u�2. This can
be decomposed into two terms: the variance of the estimator
plus the square of its bias, MSEðûÞ ¼ Var½û� þ Bias½û�2 ¼
Ef½û2EðûÞ�2g þ ½EðûÞ2u�2. The variance of the estimator
(and in some cases its bias) decreases with sample size. With
standard estimation procedures, such as ordinary least
squares (OLS) or maximum likelihood (ML), with fixed sam-
ple size, the variance of estimates increases rapidly as p
does, yielding high MSE of estimates. One way of confront-
ing the MSE problem emerging in large-p with small-n
regressions is by shrinking estimates toward a fixed point
(e.g., 0); this may increase bias but reduces the variance of
the estimator. To illustrate the effects of shrinkage on MSE
of estimates, consider a simple shrinkage estimator obtained
by multiplying an unbiased estimator û by a constant
a 2 ½0; 1� so that ~u ¼ aûþ ð12aÞ0 ¼ aû. The new estimator
shrinks the original one toward 0. If u 6¼ 0, ~u is biased; how-
ever, the variance of the new estimator, VarðaûÞ ¼ a2VarðûÞ
is guaranteed to be lower for any a, 1. Penalized and
Bayesian methods are the two most commonly used shrink-
age estimation procedures, an overview of these methods is
given next.

Penalized methods

In penalized regressions estimates are derived as the
solution to an optimization problem that balances model
goodness of fit to the training data and model complexity.
For continuous outcomes, lack of fit to the training data
is usually measured by the residual sum of squares,P

iðyi2m2
Pp

j¼1xijbjÞ2 (alternatively, one can use the nega-
tive of the logarithm of the likelihood or some other loss
function) and model complexity is commonly defined as
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a function of model unknowns, JðbÞ; therefore, penalized
estimates are commonly derived as the solution to an opti-
mization problem of the form

ðm̂; b̂Þ ¼
argmin

� X
i

�
yi2m2

Xp

j¼1
xijbj

�2
  þ   lJðbÞ

�
; (1)

where l$ 0 is a regularization parameter that controls the
trade-offs between lack of fit and model complexity. Ordi-
nary least squares appear as a special case of (1) with
l ¼ 0. Usually, not all model unknowns are penalized; for
instance, in (1) the intercept is not included in the penalty
function. The features of the regression function that are not
penalized [the overall mean in (1)] are then perfectly fitted.

Several penalized estimation procedures have been pro-
posed, and they differ on the choice of penalty function,
JðbÞ. In ridge regression (RR) (Hoerl and Kennard 1970),
the penalty is proportional to the sum of squares of the re-
gression coefficients or L2 norm, JðbÞ ¼Pp

j¼1b
2
j . A more

general formulation, known as bridge regression (Frank
and Friedman 1993), uses JðbÞ ¼Pp

j¼1kbjkg with g. 0.
RR is a particular case with g ¼ 2 yielding the L2 norm,
JðbÞ ¼Pp

j¼1kbjk2. Subset selection occurs as a limiting case
with g/0, which penalizes the number of nonzero effects
regardless of their magnitude, JðbÞ ¼Pp

j¼11ðbj 6¼ 0Þ. An-
other special case, known as least absolute angle and selec-
tion operator (LASSO) (Tibshirani 1996), occurs with g ¼ 1,
yielding the L1 penalty: JðbÞ ¼Pp

j¼1kbjk. Using this penalty
induces a solution that may involve zeroing out some re-
gression coefficients and shrinkage estimates of the remain-
ing effects; therefore LASSO combines variable selection and
shrinkage of estimates. LASSO has become very popular in
several fields of applications. However, LASSO and subset
selection approaches have two important limitations. First,
by construction, in these methods the solution admits at
most n nonzero estimates of regression coefficients (Park
and Casella 2008). In WGR of complex traits, there is no
reason to restrict the number of markers with nonzero effect
to be limited by n (the number of observations). Second,
when predictors are correlated, something that occurs when
LD span over long regions, methods performing variable
selection such as the LASSO are usually outperformed by
RR (Hastie et al. 2009). Therefore, in an attempt to combine
the good features of RR and of LASSO in a single estimation
framework, Zou and Hastie (2005) proposed to use as a pen-
alty a weighted average of the L1 and L2 norm, that is,
for 0#a# 1, JðbÞ ¼ a

Pp
j¼1kbjk þ ð12aÞPp

j¼1kb2
j k, and

termed the method the elastic net (EN). This model involves
two tuning parameters that need to be specified, the regu-
larization parameter (l) and a.

Bayesian shrinkage estimation

Bayesian methods can also be used for variable selection and
shrinkage of estimates. Most penalized estimates are equiva-
lent to posterior modes of certain types of Bayesian models
(Kimeldorf and Wahba 1970; Tibshirani 1996). An illustration

of the equivalence between some penalized and some Bayesian
estimates is given in supporting information, File S1.

The general structure of the standard Bayesian linear
models used in GS is

p
�
m;b;s2  

��y;v�
} p
�
y   jm;b;s2

�
p
�
m;b;s2  

��v�
}
Qn
i¼1

N
�
yi   jmþPp

j¼1xijbj;s
2
� Qp

j¼1
p
�
bj  
��v�p�s2�; (2)

where pðm;b;s2jy;vÞ is the posterior density of model
unknowns fm;b;s2g given the data ðyÞ and hyperpara-
meters ðvÞ, pðy   jm;b;s2Þ ¼Qn

i¼1Nðyi   jmþPp
j¼1xijbj;s

2Þ is
the conditional density of the data given the unknowns,
which for continuous traits are commonly independent nor-
mal densities with mean Eðyi   jm;b;s2Þ ¼ mþPp

j¼1xijbj and
with variance Varðyi   jm;b;s2Þ ¼ s2, and pðm;b;s2   jvÞ
}
Qp

j¼1pðbj   jvÞpðs2Þ is the joint prior density of model
unknowns, including the intercept ðmÞ, which is commonly
assigned a flat prior, marker effects fbjg, which are com-
monly assigned IID informative priors, and the residual
variance ðs2Þ, which is commonly assigned a scaled-inverse
chi-square prior with degree of freedom d:f: and scale pa-
rameter S, which is pðs2Þ ¼ x22ðs2   jd:f:; SÞ; here we use
a parameterization Eðs2jd:f:; SÞ ¼ ðd:f: · SÞ=ðd:f:22Þ.

In these Bayesian models, the prior density of marker
effects, pðbj   jvÞ, defines whether the model will induce vari-
able selection and shrinkage or shrinkage only. Also, the
choice of prior will define the extent and type of shrinkage
induced. Two important features of these priors are how
much mass they have in the neighborhood of zero and
how thick or flat the tails of the density are. Based on these
two features we classified the most commonly used priors
into four big categories and in Figure 1 we have arranged
them in a way that, starting from the Gaussian prior located
in the top left corner, as one moves clockwise there is an
increase in the peak of mass at zero and the tails are allowed
to become thicker.

Gaussian prior: This density (depicted in the top left corner of
Figure 1) has two hyperparameters: the mean (commonly set to
zero) and the variance ðs2

bÞ; therefore, in this model, v ¼ s2
b.

If the intercept and the variance parameters are known,
the posterior distribution of marker effects, pðb  jy;m;s2;s2

bÞ
}
Qn

i¼1Nðyi   jmþPp
j¼1xijbj;s

2ÞQp
j¼1Nðbj   j0;s2

bÞ, can be shown
to be multivariate normal, with posterior mean given by
b̂ ¼ ½X9Xþ s2s22

b I�21X9~y, where X ¼ fxijg is a matrix of
marker genotypes and ~y ¼ fyi2mg is a vector of (centered)
phenotypes. This is exactly the RR estimate with l ¼ s2=s2

b.
Because of this characteristic, this model is sometimes re-
ferred to as Bayesian ridge regression (BRR). Also, b̂ can be
shown to be the best linear unbiased predictor (BLUP) of
marker effects; therefore, this model is also sometimes re-
ferred to as RR-BLUP (standing for ridge regression BLUP).

Ridge regression and the BRR both perform an extent of
shrinkage that is homogenous across markers; this approach
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may not be optimal if some markers are linked to QTL while
others are in regions that do not harbor QTL. To overcome
this potential limitation, other prior densities can be used.

Thick-tailed priors: The two most commonly used thick-
tailed densities, the scaled t and the double exponential, are
represented in the top right corner of Figure 1. The scaled-t
density is the prior used in model BayesA (Meuwissen et al.
2001) and the double-exponential or Laplace prior is the
density used in the Bayesian LASSO (BL) (Park and Casella
2008). Relative to the Gaussian, these densities have higher
mass at zero (inducing strong shrinkage toward zero of esti-
mates of effects of markers with small effects) and thicker
tails (inducing, relative to the BRR, less shrinkage of esti-
mates of markers with sizable effects).

