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Abstract

Microbial species play important roles in different environments and the production of high-quality genomes from
metagenome data sets represents a major obstacle to understanding their ecological and evolutionary dynamics.
Metagenome-Assembled Genomes Orchestra (MAGO) is a computational framework that integrates and simplifies
metagenome assembly, binning, bin improvement, bin quality (completeness and contamination), bin annotation,
and evolutionary placement of bins via detailed maximum-likelihood phylogeny based on multiple marker genes using
different amino acid substitution models, next to average nucleotide identity analysis of genomes for delineation of
species boundaries and operational taxonomic units. MAGO offers streamlined execution of the entire metagenomics
pipeline, error checking, computational resource distribution and compatibility of data formats, governed by user-
tailored pipeline processing. MAGO is an open-source-software package released in three different ways, as a singularity
image and a Docker container for HPC purposes as well as for running MAGO on a commodity hardware, and a virtual
machine for gaining a full access to MAGO underlying structure and source code. MAGO is open to suggestions for
extensions and is amenable for use in both research and teaching of genomics and molecular evolution of genomes
assembled from small single-cell projects or large-scale and complex environmental metagenomes.

Key words: metagenomics, evolutionary analyses, microbial draft genomes, species boundaries, FastANI, genome
assembly and binning.

Microbial species play important roles in different environ-
ments characterized by a span of organismal complexities.
The shotgun sequencing coupled to metagenomic analyses
are used to study microbial communities in these environ-
ments. The analysis and biological interpretation of sequence
information derived from complex communities or single-
amplified cell communities represented as metagenome or
whole-genome sequencing data sets, respectively, is challeng-
ing and crucially depends on sophisticated computational
resources and analyses. These include various pieces of soft-
ware and steps (e.g., read assembly, binning, annotation, bin
evaluation) next to program-specific settings, file format con-
versions and decision points that require and consume sub-
stantial time, computational resources and may introduce
unintended bias (Sczyrba et al. 2017). Obtaining genomes
from metagenomes is an emerging approach with the poten-
tial for large-scale recovery of high-quality near-complete
genomes amenable for analyses of their evolutionary

divergence, evolutionary dynamics, and abundance in original
samples (Meyer et al. 2018).

Advances in computational tools have improved our abil-
ity to address relevant evolutionary questions. However, com-
putational costs for hundreds of samples are measured in
tenths of thousands of CPU hours. The development of highly
successful tools such as FastQC (Andrews 2010), fastp (Chen
et al. 2018), IDBA-UD (Peng et al. 2012), megaHIT (Li et al.
2015), metaSPAdes (Nurk et al. 2017), maxBin (Wu et al.
2016), MetaBAT (Kang et al. 2015), CONCOCT (Alneberg
et al. 2014), BinSanity (Graham et al. 2017), Dereplication-
Aggregation Scoring Tool (Sieber et al. 2018), CheckM
(Parks et al. 2015), ezTree (Wu, 2018), and lessons learned
through the Critical Assessment of Metagenomic
Information (CAMI; Sczyrba et al. 2017; Meyer et al. 2018;
Fritz et al. 2019) enabled the field of molecular evolution of
Bacteria and Archaea domains to progress from being a de-
scriptive to an experimental endeavor, providing insight into
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evolutionary wealth of novel metagenome-assembled
genomes (MAGs), novel microbial lineages uncovered from
the environment, hence substantially revising and expanding
the tree of life (Parks et al. 2017; Parks et al. 2018) and evo-
lutionary dynamic in complex environments and medicine
(Lin and Kussell, 2019; Garud et al. 2019). Although the tools
are widely used, a number of limitations (supplementary table
S1, Supplementary Material online) and their dispersed and
boutique nature is limiting their integration and presents an
obstacle to their reproducible use within community, their
further adoption alongside the ubiquitous increases in se-
quencing volumes, study complexity (Jain et al. 2018),

emerging standards (Sczyrba et al. 2017; Bowers et al. 2017),
and technology upgrades (e.g., Nanopores).

To date, no uniform piece of software exists that would
integrate efficiently, scalable and reproducibly all the steps
linking the raw outputs from the sequencing platform (i.e.,
sequence data sets) over the steps of sequence quality trim-
ming, assembly, binning, bin improvement, bin quality con-
trol, bin annotation, to evolutionary and phylogenomic
placement of bins based on multiple orthologous marker
genes on protein level, provide core- and pan-genome anal-
yses and species boundary delineation through fast average
nucleotide identity (ANI) of resulting draft genomes. The
field-wide analysis standards are emerging due to the ongoing
efforts (Sczyrba et al. 2017; Meyer et al. 2018; Fritz et al. 2019);
however, the lack of reproducible framework makes it difficult
to embrace these standards, perform meta-analyses of exist-
ing data (Schloss et al. 2009; Parks et al. 2017) or simply remap
and extend past analyses (Parks et al. 2018; Jain et al. 2018) to
evolutionary dynamics (Garud et al. 2019).