For computational convenience, the thick-tail densities
are commonly represented as infinite mixtures of scaled-
normal densities (Andrews and Mallows 1974) of the form
pðbj   jvÞ ¼ Ð Nðbj   j0;s2

bj
Þpðs2

bj
  jvÞ@s2

bj
, where pðs2

bj
  jvÞ is

a prior density assigned to marker-specific variance param-
eters and v denotes hyperparameters indexing this density.

When pðs2
bj
  jvÞ is a scaled inverse chi-square density, the

resulting marginal prior of marker effects is scaled t, and
this is the approach used in model BayesA of Meuwissen
et al. (2001). When pðs2

bj
  jvÞ is an exponential density,

the resulting marginal prior of marker effects is double ex-
ponential, and this is the approach followed in the Bayesian
LASSO of Park and Casella (2008). The double-exponential
density is indexed by a single parameter (rate) and the
scaled t is indexed by two parameters (scale and degree of
freedom); this gives the scaled t more flexibility for control-
ling how thick the tails may be. An even higher degree of
flexibility to control the shape of the prior can be obtained
by using priors that are finite mixtures.

Spike–slab priors: These models use priors that are mix-
tures of two densities: one with small variance (the spike)
and one with large variance (the slab) (e.g., George and
McCulloch 1993; see bottom left corner in Figure 1).
Commonly, the spike and the slab are both zero-mean nor-
mal densities. A graphical representation of one of such
mixtures is given in the bottom right corner of Figure 1.

Figure 1 Commonly used prior densities of marker effects (all with zero mean and unit variance). The densities are organized in a way that, starting
from the Gaussian in the top left corner, as one moves clockwise, the amount of mass at zero increases and tails become thicker and flatter.

330 G. de los Campos et al.



The general form of these mixtures is pðbj   jp;s2
b1
;

s2
b2Þ ¼ p ·Nðbj   j0;s2

b1
Þ þ ð12pÞ · Nðbj   j0;s2

b2
Þ; where

p 2 ½0; 1� is a mixture proportion and s2
b1

and s2
b2

are vari-
ance parameters. To prevent the so-called label-switching
problem a common approach is to restrict s2

b1
#s2

b2
so that

p can be interpreted as the proportion of effects coming
from the “small” variance component. Another approach
is to reparameterize the prior so that the variance of one
of the components is a scaled version of the variance of
the other component; for instance, pðs2

bj
  jp;s2

b; tÞ ¼
p ·Nðbj   j0; t21s2

bÞ þ ð12pÞ · Nðbj   j0;s2
bÞ with t. 1.

Model Bayes “stochastic search variable selection” (SSVS)
(Calus et al. 2008; Verbyla et al. 2009) follows this ap-
proach with t commonly fixed at a certain value (e.g.,
t ¼ 100). Another possibility is to link the proportion of
effects coming from the “small-variance” component with
the proportion of variance accounted for. For instance, fol-
lowing Yu and Meuwissen (2011), one could assume that
~p% of the markers account for ð1002~pÞ% of genetic vari-
ance. The so-called Pareto principle represents a specific
case of the more general principle with ~p ¼ 20. This
reduces the number of hyperparameters that need to be
chosen, at the expense of imposing restrictions that may
or may not hold.

Although spike–slab models are usually formed by mixing
two Gaussian components, similar models may be obtained
by mixing other densities such as scaled t (Zou et al. 2010)
or double exponential (DE). There are two limiting cases of
the spike–slab model that are of special interest. The first
one occurs when p ¼ 0 or p ¼ 1, and this case corresponds
to the standard Gaussian prior (see above); the second one
occurs when s2

b1
/0, and in this case, the small-variance

component of the mixture collapses to a point of mass at
zero, giving rise to a prior that consists of a mixture of a point
of mass at zero and a slab.

Point of mass at zero and slab priors: These are used to
induce a combination of variable selection and shrinkage
(see bottom left corner in Figure 1). These priors are used,
for example, in models BayesB (Meuwissen et al. 2001) and
BayesC (Habier et al. 2011). In Bayes B the slab is a scaled-t
density, while in BayesC the slab is a normal density.

Genome-enabled BLUP

An alternative parameterization of the BRR can be obtained
by replacing

Pp
j¼1xijbj with ui ¼

Pp
j¼1xijbj or in matrix no-

tation u ¼ Xb. In the BRR, marker effects are IID normal
random variables. From properties of the multivariate nor-
mal density it follows that u � Nð0;XX9s2

bÞ ¼ Nð0;Gs2
uÞ,

where G ¼ XX9k for some k. For instance, a common choice
is to use k21 ¼ 2

Pp
j¼1ujð12ujÞ, where uj is (an estimate of)

the frequency of the allele coded as one at the jth marker.
Indeed, G ¼ XX9k can be regarded as an estimate of the
realized matrix of additive relationships (Habier et al.
2007; VanRaden 2007). Therefore, an equivalent represen-

tation of the BRR is given by the following model [genome-
enabled BLUP, G-BLUP]:

p
�
u; y   jm;s2;s2

b

�
}
Yn
i¼1

N
�
yi   jmþ ui;s2�N�u  j0;Gs2

u
�
: (3)

The posterior mode of this model can be shown to be

û ¼ 	Iþ lG21
21
~y ¼ Xb̂ (4)

with l ¼ s2s22
u . This is also the best linear unbiased pre-

dictor of u, and therefore this model is usually referred as to
G-BLUP. Above, we have motivated G-BLUP by exploiting its
equivalence with the BRR; however, these methods can be
also motivated simply as an additive infinitesimal model in
which we replace the standard pedigree-based numerator
relationship matrix with a marker-based estimate of additive
relationships. Indeed, these methods have existed long be-
fore GS emerged (Ritland 1996, 2002; Nejati-Javaremi et al.
1997; Lynch and Ritland 1999; Eding and Meuwissen
2001).

Computing genomic relationships for G-BLUP: Several
proposals exist as to how to map from pairs of marker
genotypes onto estimates of genetic relationships, and no
one is considered superior. A first distinction is between
methods that aim at estimating realized genomic relation-
ships [or proportion of identical by state (IBS) (VanRaden
2007; Yang et al. 2010)] and those that attempt to estimate
probability of sharing alleles due to inheritance from
a known common ancestor [or probability of identical by
descent (IBD)]. The IBD methods (Pong-Wong et al. 2001;
Villanueva et al. 2005) are essentially multilocus extensions
of the single-locus IBD approach of Fernando and Grossman
(1989) with IBD coefficients averaged across multiple
putative QTL.

Within the IBS framework, the most common approach,
at least in GS, is to estimate genomic relationships using
moment-based estimators, which in general take the form of
cross-products of marker genotypes: Gii9}

Pp
k¼1xijxi9 j. Here p

is the number of loci and xij; xi9j are the genotypes of indi-
viduals i and i9 at the jth locus. In matrix notation we have
G}XX9. As with any other regression procedure, marker gen-
otypes can be centered by subtracting the mean of the
marker genotype or centered and standardized to a unit
variance; that is, ~xij ¼ ðxij22ujÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ujð12ujÞ

p
, where fujgpj¼1

are estimates of the frequency of the allele coded as one.
Therefore, another common estimator is ~Gii9}

Pp
k¼1~xij~xi9j.

Centering implies that variances and covariances between
genetic values are measured as deviations with respect to
a center defined by the average genotype. Following the
tradition of pedigree-based infinitesimal models, one can
define the “center” to be the average genotype in a “base”
population. In such case allele frequencies should be esti-
mated in that population. Alternatively, allele frequencies
could be estimated directly from the sample without further
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consideration about an ancestral base population of nominally
unrelated individuals. In this case the “origin” is defined as the
average genotype in the sample. When this approach is used,
some entries of G may become negative, some diagonal ele-
ments become ,1, and the average diagonal value has an
expected value equal to 1. Therefore, we cannot interpret
the entries of G as proportion of allele sharing or as probabil-
ities. Nevertheless, from the point of view of the Gaussian pro-
cess Gii9 simply defines a covariance function and nothing
precludes assigning negative prior covariances between pairs
of genetic values. For G to define a proper Gaussian process, it
must be positive semidefinite; this is guaranteed when G}XX9

or ~G}~X~X9. However, other methods do not guarantee that this
condition will hold. Therefore, a good practice is to check that
this condition is satisfied, by, for example, checking that
the associated eigenvalues of G are all nonnegatives.

Relative to estimates of genomic relationship based on
unstandardized markers, Gii9 , standardization, ~Gii9 , increases
the “weight” given to markers with extreme allele frequency
on the computation of genomic relationships and this occurs
because the denominator used in the standardization,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ujð12ujÞ
p

, is maximum at intermediate allele frequencies
and minimum at extreme allele frequencies. Yang et al.
(2010) proposed a modified version of ~Gii where a different
formula is used to compute the diagonal elements of G. The
proposed formula has a sampling variability that does not
depend on allele frequency and equals one in absence of
inbreeding; however, to the best of our knowledge, the pro-
posed method is not guaranteed to yield a positive semi-
definite matrix.

Relationships between Bayesian methods

The categorization of priors given in Figure 1 is somehow
arbitrary and some models can be considered special or
limiting cases of others. In Figure 2 we represent some of
these relationships. (Figure 2 is partially inspired by a pre-
sentation given by Robert Tempelman at University of Ala-
bama at Birmingham, who discussed connections between
G-BLUP, BayesA, and BayesB.):

1. In finite mixture models we mix K densities; therefore,
models using two or a single density component can be
seen as special cases of the finite mixture model with K =
2 and K = 1, respectively (see paths 1a–1c in Figure 2).

2. Starting with a two-component mixture, such as the
spike–slab, we can obtain models with a point of mass
at zero and a slab, such as BayesB or –C, by fixing the
variance of one of the components at zero (see paths 2a
and 2b in Figure 2).

3. Models BayesA and BRR can be obtained as special cases
of models BayesB and BayesC, respectively. This is done
by setting in either BayesB or BayesC the proportion of
markers with no effect (p) equal to zero (see paths 3a
and 3b in Figure 2).

4. The scaled-t density has two parameters, the scale and
the d.f.; as d.f. increases, the scaled-t density becomes

increasingly similar to the Gaussian density. Therefore,
starting from BayesA (BayesB) one can obtain the BRR
(BayesC) by simply setting the d.f. to a very large value
(see 4a and 4b in Figure 2).

5. The spike–slab prior is commonly formed by mixing two
normal densities. The flexibility of such mixtures can be
increased by increasing the number of components; even-
tually, we could consider an infinite number of compo-
nents, each of which will have its own variance. However,
there is a limit on the number of variance parameters that
we can estimate. To confront this, a common approach is
to regard these variances as random variables that are
drawn from a common process. This is precisely what
the scaled-t or DE densities are: these are infinite mix-
tures of scaled-normal densities (see paths 5a and 5b in
Figure 2).

In view of the fact that many models (BRR, BayesA, and
BayesC) appear as special cases of BayesB (for some values
of parameters p and d.f.), a reasonable strategy would be to
use a modified version of BayesB with p, scale and d.f.
estimated from data (Nadaf et al. 2012). However, usually,
with long-range LD and with p � n, different configurations
of marker effects can yield very similar values at the likeli-
hood. Therefore, estimating p, the scale and d.f. parameters
jointly from the data may not be possible.

Dealing with hyperparameters

The hyperparameters indexing the prior density of marker
effects (v) control the extent and strength of shrinkage of
estimates of marker effects and they can have important
impacts on inferences; therefore, dealing with these hyper-
parameters appropriately is crucial. These unknowns can be
dealt with in different ways.

Heritability-based rules: One possibility is to choose these
hyperparameters based on prior expectation about the
genetic variance of the trait. This approach was used,
for instance, by Meuwissen et al. (2001), who derived
hyperparameter values of the models by solving for them

Figure 2 Relationships between some prior densities commonly assigned
to marker effects.
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as a function of genetic variance. In their derivation they as-
sume that genetic variance emerges due to uncertainty
both about genotypes and about marker effects; however,
this is not entirely consistent with the Bayesian models
used in GS where genotypes are regarded as fixed and
marker effects as random. Therefore, here we present
a simple derivation that is consistent with models used in
GS (Equation 2) where marker genotypes are regarded
as fixed and marker effects are viewed as random IID
variables. In linear models we have gi ¼

Pp
j¼1xijbj; therefore

the prior variance of the ith genomic value is VarðgiÞ ¼
VarðPp

j¼1xijbjÞ ¼ ½Pp
j¼1x

2
ij � ·VarðbjjvÞ; where VarðbjjvÞ is

the prior variance of marker effects that is a function of
v. Therefore, the average prior variance of genetic values
in the sample is Vg ¼ ½n21Pn

i¼1
Pp

j¼1x
2
ij � ·VarðbjjvÞ ¼

MSXVarðbj   jvÞ; where MSX ¼ n21Pn
i¼1
Pp

j¼1x
2
ij is the aver-

age sum of squares of marker genotypes. Commonly, the
model includes an intercept and variance is defined as devi-
ations of genomic values from the center of the sample;
therefore, MSX should be computed using centered geno-
types; that is, MSX ¼ n21Pn

i¼1
Pp

j¼1ðxij2�xjÞ2; where �xj is
the average genotype at the jth marker. Moreover, when
marker genotypes are centered and standardized to a null
mean and unit variance MSX equals the number of markers
(p). A natural approach is to replace Vg with the product of
(an estimate of) heritability and of the variance of pheno-
types, yielding

Var
�
bj  
��v� ¼ h2s2

p

MSX
: (5)

Equation 5 can be used to solve for values of v. We have
only one equation; therefore, if v involves more than one
hyperparameter, others need to be fixed. Table 1 shows
examples of the use of this formula for BRR, BayesA, BayesB,
BayesC, Bayesian LASSO, and Bayes SSVS.

Validation methods: Another possibility is to fit models
over a grid of values of v and then retain the value that
maximizes predictive performance. To that end some type of
internal validation (e.g., using a tuning data set) needs to be
carried out. However, this approach can be computationally
demanding. This happens because the grid of values of v
may involve a large number of cells (especially when v

involves several parameters) and because standard valida-
tion schemes usually involve fitting the model several times
(e.g., across different folds of a cross-validation) for each
possible value of v in the grid. Other alternatives such as
leave-one-out cross-validation or generalized cross-valida-
tion could be used; however, unlike ordinary least squares,
in many of the models of interest, the leave-one-out residual
sum of squares does not have a closed form. Because of
these reasons this approach has not been a very popular
one in GS [although examples of the use of validation meth-
ods for choosing regularization parameters exist (Usai et al.,
2009)].

Fully Bayesian treatment: The fully Bayesian approach
regards v as unknown. This is done by assigning a prior to
v; the model in expression (2) becomes

p
�
m;b;s2;v 

��y�
}
Qn
i¼1

N
�
yi   jmþPp

j¼1xijbj;s
2
�( Qp

j¼1
p
�
bj  
��v�p�s2

�)

·  pðv  jHÞ;

(6)

where pðv  jHÞ is a prior density assigned to v and H
denotes a set of hyperparameters of higher order. The
above-mentioned heritability rule can be seen as a limiting
case of (6), where pðv  jHÞ is set to be simply a point of mass
at some value, say v0, which was chosen using prior knowl-
edge (e.g., using the formulas in Table 1). In the fully Bayes-
ian treatment, we may choose H so that pðv  jHÞ has a prior
mean or prior mode in the neighborhood of v0. This incor-
porates prior information into the model but in a more flex-
ible way than heritability-based rules. The choice of prior,
pðv  jHÞ depends on the nature of the hyperparameters. For
BRR v ¼ s2

b; therefore, it is natural to choose pðs2
b   jHÞ ¼

x22ðs2
b   jd:f:b; SbÞ; for BL Park and Casella (2008) suggested

using a Gamma prior for l2, pðl2   jHÞ ¼ Gðl2   jshape;  rateÞ;
therefore, pðl  jHÞ ¼ Gðl2   jshape;  rateÞ2l. For model BayesA
v ¼ fd:f:b; Sbg, a common choice is to assign a Gamma prior
to the scale parameter and either fix the degree of freedom
parameter (usually to some small value .4 to guarantee a fi-
nite prior variance) or assign a prior to d:f:b with support on
the positive real numbers.

Empirical Bayes methods: The empirical-based approach
involves replacing pðv  jHÞ in (3) with a point of mass lo-
cated and an estimate of v; that is, pðv  jHÞ ¼ 1fv ¼ v̂g. In
this respect this approach is similar to heritability-based
rules; however, in the empirical Bayes method (EB) v̂ is
a data-derived estimate. This approach is also commonly
used in pedigree-based models where first, variance compo-
nents are estimated from the data using restricted maximum
likelihood and then, BLUPs of breeding values are derived
with variance parameters replaced with those estimates.
Ideally, we want v̂ to be the posterior mean of v; however,
in most cases it is difficult to derive a closed-form formula
for the marginal posterior mean of v. An alternative is to use
the empirical Bayes principle within a Gibbs sampler (Case-
lla 2001); however, the convergence of the algorithm may
be too slow, and evidence does not suggest superiority of
this approach relative to the fully Bayesian treatment.