A single software platform, Metagenome Assembled
Genomes Orchestra (MAGO) (fig. 1; supplementary table
S1, Supplementary Material online) was developed to fill
this gap and to overcome the limitations (supplementary
table S2, Supplementary Material online) by integrating an
ensemble of previously developed tools, streamlining their
performance and deliver compatibility of data formats, to-
gether with additional features for error checking, effective
computational resource use, governed by user-tailored pipe-
line processing (as specified by a textual configuration file).
MAGO currently makes use of the three most effective
assemblers and six binners put forward by CAMISIM
(Fritz et al. 2019) and AMBER (Meyer et al. 2018) studies,
respectively. The resulting bins are further improved by addi-
tional (the seventh) binner, Dereplication-Aggregation
Scoring Tool (Sieber et al. 2018) and evaluated by CheckM
according to their quality (% completeness and % contami-
nation; Parks et al. 2015) in line with MIMAG standard
(Bowers et al. 2017). CheckM utilizes a broader set of orthol-
ogous protein marker genes specific to the position of each
MAG within a reference genome tree and information about
collocation of these genes, based on amino acid identity be-
tween marker genes. Finally, the produced collection of high
quality MAGs can be used to extract protein-coding single-
copy orthologous marker genes using functional annotation
and build maximum likelihood trees from amino acid sequen-
ces with different amino acid substitution models within
MAGO using ezTree (Wu, 2018). The resulting alignment
file can be exported to build user specific trees in existing
high-end software (e.g., MEGA, Kumar et al. 2018). To anno-
tate and calculate core- and pan-genomes MAGO integrates
Prokka (Seemann, 2014) and Roary (Page et al. 2015) and
makes outputs (fasta, gbk) available for additional down-
stream analyses of genome rearrangements (e.g., Mauve,
Darling et al. 2010). FastANI (Jain et al. 2018) is utilized for
high-throughput ANI analysis of MAGs that is used to define
species boundaries and Operational Taxonomic Unit (OTU)
delineation at various thresholds of ANI. All outputs are read-
ily made available in structured directories for additional

FIG. 1. A schematic representation of steps integrated within MAGO
starting from the input of raw sequencing data to MAGs, bin quality
checking and the production of a collection of high-quality MAGs.
These are further utilized in analysis of evolutionary relationships to
produce maximum-likelihood (ML) phylogenomic placement, MAGs
annotation, and core/pan genome calculations next to determina-
tion of species boundaries and operational taxonomic units at geno-
mic level. The outputs are easily integrated into recently developed
tools (e.g., MEGA-X, Kumar et al. 2018; GTDB-Tk, Parks et al. 2018;
MAGpy, Stewart et al. 2019).
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inspection and inclusion in other types of analyses tools (e.g.,
MEGA-X, Kumar et al. 2018; GTDB-Tk, Parks et al. 2018;
MAGpy, Stewart et al. 2019). In total, MAGO consists of a
number (n¼ 53) of externally developed pieces of software
(supplementary table S1, Supplementary Material online) and
>9,000 lines of Python code integrated into seamless work-
flow to perform error checking of pipeline configuration and
to prevent suboptimal utilization of computational resources.

To overcome the constraints of web-based implementa-
tions of existing software and the known software limitations
described above (supplementary table S2, Supplementary
Material online) MAGO was made available as a singularity
image (https://www.sylabs.io/singularity/; last accessed
September 04, 2019) and a Docker container (https://www.
docker.com; last accessed September 04, 2019) for high perfor-
mance computing (HPC) purposes, and also as a VirtualBox
(https://www.virtualbox.org/; last accessed September 04,
2019) virtual machine (as outlined in supplementary materials
and methods, Supplementary Material online). By making
MAGO an open-source-software package under the
Commons Creative Attribution CC-BY License (https://

creativecommons.org/licenses/; last accessed September 04,
2019) the software is free and open to modifications by other
researchers. It is available for download at the project website
(http://mago.fe.uni-lj.si; last accessed October 28, 2019). The
accompanying preprepared example pipelines and test data
set document necessary information about the use of MAGO,
enhance reproducibility as the entire pipeline settings can now
easily be shared as a single textual pipeline file between
researchers, and results reproduced independently (supple-
mentary figs. S1 and S2, Supplementary Material online).

The abilities of MAGO are attested by the quality of the
underlying pieces of software (supplementary table S1,
Supplementary Material online) and their respective publica-
tions. Increasingly complex model data sets spanning CAMI
(Sczyrba et al. 2017) and EBI (https://www.ebi.ac.uk/ena/data/
view/PRJEB8286; last accessed September 04, 2019) were used
in benchmarking MAGO (supplementary table S3,
Supplementary Material online; results not shown). The
Genome Assembly Gold-standard Evaluations (GAGE) and
single-cell amplified genome project (Salzberg et al. 2012;
Kogawa et al. 2018) were used for realistic pure culture

FIG. 2. Overview of the basic quality metrics of MAGs reconstructed from the moose rumen microbiome collection (samples S1–6) (supple-
mentary table S3, Supplementary Material online; Svartström et al. 2017): (A) completeness (>50%); (B) contamination (<10%).
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data analyses (supplementary table S3, Supplementary
Material online; supplementary figs. S3–S7, Supplementary
Material online). Finally, a number of real case metagenomics
data sets (n¼ 106; s¼ 0.4 TB; supplementary table S3,
Supplementary Material online) were analyzed: 1) the moose
rumen microbiome (Svartström et al. 2017; figs. 2 and 3), and
2) longitudinal American pre/term delivery microbiomes
(Goltsman et al. 2018; supplementary figs. S4–S9,
Supplementary Material online).