Relaxing IID assumptions

All of the above-mentioned Bayesian models use IID priors
for marker effects; that is, pðbj   jvÞ is the same for all
markers; therefore, the prior mean and variances are the
same for all marker effects. This assumption can be justified
based on “ignorance”; however, in many instances we may
have additional prior information about markers and we
may want to incorporate such information into the prior
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assigned to marker effects. Examples of such information
include, but are not limited to, (a) location of the marker
in the genome; (b) whether the marker is located in a coding
or a noncoding region; (c) whether the marker is in a region
that harbors genes that we may believe affect the trait of
interest; and (d) any prior information about the marker
from an independent study, such as P-values or estimates
of effects derived from a genome-wide association study.
One of the great advantages of the Bayesian framework is
that we can potentially include all these different types of
information into the model via prior specification. With in-
creasing volumes of information coming from multiple stud-
ies, the topic of how prior information can be incorporated
into models is becoming increasingly important.

One possibility is to assign different priors for different
sets of markers, an approach referred to as variance de-
composition or variance partition. For instance, in BRR or in
G-BLUP one can estimate variance parameters peculiar to
chromosomes (Calus et al. 2010). Such an approach could
also be used with any other prior information that allows
grouping the markers such as information about gene func-
tion or ontology. Another possibility is to structure the prior
to induce borrowing of information across marker effects.
For instance, Yang and Tempelman (2012) propose using an
antedependence covariance function to specify prior cova-
riances between marker effects.

Algorithms

In Bayesian analysis inferences are based on the posterior
distribution of the unknowns given the data with the
general form of the posterior density is given in (3). In

most cases, especially when prior hyperparameters are
treated as random, the posterior distribution does not have
a closed form. However, features of the posterior distribu-
tion (e.g., the posterior mean or standard deviation of
marker effects) can be approximated using Monte Carlo
Markov chain (MCMC) methods (Gelman et al. 2003).

Gibbs sampler: Among the many MCMC algorithms the
Gibbs sampler (Geman and Geman 1984; Casella and
George 1992) is the most commonly used. In a Gibbs sam-
pler draws from the joint posterior density are obtained by
sampling from fully conditional densities; therefore, this al-
gorithm is convenient when the fully conditional densities
have closed form and are easy to sample from. This occurs,
for example, in BRR, where all fully conditionals have closed
form. However, this does not directly occur when the priors
assigned to marker effects are from the thick-tailed family.
To circumvent this problem, the most common approach
consists of representing the thick-tailed densities as mixtures
of scaled-normal densities (see Thick-tailed priors section
above). With this approach, used in models BayesA, BayesB,
and BL, the fully conditional densities of marker effects as
well as those of the conditional variances of marker effects
have closed forms. The typical iterations of the Gibbs sam-
pler are illustrated next, using model BayesA as an example.

1. Update the intercept with a sample drawn from a normal
density with mean equal to n21Pn

i¼1~yi and variance
s2n21, where ~yi ¼ yi2

Pp
j¼1xijbj.

2. For j in {1, . . . , p} update marker effects with a draw
from a normal density with mean ½Pn

i¼1x
2
ij þ s2s22

bj
�21Pn

i¼1xij ~~yi and variance s2½Pn
i¼1x

2
ij þ s2s22

bj
�21, where

Table 1 Prior density of marker effects, prior variance of marker effects, and suggested formulas for choosing hyperparameter values
by model

Model Prior variance Solution for scale/variance
parameterpðbj   jvÞ Hyperparameters Varðbj   jvÞ

Bayesian ridge regression

Nðbj   j0;s2
bÞ s2

b s2
b s2

b ¼ h2s2
p

MSX
Bayesian LASSO

DEðbj js2; l2Þ fs2;l2g 2
s2

l2
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð12h2Þ

h2
MSX

r
BayesA

tðbj jd:f:b; SbÞ fd:f:b; Sbg
d:f:bS2b
d:f:b22

S2b ¼ ðd:f:b22Þ
d:f:b

h2s2
p

MSX
Spike–slab

p ·N

 
bj j0;

s2
b

t

!
þ ð12pÞNðbj j0;s2

bÞ;
ðt. 1Þ

fp;s2
b; tg s2

b ·
�
1þ p

ð12tÞ
t


s2
b ¼

�
t

t þ pð12tÞ


h2s2
p

MSX

BayesC

p · 1ðbj ¼ 0Þ þ ð12pÞNðbj j0;s2
bÞ fp;s2

bg s2
b · ð12pÞ s2

b ¼ 1
ð12pÞ

h2s2
p

MSX
BayesB

p · 1ðbj ¼ 0Þ þ ð12pÞtðbj jd:f:b; SbÞ fp;d:f:b; Sbg ð12pÞ d:f:bS
2
b

d:f:b22
S2b ¼ 1

ð12pÞ
ðd:f:b22Þ

d:f:b

h2s2
p

MSX

MSx ¼ n−1
Pn

i¼1

Pp
j¼1ðxij − �xjÞ2where xij 2 ð0; 1; 2Þ represents number of copies of the allele coded as one at the jth (j = 1,…,p) locus of the ith (i = 1,…,n) individual, and �xj is

the average genotype at the jth marker.
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~~yi ¼ yi2m2
P

k6¼j xikbk and s2
bj

is the prior conditional
variance of the jth marker effect.

3. For j in {1, . . . , p} update the variance of marker effects
with a draw from a scaled-inverse chi-square density with
scale and degree of freedom parameters b2

j þ d:f:b · Sb
and 1þ d:f:b, respectively, where Sb and d:f:b are the
prior scale and prior degree of freedom assigned to the
variances of marker effects.

4. Update the residual variance, s2 with a draw from
a scaled-inverse chi-square density with degree of free-
dom nþ d:f:e and scale

Pn
i¼1e

2
i þ d:f:e · Se. Here, Se and

d:f:e are the prior scale and prior degree of freedom
assigned to the residual variance and fei ¼ yi2m2Pp

j¼1xijbjg are the current model residuals.

Updating location parameters (intercept and marker
effects) requires forming offsets obtained by subtracting
from the phenotypes all the regression terms except the one
that is being updated. In practice it is computationally less
demanding to form the same offset by adding to the current
residuals the current sample of the effect that will be
updated. For instance, the offset required for sampling the
jth marker effect y

�
i ¼ yi2m2

P
k 6¼jxikbk can be also formed

by adding to the current residual the contribution to the
regression of the marker whose effect will be updated; that
is, y

�
i ¼ yi2m2

P
k 6¼jxikbk ¼ ei þ xijbj. Once location parame-

ters are updated, residuals are updated by subtracting from
the offset the contribution to the conditional expectation of
the effect just updated (e.g., after drawing the jth marker
effect, the updated residuals are ei ¼ y

�
i2xijbj). Steps 3 and 4

require updating dispersion parameters. In most models the
residual variance is updated from an inverse chi-square den-
sity. The fully conditional density of the variances of marker
effects changes across models. In BayesA these are also in-
verse chi square. Note that these densities depart from the
prior density by only 1 d.f. (see step 3, above), suggesting
that data contain little information about these unknowns
and that the influence of the prior on inferences about these
unknowns can be substantial (Gianola et al. 2009).

The structure of the Gibbs sampler for BRR and BL is
very similar to that described in steps 1–4, above. For BL
the structure is very similar with two main differences:
VarðbjÞ ¼ t2j s

2 and t2j has an exponential prior. Therefore,
in step 3 the t2j are updated from inverse Gaussian densi-
ties, and in step 4, S ¼Pp

j¼1t
22
j b2

j þ
Pn

i¼1e
2
i þ d:f:e · Se and

d:f: ¼ pþ nþ d:f:e. For BRR, s2
bj
¼ s2

b is the same for all
markers; therefore: (a) in step 2 (see above), the term
s2s22

bj
¼ s2s22

b is also the same for all markers and (b)
in step 3 only one variance parameter is updated, in this
case from a scaled-inverse chi-square density with scale
and degree of freedom parameters

Pp
j¼1b

2
j þ d:f:b · Sb and

pþ d:f:b, respectively. Therefore, in this case the fully
conditional density departs from the prior by p d.f.

Although the Gibbs sampler is extremely flexible and in
general easy to implement, the computational burden increases
linearly with the number of records (due to computation of

offsets) and with the number of markers (see steps 2 and 3
above). Many future applications will be using large data
sets with hundreds of thousands of markers. In this context
the Gibbs sampler can be extremely computationally de-
manding. To circumvent this problem, a few “fast” methods
have been developed; these are briefly discussed next.

Fast methods attempt to estimate the posterior mode by
maximizing the posterior density using expectation-maximi-
zation (Dempster et al. 1977) type algorithms (Yi and Bane-
rjee 2009; Hayashi and Iwata 2010; Shepherd et al. 2010).
Other proposals attempt to approximate the posterior mean
using iterative-conditional expectation procedures (Meuwis-
sen et al. 2009). Finally, a third approach consists of using
two-step procedures where first, parameters other than
marker effects are estimated from their marginal posterior
density, and subsequently marker effects are estimated con-
ditional on the other parameters (Cai et al. 2011). Thus far,
only few studies have compared any of those methods with
their MCMC-based counterparts and generally concluded
that accuracies of the fast implementations were close to
those of the MCMC counterparts; however, it is important
to note that many of the algorithms are heuristic and the
convergence properties are not well known. This is particu-
larly relevant because in many of the models used in GS the
posterior density is not guaranteed to be unimodal; there-
fore, there is great risk for the algorithm to arrive at, and not
move from, local maxima. Moreover, unlike MCMC algo-
rithms, the fast methods usually do not provide estimates
of uncertainty about the estimated marker effects or pre-
dicted breeding values.

Two-step approaches for G-BLUP: Above we discussed
algorithms that estimate variance parameters and marker
effects simultaneously. In G-BLUP there are only two
variance parameters to be estimated, s2 and s2

u. All data
points contribute information about these unknowns;
therefore with moderate to large sample size and with ge-
netically related individuals the posterior densities of these
unknowns are reasonably sharp. Consequently, a common
approach consists of first estimating these variance param-
eters using a non-Bayesian algorithm, usually restricted
maximum likelihood, and subsequently computing BLUP
of genetic effects from standard mixed-model equations
(see Equation 4). This is computationally much more con-
venient than the MCMC algorithms described above. The
form of the restricted maximum-likelihood (REML) objec-
tive function and that of the mixed-model equations of G-
BLUP are the same as those used in standard pedigree-
based models with G replacing A. However, unlike G,
which is usually a dense matrix, A and its inverse are sparse
and most available software developed for pedigree models
use sparse-matrix algorithms. Therefore, despite the simi-
larity between G-BLUP and standard BLUP using A, some of
the existing BLUP software cannot be readily used for G-
BLUP. However, several packages such as ASReml (Gilmour
et al. 2009) and DMU (Madsen and Jensen 2010) have
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options that allow providing a dense matrix, G, or its in-
verse, instead of pedigree data.

Selected Topics Emerging in Empirical Applications

The application of models for GS to real data usually
involves several preprocessing steps. These steps can, in
some cases, have great impact on model performance. Here
we discuss selected topics that emerge in application of GS
with real data.

Coding of marker genotypes

Centering and standardization of covariates is common
practice in regression. When regression coefficients are
estimated using OLS, centering and standardizing predictors
have no effect on predictions. However, when shrinkage
estimation procedures are used, transformations of the
predictors can potentially impact estimates of effects and
predictions. Centering is less relevant because models
include an intercept that is usually not penalized; therefore,
the effects of centering are “absorbed” in the intercept
(Strandén and Christensen 2011). However, rescaling gen-
otypes does have an effect. We explain this from a Bayesian
perspective. Let ~xij~bj ¼ ðxij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ujð12ujÞ

p Þ~bj be the contribu-
tion to the genomic value of the jth marker when genotypes
are standardized to a unit variance. Here xij 2 f0; 1; 2g are
genotype codes in original scale, uj is the frequency of the
allele coded as one, and ~bj is the effect of the jth marker
when genotypes are standardized. Further, following stan-
dard assumptions (Equation 2) let s~b

2 denote the prior vari-
ance of the effects of standardized markers. It follows that the
effects of unstandardized markers are bj ¼ ~bj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ujð12ujÞ

p
(j = 1, . . . , p). From here we observe that VarðbjÞ ¼
s~b

2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ujð12ujÞ

p
. The denominator in the expression is max-

imum at intermediate allele frequencies and approaches zero
as uj approaches either zero or one; therefore, assigning equal
prior variances for the effects of standardized markers implies
smaller prior variance (i.e., strongest shrinkage toward zero)
for the effects of markers with intermediate allele frequencies
and less informative priors (i.e., larger prior variance) for the
effects of markers with extreme allele frequencies. In short,
other things being equal, standardization induces less (more)
shrinkage of estimates of markers with extreme (intermedi-
ate) allele frequency.

Preadjusting phenotypes with estimates of
systematic effects

The models discussed so far ignore effects other than those
of markers and the intercept. In practice, phenotypes are
affected by nongenetic effects such as those of contemporary
groups (e.g., heard–year–season, sex, or age in animals).
Theoretically, one can extend the model described in expres-
sion (2) by adding effects other than the intercept and
markers. This allows joint estimation of all effects and when
this is feasible, joint estimation of effects is the preferred
option. However, in practice the joint estimation of effects

may not be feasible because the software available for GS
does not allow that or because of high computational
requirements or because raw data cannot be shared. In such
instances, a common approach is to preadjust data with esti-
mates of nongenetic effects. However, caution must be ex-
ercised because, for reasons discussed below, precorrection
of data can have undesirable consequences.

Bias: In practice, marker effects and nonmarker covariates
are not orthogonal to each other; therefore, estimation in
two steps is likely to induce bias (and inconsistency) of
estimates of marker effects. For instance, this may occur if
genetically superior individuals are overrepresented in some
contemporary groups. Similar problems emerge if selection
takes place and data are preadjusted with estimates of year
effects. All these problems are mitigated if the size of the
contemporary groups is large and when the assignment of
individuals to groups is at random. In an attempt to reduce
biases induced by precorrection, a common practice is to add
into the model for precorrection a genetic effect, commonly
a pedigree regression. Preadjusted records are then com-
puted by summing predictions of genetic and residual
effects. This approach may reduce some of the confounding
between genetic and nongenetic effects but it can also
bring other types of biases. For instance, in comparing
pedigree vs. marker-based models, precorrections based on
a pedigree model may “favor” the pedigree model in the
second step.

Induced heterogeneous residual variances and residual
correlation: In most cases, preadjustments are carried out
using a linear model; therefore predictions and fitted
residuals are linear functions of data of the form ŷ ¼ Hy
and ê ¼ y2ŷ ¼ ðI2HÞy, respectively, where: ŷ and ê are
predicted phenotypes and model residuals, and H is the
so-called hat matrix. For example, if the model for precor-
rection has the form y ¼ Wbþ e and b is estimated by OLS,
then H ¼ W½W9W�21W9. The variance–covariance matrix of
the adjusted residuals is CovðêÞ ¼ ðI2HÞCovðyÞðI2H9Þ ¼ S.
This matrix is likely to have heterogeneous entries in the di-
agonal and nonzero off diagonals, implying that predicted
residuals may have heterogeneous variances and correlations
induced by the preprocessing. A common practice is to
“weight” the second-step regression by dividing data with
square roots of the diagonal elements of S. Such scaling makes
the residual variance homoskedastic; however, this does not
account for correlations between residuals that may have been
induced by preadjustment of the data.

Dealing with unphenotyped and
ungenotyped individuals

In many instances the set of individuals for which genotypic
records are available may be different from that of the
individuals with genotypes; for example, in dairy cattle
many productive and reproductive traits are measured
in females and, most commonly, a large proportion of
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genotypes are from sires. Schematically, we have two data
sets: one comprising phenotypic records and pedigree and
one comprising genotypic records. These two sets may be
completely disjoint or may partially overlap. Roughly
speaking, there are two main strategies that can be used
to deal with unphenotyped and ungenotyped individuals.

Two-step genomic evaluations: A common approach is to
preprocess the phenotypic data in a way that a phenotypic
scoreðy...iÞ is produced for each of the genotyped individuals.
Examples of these are the use of so-called daughter-yield
deviations (DYD), predicted transmitting abilities (PTA),
or deregressed proofs (DP) as “phenotypes” in genomic
models (VanRaden and Wiggans 1991; Garrick et al.
2009). For reasons similar to those discussed in the previous
section, these procedures are likely to induce not only het-
erogeneous residual variances but also correlations between
the phenotypic scores, y

...

i, unless special care is taken in
computing these scores (Garrick et al. 2009). Heterogeneous
residual variances can easily be accounted for in the follow-
ing genomic evaluation by weighing the residual variance
for each individual with an appropriate weight (Fikse and
Banos 2001). And Garrick et al. (2009) discuss alternatives
for computing family means in ways that avoid inducing
residual correlations.

Single-step evaluations: The single-step evaluations aim at
combining information from genotyped and ungenotyped
individuals in a single analysis. This requires deriving the
joint distribution of the genetic effects of ungenotyped (g1)
and genotyped (g2) animals, and most proposals attempt to
do this in G-BLUP type models. We show in File S1 that if
the genotypes of some individuals are unobserved, the joint
density of ðg1; g2Þ is not multivariate normal; rather, it is
a mixture of multivariate normal densities (see File S1).
Therefore, existing proposals for combining data from gen-
otyped and ungenotyped individuals (Legarra et al. 2009;
Christensen and Lund 2010) that assume multivariate nor-
mality should be regarded as linear approximations to a non-
linear problem.