Unless otherwise stated, in analyses of 280 GB data set of
the moose rumen microbiome collection (supplementary ta-
ble S3, Supplementary Material online; Svartström et al. 2017)
all parameters used were the default for each subroutine.
After initial sequence quality control (FastQC, fastp), each
sample was assembled (MEGAHIT) and binned individually
(MaxBin, metaBAT, and Concoct), aggregated and derepli-
cated (Dereplication-Aggregation Scoring Tool). CheckM
was used to assess the quality of resulting MAGs (% com-
pleteness; % contamination). Single-sample binning produced
a total of 3,012 bins. The distribution of the produced MAGs
into high- and medium-quality MAGs was based on the cri-
teria defined by the minimum information about a metage-
nome-assembled genome (MIMAG) standards (Bowers et al.
2017) (high: >90% completeness and <5% contamination,
presence of 5S, 16S, and 23S rRNA genes, and at least 18
tRNAs; medium:�50% completeness and<10% contamina-
tion). Given that few of the MAGs with >90% completeness
and <5% contamination in general pass the MIMAG thresh-
olds regarding the presence of rRNA and tRNA genes due to
known issues relating to the difficulties in assembly of rRNA
regions, the MAGs of high quality are described as “near
complete” in general (Bowers et al. 2017). Medium quality

bins (n¼ 670) represented 22.2 6 3.4% of all bins, whereas
75%, 80% complete bins (10% contamination) (Stewart et al.
2019) next to near complete bins represented 14.7 6 3.4%
(n¼ 443), 12.9 6 2.9% (n¼ 389), and 6.5 6 1.2% (197) of all
recovered MAGs, respectively. In general, MAGO enabled to
recover 13 MAGs (80% complete; 10% contamination; der-
eplicated) per each 10 GB of input sequence data.

The resulting MAGs obtained in this study were first used
to explore the existence of genetic discontinuity among the
microbial species as observed in large collections of complete
genomes from unrelated studies (Jain et al. 2018). The bi-
modal distribution, with the vast majority (99.8%) of the total
genome comparisons showing either> 95% intraspecies ANI
or <83% interspecies ANI values, was observed also for the
pairwise comparisons of MAGs recovered in this study (fig. 3).
It is highly likely that the discontinuity represents a true bio-
logical signature, confirming the existence of sequence-dis-
crete populations in natural environments. Although the
exact biological mechanisms giving rise to this phenomenon
were not explored in this study, the existence of genetic dis-
continuity in various environments provides opportunity to
reconsider its potential origins: 1) decreased recombination
frequency below 95% ANI; 2) dispersal limitations in habitats;
3) reduced diversity due to ongoing competition; 4) stochas-
tic events over long periods of time, and provides opportunity
to extend analyses from Bacterial and Archaeal domain to-
ward plasmids (Nurk et al. 2017) and viruses (Sutton et al.
2019) for which MAGO can be adopted. In addition, the
reconstructed MAGs were compared with a large and het-
erogeneous collection of characterized prokaryotic genomes
(n¼ 91, 761; Jain et al. 2018). The majority of MAGs recovered
in this study exhibited ANI< 83% (i.e., interspecies ANI
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FIG. 3. Genetic discontinuity observed in the wild moose rumen MAGs shown for the first 5,000 pairwise genome comparisons (supplementary
table S3, Supplementary Material online). Values of FastANI estimates in the ANI range of 75–100% are shown. The 95% and 83% ANI thresholds of
FastANI estimates serve to delineate comparisons belonging to the same species (>95% intraspecies ANI) or different species (<83% interspecies
ANI).
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values) with genomes in the collection. According to the
species demarcation cut-off of �95% ANI the MAGs recov-
ered from actively fermenting wild moose rumen represent
potentially new species amenable for detailed genomic
analyses.

MAGO efficiently alleviates the metagenome data analysis
bottleneck and provides an important and straightforward-
to-implement step toward making the future large-scale evo-
lutionary analyses of MAGs efficient, flexible, scalable and re-
producible, enforcing the MIMAG standard. Its outputs are
easily integrated into downstream pipelines such as The
Genome Taxonomy Database (GTDB) to establish a stan-
dardized microbial taxonomy based on genome phylogeny
(http://gtdb.ecogenomic.org/; last accessed September 04,
2019). MAGO is open to suggestions for extensions and is
amenable for use in both research and teaching of genomics
and molecular evolution of genomes assembled from small
single-cell projects or large-scale and complex environmental
metagenomes.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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