In the proposed methods (Aguilar et al. 2010; Christen-
sen and Lund 2010) the standard genomic relationship ma-
trix, G, is replaced with a matrix, �G, computed using
observed genotypes (from the subset of genotyped individ-
uals) and pedigree information (which is assumed to include
all individuals with phenotypes or genotypes or both sources
of information). In �G, genotypic information propagates into
the relationships of ungenotyped individuals, using a linear
regression procedure that implicitly predicts unobserved
genotypes as linear combinations of observed genotypes
with regression coefficients derived from pedigree relation-
ships. The inverse of �G, which can be used to compute G-
BLUP (see Equation 4), has a relatively simple form (Aguilar
et al. 2010; Christensen and Lund 2010); however, comput-
ing �G21 requires inverting the matrix of genomic relation-
ships of individuals with genotypes that may be singular. To

circumvent this problem several procedures have been pro-
posed (see Aguilar et al. 2010).

Lessons Learned from Simulation and Empirical
Data Analysis

In the past few years, many studies have evaluated the
performance of various WGP methods. In this section, we
review this literature with a focus on extracting what we
consider are the lessons learned after almost a decade of
research in GS. Early publications were mainly based on
simulated data but in recent years empirical evaluations
have become more important. Based on a review of
published articles we present in Table 2 a list of methods
whose predictive performance has been compared to at least
one other method for GS. In addition to the method’s name
and abbreviation we indicate whether the estimation pro-
cedure is a penalized or a Bayesian regression. Most of the
methods are parametric, in the sense that genomic values
are represented as parametric functions of marker genotypes
(see Equation 2), but some are nonparametric in nature and
this is indicated in the last column of Table 2.

Using the methods listed in Table 2 and a sample of
articles we reviewed (references provided at the bottom of
Table 2), we provide in Figure 3 the number of times each
pair of methods was compared, with the diagonal entries
giving the number of times a particular method was used in
a comparison study. Figure 3A counts simulation-based stud-
ies and Figure 3B summarizes those based on real data. The
great majority of the studies included in our review evaluated
linear regressions. Nonparametric procedures have the poten-
tial of capturing nonadditive effects as well; however, the use
of nonparametric procedures remains limited thus far.

Among the additive models, the Bayesian regressions and
G-BLUP were the most commonly used. G-BLUP is attractive
because its implementation is straightforward using existing
REML+BLUP software. The Bayesian methods have been
discussed and described widely and are generally chosen
because many of them (e.g., BayesA, -B, and -C and BL)
allow departures from the infinitesimal model. Many of
the penalized regressions (e.g., LASSO and EN) also allow
this, but their use in GS is much more limited. This may
appear to be surprising considering the diversity of available
methods [RR, partial least-squares regression (PLS), princi-
pal component regression (PCR), LASSO, EN, and support
vector regression (SVR)] and the fact that most of these
methods are implemented in relatively efficient packages.
However, although limited, empirical evidence suggests
somewhat lower prediction accuracy of these methods rela-
tive to the more frequently used Bayesian regressions (Sol-
berg et al. 2009; Coster et al. 2010; Gredler et al. 2010;
Pszczola et al. 2011; Heslot et al. 2012).

Simulation studies

Simulation studies (Meuwissen et al. 2001; Habier et al.
2007) have systematically shown higher prediction accuracy
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of GS relative to standard pedigree-based predictions regard-
less of trait architecture or model of choice. However, many
studies have shown that factors such as size of the reference
data set (Meuwissen et al. 2001; VanRaden and Sullivan
2010), trait heritability, the number of loci affecting the trait
(Daetwyler et al. 2008), and the degree of genetic relation-
ships between training and validation samples (Habier et al.
2007) can greatly affect the prediction accuracy of WGP.

Effects of genetic architecture, marker density, and model
on prediction accuracy: The choice of model has also been
shown to affect predictive performance, but simulation
studies suggest that the effect of model choice on prediction
accuracy depends on genetic architecture.

Daetwyler et al. (2010b) showed in a simulation study
that the accuracy of G-BLUP is not affected by the number of
QTL; however, the predictive performance of BayesC was
greatly affected by that factor and its accuracy was higher
when the number of QTL was low and decreased with in-
creasing number of QTL. Similar trends were observed by
Coster et al. (2010) and Clark et al. (2011). In the study of
Coster et al. (2010), variable selection methods (e.g., some
Bayesian regressions and LASSO) showed an increase in
accuracy when the number of QTL decreased, while
a method that includes all SNPs (PLS) was shown to be
unaffected by the number of QTL. In the study by Clark
et al. (2011) it was also shown that with BayesB greater
accuracies were obtained than with G-BLUP in scenarios in-
volving different distributions of allele frequencies (from
rare to common variants) at casual loci. For a scenario that
closely resembled the infinitesimal model there was no dif-

ference in accuracy between BayesB and GBLUP, while
Daetwyler et al. (2010b) reported a lower accuracy for
BayesC in such a scenario. Other comparisons based on
simulated data also show that there are differences in ac-
curacies across models and generally confirm that, as one
would expect, accuracy is greater for the model that better
fits the genetic architecture of the trait (Lund et al. 2009;
Bastiaansen et al. 2010; Pszczola et al. 2011).

Apart from the number of QTL and the distribution of
their effects, there are several other factors that theoretically
are expected to result in differences in accuracy for variable
selection methods vs. G-BLUP type models. With low marker
density markers are unlikely to be tightly linked to QTL and
each marker may track signal from different QTL, inducing
a less extreme distribution of effects than obtained at higher
density. Meuwissen et al. (2009) showed that the superiority
of BayesB over G-BLUP increased with increasing marker
density. This result is also clearly confirmed in the study
by Meuwissen and Goddard (2010), where genomic predic-
tion based on the whole-genome sequence including the
causal loci was substantially more accurate for BayesB com-
pared to G-BLUP. However, both studies simulated very few
QTL, giving variable selection methods an advantage. On
the other hand, for any given marker density, the ability of
variable selection methods to detect variants tightly linked
to QTL increases as the span of LD decreases.

Real data analysis

A number of empirical evaluations of GS have been pub-
lished in recent years. These studies have confirmed some
but not all of the findings anticipated by simulation studies.

Table 2 Classification and abbreviations of the models included in Figure 3, A and B

Name (abbreviation) Bayesian Penalized Nonparametric

Least-squares regression (LSR)
Bayesian ridge regression (BRR) or RR-BLUP X X
BLUP using a genomic relationship matrix (G-BLUP) X X
Trait-specific BLUP (TA-BLUP) X X
BayesA X
BayesB X
BayesC X
Bayes SSVS X
Bayesian LASSO (BL) X
Double hierarchical generalized linear models (DHGLM)
Least absolute shrinkage and selection operator (LASSO) X
Partial least-squares regression (PLS) X
Principal component regression (PCR) X
Elastic net (EN) X
Reproducing kernel Hilbert spaces regressions (RKHS) X X X
Support vector regression (SVR) X X
Boostinga NA NA NA
Random forests (RF) X
Neural networks (NN)b X X X

The following are early references of the use of the above methods for genomic prediction (references with the original description of some of the methods are also given in
earlier sections of this article and in the references given here). LSR, BRR, BayesA, and BayesB, Meuwissen et al. (2001); G-BLUP, VanRaden (2008); TA-BLUP, Zhang et al.
(2010); BayesC, Habier et al. (2011); Bayes SSVS, Calus et al. (2008); BL, de los Campos et al. (2009); DHGLM, Shen et al. (2011); LASSO, Usai et al. (2009); PLS and SVR,
Moser et al. (2009); PCR, Solberg et al. (2009); EN, Croiseau et al. (2011); RKHS, Gianola et al. (2006); Boosting, González-Recio et al. (2010); RF, González-Recio and Forni
(2011); and NN, Okut et al. (2011).
a Boosting as an estimation technique could be applied to any method, Bayesian or penalized, parametric or nonparametric.
b NN could be implemented in a nonpenalized, penalized, or Bayesian framework.
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Pedigree vs. marker-enabled prediction: In general, em-
pirical studies have confirmed the superiority of GS relative
to family-based predictions that was anticipated by simu-
lations. The most clear case occurs in Holstein dairy cattle
where several studies (Hayes et al. 2009a; VanRaden et al.
2009) have confirmed that GS can attain higher prediction
accuracy than standard family-based prediction (e.g., paren-
tal average). The potential of GS has also been confirmed in
several breeds of beef cattle (Garrick 2011; Saatchi et al.
2011), sheep (Daetwyler et al. 2010a), broilers (Gonzalez-
Recio et al. 2008), layer chickens (Wolc et al. 2011a,b), and
several plant species (de los Campos et al. 2009; Crossa et al.
2010; Heslot et al. 2012). For applications in plants, it has
been shown that GS outperforms conventional marker-assis-
ted selection (Heffner et al. 2010, 2011) and that it has the
potential to be substantially more efficient per unit of time
than phenotypic selection (Grattapaglia and Resende 2011;
Zhao et al. 2012). However, the superiority of GS, relative to
pedigree-based predictions, has not always been as high as
anticipated by simulations. This is particularly clear in appli-
cations for sheep (Daetwyler et al. 2010a) and in beef cattle
(Saatchi et al. 2011). Many reasons may contribute to this:
in general in these cases the size of the training data set is

limited and the phenotypes used may have been noisy,
in some cases (e.g., some breeds in sheep) population struc-
ture (e.g., a mixture of breeds) may be a reason, and in
others the relatively small family size may limit the potential
accuracy that can be attained with GS.

Some studies have shown benefits of extending the stan-
dard models of GS by adding a random effect representing
a regression on pedigree information (de los Campos et al.
2009; Crossa et al. 2010); however, the benefits of jointly
modeling pedigree and marker data relative to a markers-
only model seem to vanish as marker density increases
(Vazquez et al. 2010).

Effects of marker density: Several empirical studies have
evaluated the effects of marker density on prediction
accuracy (Weigel et al. 2009; Vazquez et al. 2010; Makow-
sky et al. 2011). When shrinkage estimation procedures are
used, prediction accuracy increases monotonically with
marker density, but it does at diminishing marginal rates
of response. Consequently, prediction accuracy reaches a pla-
teau and does not increase beyond certain marker density.
The level at which this plateau takes place depends on two
factors mainly: the span of LD in the genome and sample

Figure 3 (A and B) Number of articles reviewed comparing one or more methods using simulated (A) or real (B) data. The abbreviations used for the
methods are given in Table 2. The following references were used: (Meuwissen et al. 2001; Habier et al. 2007; Piyasatian et al. 2007; González-Recio
et al. 2008; Lee et al. 2008; Bennewitz et al. 2009; de los Campos et al. 2009; Gonzalez-Recio et al. 2009; Hayes et al. 2009a,b; Lorenzana and
Bernardo 2009; Luan et al. 2009; Lund et al. 2009; Meuwissen 2009; Meuwissen et al. 2009; Moser et al. 2009; Solberg et al. 2009; Usai et al. 2009;
Verbyla et al. 2009; Zhong et al. 2009; Andreescu et al. 2010; Bastiaansen et al. 2010; Coster et al. 2010; Crossa et al. 2010; Daetwyler et al. 2010a,b;
de los Campos et al. 2010a,b; Gonzalez-Recio et al. 2010; Gredler et al. 2010; Guo et al. 2010; Habier et al. 2010; Konstantinov and Hayes 2010;
Meuwissen and Goddard 2010; Mrode et al. 2010; Pérez et al. 2010; Shepherd et al. 2010; Zhang et al. 2010; Calus and Veerkamp 2011; Clark et al.
2011; Croiseau et al. 2011; de Roos et al. 2011; Gonzalez-Recio and Forni 2011; Habier et al. 2011; Heffner et al. 2011; Iwata and Jannink 2011;
Legarra et al. 2011; Long et al. 2011a,b; Makowsky et al. 2011; Mujibi et al. 2011; Ober et al. 2011; Ostersen et al. 2011; Pryce et al. 2011; Pszczola
et al. 2011; Wiggans et al. 2011; Wittenburg et al. 2011; Wolc et al. 2011a,b; Yu and Meuwissen 2011; Bastiaansen et al. 2012; Heslot et al. 2012).
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size. For instance, Vazquez et al. (2010) found little increase
on prediction accuracy beyond 10,000 SNPs for the predic-
tion of several traits in U.S. Holsteins, a population where
LD span over long regions. However, in a study involving
WGP of human data, which exhibit much shorter span of LD
than found in cattle data, Makowsky et al. (2011) found
response to increased marker density even beyond
100,000 SNPs; more importantly the rates of response to
increases in marker density were greatly affected by the
number of close relatives used in the training data set, sug-
gesting that “local sample size” also affects the effects of
marker density on prediction accuracy.

Genetic architecture, sample size, and model: For traits
involving a limited number of large-effect QTL, simulation
studies have consistently predicted superiority of methods
using variable selection and differential shrinkage of esti-
mates of effects such as BayesB. However, this has not been
fully confirmed by real data analysis. Indeed, in most studies
comparing different genomic prediction models based on real
data, there are only small differences observed in accuracies
between models. An important question is whether the
genetic architecture of real data is perhaps less extreme than
suggested by QTL-mapping studies (Kearsey and Farquhar
1998; Hayes and Goddard 2001) and generally assumed in
simulation studies or whether other characteristics of the
data (number of markers, span of LD) used prohibit greater
distinction between models. Variable selection is most effec-
tive with short span of LD, high marker density, and large
sample size; however, these conditions are not always met in
applications in plant and animal breeding.

In empirical studies genetic architecture is less well
known and grouping traits based on their architecture is
not straightforward. In animal breeding, there are only
a few examples of traits where one or a few major genes
explain a sizable proportion of genetic variance. One of such
examples is the DGAT1 gene that has a large effect on fat
percentage in dairy cattle (Grisart et al. 2002; Winter et al.
2002). For this particular case, it is shown in several studies
that models with a thick-tailed prior distribution of marker
effects such as BayesA and variable selection methods such
as Bayes SSVS yield higher accuracy than G-BLUP.

In Figure 4 we summarize results from three studies (Hayes
et al. 2009b; Verbyla et al. 2009; de Roos et al. 2011) where
prediction accuracy of G-BLUP and of a Bayesian regression
using either a thick-tailed (BayesA) or a spike–slab (Bayes
SSVS) density was evaluated for fat and protein percentage
at varying sizes of the training data set. The results of these
studies illustrate important concepts. First, prediction accuracy
increases markedly as the size of the training data set does.
This has been anticipated by simulation studies (VanRaden
and Sullivan 2010) and consistently confirmed in empirical
analyses (Lorenzana and Bernardo 2009; Bastiaansen et al.
2010). Second, in general, for fat percentage there is a clear
superiority of the models performing differential shrinkage of
estimates of effects (e.g., Bayes SSVS or BayesA) relative to G-

BLUP. All traits were analyzed with model BayesA and the
authors concluded that prediction accuracy was higher for
traits with simpler genetic architecture. This also represents
a confirmation of results from simulations that anticipated
superiority of methods performing variable selection and dif-
ferential shrinkage of estimates, especially with traits having
some large-effects QTL (Meuwissen et al. 2001; Daetwyler
et al. 2010b). However, the differences detected in empirical
evaluations are not as large as those usually reported in sim-
ulations. More importantly, differences in predictive perfor-
mance between methods decreased when the sample size
increased (see Figure 4), reflecting that, as expected, the in-
fluence of the prior (the choice of prior density of marker
effects in this case) decreases as sample size increases. This
is in agreement with findings from simulation studies such as
that of Daetwyler et al. (2010b).

A recent study on genomic prediction for different traits
in loblolly pine indicated generally small differences in
prediction accuracy between the models RR-BLUP, BL,
BayesA, and BayesC (Resende et al. 2012). Nevertheless,
for traits related to fusiform rust, known to be controlled
by a few genes of large effects, BayesA and BayesC outper-
formed RR-BLUP and BL.

Theoretically, it can be expected that a method that is
flexible enough to model any type of genetic architecture
(e.g., model BayesB or BayesC when all hyperparameters are
estimated from data) will perform relatively well across
a wide range of traits with different characteristics; however,
empirical evidence has not always confirmed this. For in-
stance, the study of Heslot et al. (2012) compared 10 differ-
ent methods for 18 different traits measured on barley, wheat,
and maize, and RKHS was the only method that clearly out-
performed others across traits and data sets. Among the lin-
ear regressions, the Bayesian methods outperformed the
penalized regressions, and the differences among the Bayes-
ian linear regressions were very small. However, marker den-
sity in this study was very low and this clearly limits the
possibility of some methods to express their potential.

The effects of sample size on prediction accuracy are
clear. First, the accuracy of estimates of marker effects
increases with sample size. This occurs because bias and
variance of estimates of marker effects decrease with sample
size. Additionally, in some designs an increase in sample size
may also increase the extent of genetic relationships
between subjects in the training and validation data sets.

Liu et al. (2011) evaluated the effect of the size of the
training data set on the dispersion of estimates of marker
effects and on prediction accuracy using BRR-BLUP. The
authors reported an increase in dispersion among estimates
of SNP effects by more than a factor of 5, when the reference
population was increased from 735 to 5025 bulls (Liu et al.
2011). This essentially reflects that the extent of shrinkage
of estimates of effects decreases as simple size increases.
Moreover, they showed that the correlation between esti-
mated SNP effects was as low as 0.42 between the two
extreme scenarios, but correlations were .0.9 when �500
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bulls were added to the reference population that already
contained .3500 bulls. However, they reported that the
correlation between genomic predictions with different
numbers in the reference population was much closer to
1.0, compared to the correlation between estimated SNP
effects. This illustrates two important points: (a) when
p � n, one can arrive at similar predictions of total genomic
merit with very different estimates of marker effects and (b),
because of the same reason, with small sample size, one
needs to be cautious about interpretation of estimates of
marker effects because these may be highly influenced by
the choice of prior.

Concluding remarks

Both simulation and empirical studies have systematically
shown higher prediction accuracy of GS relative to standard
pedigree-based predictions and it is now clear that GS offers
great opportunities to further increase the rate of genetic
progress achieved in plant and animal breeding. Most of the
benefits of GS arise from the possibility of obtaining accurate
predictions early in the breeding cycle; therefore, getting the
most out of GS may require changes in breeding programs.

Implementing GS involves making important decisions
regarding the choice of model, the size of the training data,
and marker density, just to mention a few. In recent years
simulation and empirical studies have produced valuable
information that can be used to guide researchers in making
those decisions. Several factors, including span of LD, trait
heritability, genetic architecture, marker density, size of the
training data set, and the model used can affect the pre-
diction accuracy of GS.

Some of the factors affecting prediction accuracy, such as
trait heritability, genetic architecture, and to a large extent
LD, cannot be controlled; however, we can have control of the
design of reference data sets, including size and relationships,
marker density, and the model used for estimation of effects.
Among the factors that are under control of the researcher,
the size of the training data set and the strength of genetic
relationships between training and validation samples are by
far the most important factors affecting prediction accuracy.
The model of choice is also important; however, the differ-
ences between models reported by simulation studies have
not always been confirmed by real data analysis. Empirical
analyses have shown only small differences between meth-
ods, with a slight advantage of models performing “selection
and shrinkage” such as BayesB for traits with “large-effect
QTL.” But in general thick-tailed models such as BayesA or
Bayesian LASSO perform well across traits and G-BLUP per-
forms well for most traits. An important reason is that, due to
the fact that p � n, there are a multitude of different pre-
diction equations that yield about the same likelihood and
minimum prediction error rate (Breiman 2001): often we
encounter multiple equally-good models.

The unexpected generally good performance of G-BLUP in
real data is connected to several issues that have been
revealed to some extent. First, the real genetic architecture
of traits appears less extreme than expected based on QTL-
mapping results. Second, most of the gain in accuracy due to
using markers in current applications arises from explaining
the Mendelian sampling term, rather than from tracing
signals generated at individual QTL. Overall, it seems that
with a long span of LD and relatively sparse platforms (e.g.,
50,000 SNPs) variable selection may not be needed. However,
the relative performance of G-BLUP and variable selection
methods may change with denser coverage (e.g., with geno-
typing by sequencing) and in populations with short LD span.
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1.	  Equivalence	  between	  penalized	  and	  Bayesian	  regressions	  

	  

We	  show	  the	  equivalence	  first	  for	  the	  Ridge	  Regression	  (RR)	  and	  then	  for	  LASSO.	  The	  same	  

steps	  can	  be	  used	  to	  derive	  the	  Bayesian	  equivalents	  of	  other	  methods,	  such	  as	  Bridge	  

regression.	  The	  solution	  to	  the	  optimization	  problem	  of	  the	  RR	  is	  
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Multiplying	  the	  objective	  function	  by	  -‐1/2	  and	  switching	  from	  minimization	  to	  maximization	  

preserves	  the	  solution,	  therefore:	  
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Further,	  dividing	  the	  objective	  function	  by	  any	  positive	  constant	  preserves	  the	  solution;	  

therefore	  for	  any	   02 >σ 	  we	  have,	  
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Moreover,	  for	  any	  positive	  value	  of	   2
βσ 	  such	  that	   22 −= βσσλ we	  have:	  
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Finally,	  applying	  any	  monotonic	  transformation	  to	  the	  objective	  function	  also	  preserves	  the	  

solution,	  therefore:	  
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The	  first	  term	  in	  the	  above	  expression,	  is	  proportional	  to	  a	  Gaussian	  likelihood	  for	  data	  (yi)	  with	  

mean	   ∑ =
+

p

j jijx1 βµ 	  and	  residual	  variance	   2σ .	  And	  the	  second	  term	  is	  proportional	  to	  a	  

Gaussian	  prior	  for	  marker	  effects	  with	  mean	  equal	  to	  zero	  and	  variance	   2
βσ .	  Specifically,	  the	  

solution	  to	  RR	  optimization	  problem	  is	  equivalent	  to	  the	  posterior	  mode	  of	  the	  following	  

Bayesian	  model:	  
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A	  similar	  reasoning	  can	  be	  used	  to	  show	  the	  equivalence	  for	  the	  LASSO	  and	  in	  general	  

for	  Bridge	  regression.	  For	  the	  LASSO,	  we	  replace	  the	  penalty	  ∑ =

p

j j1
2β 	  with	  ∑ =

p

j j1
β ;	  therefore	  
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As	  with	  the	  RR,	  the	  first	  term	  is	  proportional	  to	  the	  following	  Gaussian	  likelihood.	  The	  second	  

term	  is	  proportional	  to	  the	  product	  of	  p	  IID	  Double-‐Exponential,	  or	  Laplace,	  priors	  densities	  for	  

marker	  effects.	  

	  

2.	  On	  the	  joint	  density	  of	  genetic	  values	  of	  genotyped	  and	  un-‐genotyped	  individuals	  

	  

In	   this	   section	  we	   consider	   the	   problem	  of	   deriving	   the	   joint	   density	   of	   genetic	   values	  when	  

some	  individuals	  (set	  1)	  were	  not	  genotyped	  and	  others	  (set	  2)	  were	  genotyped.	  We	  show	  that	  

the	  joint	  density	  of	  the	  genetic	  values	  of	  these	  two	  sets	  of	  individuals,	  denoted	  as	   1g 	  and	   2g 	  ,	  

respectively,	  in	  the	  RR-‐BLUP	  model	  is	  a	  mixture	  of	  multivariate	  normal	  densities.	  

When	   all	   individuals	   are	   genotyped.	   Following	   standard	   assumptions,	   the	   marginal	  

distribution	  of	  genomic	  values	  in	  RR-‐BLUP	  is	  as	  follows:	  
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where,	   1X 	  and	   2X 	  are	  matrices	  of	  marker	  genotypes	  and	   2
uσ 	  is	  a	  variance	  parameter	  and	  MVN	  

denotes	  a	  multivariate	  normal	  density.	  	  

When	  some	  individuals	  are	  not	  genotyped.	  Consider	  the	  case	  where	  only	  individuals	  in	  

set	  2	  are	  genotyped.	  In	  this	  case,	  we	  need	  to	  derive	  the	  joint	  density	  of	  genetic	  values	  given	   2X 	  

,	   pedigree	   relationships	   (denoted	   as	   P )	   and	   2
uσ 	   that	   is,	   ( )2221 ,,, uPp σXgg .	   To	   derive	   this	  

density	   we	   first	   augment	   the	   probability	   model	   by	   introducing	   1X ,	   and	   subsequently	  

integrating	  it	  out:	  
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The	  first	  density	  on	  the	  right-‐hand	  side	  is	  simply	  the	  MVN	  density	  of	  expression	  [1].	  The	  

second	  component	  of	  the	  right-‐hand	  side,	   ( )Pp ,21XX 	  gives	  the	  probability	  density	  function	  of	  

the	  unknown-‐genotypes	  given	  the	  observed	  genotypes	  and	  the	  pedigree.	  This	  is	  the	  density	  we	  

would	  use,	  for	  instance,	  in	  pedigree-‐based	  imputation	  algorithms.	  	  For	  every	  realization	  of	   1X 	  

we	   have	   a	   peculiar	   MVN	   with	   a	   particular	   co-‐variance	   structure	   (see	   right-‐hand	   side	   of	  

expression	  [2]).	  Therefore,	  we	  conclude	  that	  the	  joint	  density	  of	  genetic	  values	  is	  a	  mixture	  of	  

scaled-‐multivariate	  normal	  densities.	  
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Existing	   proposals	   for	   joint	   analysis	   of	   genotyped	   and	   un-‐genotyped	   individuals	   (e.g.,	  

CHRISTENSEN	  and	  LUND	  2010;	  AGUILAR	  et	  al.	  2010)	  assume	  that	  the	  joint	  density	  of	  genetic	  values	  

of	  these	  two	  groups	  of	  individuals	  is	  MVN.	  In	  light	  of	  the	  above-‐results,	  these	  methods	  should	  

be	  considered	  linear	  approximation	  to	  a	  non-‐linear	  problem.	  	  

	  

	  




