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Abstract
Understanding the control of gene expression remains one of the main challenges in the

post-genomic era. Accordingly, a plethora of methods exists to identify variations in gene

expression levels. These variations underlay almost all relevant biological phenomena,

including disease and adaptation to environmental conditions. However, computational

tools to identify how regulation changes are scarce. Regulation of gene expression is usu-

ally depicted in the form of a gene regulatory network (GRN). Structural changes in a GRN

over time and conditions represent variations in the regulation of gene expression. Like

other biological networks, GRNs are composed of basic building blocks called graphlets.

As a consequence, two new metrics based on graphlets are proposed in this work: RECon-

struction Rate (REC) and REC Graphlet Degree (RGD). REC determines the rate of graph-

let similarity between different states of a network and RGD identifies the subset of nodes

with the highest topological variation. In other words, RGD discerns how th GRN was

rewired. REC and RGD were used to compare the local structure of nodes in condition-spe-

cific GRNs obtained from gene expression data of Escherichia coli, forming biofilms and

cultured in suspension. According to our results, most of the network local structure

remains unaltered in the two compared conditions. Nevertheless, changes reported by

RGD necessarily imply that a different cohort of regulators (i.e. transcription factors (TFs))

appear on the scene, shedding light on how the regulation of gene expression occurs when

E. coli transits from suspension to biofilm. Consequently, we propose that both metrics

REC and RGD should be adopted as a quantitative approach to conduct differential analy-

ses of GRNs. A tool that implements both metrics is available as an on-line web server

(http://dlab.cl/loto).

Introduction

Networks are everywhere [1]. They are used to represent complex data associations from dif-
ferent domains ranging from social interactions and technological developments up to
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biological systems [2]. In biological sciences, network representations are predominantly
adopted to depict metabolic pathways [3], cell signaling cascades [4, 5], protein-protein inter-
actions [6], and GRNs [7, 8]. GRNs are directed networks where nodes represent genes, and
edges between nodes are present if a transcription factor (TF) encoded by a source gene regu-
lates the expression of a target gene. Major applications of GRNs are intended to perform dif-
ferential studies between realizations of biological systems over time and/or conditions. This
approach has been successfully applied in several studies including comparisons between dis-
eases and normal samples [9, 10], knockout and/or mutant models versus wild type [11], and
comparisons between different developmental stages [12, 13]. Interestingly, classic approaches
focus on the characterization of gene expression levels [14–16], disregarding changes in gene
regulation and therefore, on the network structure.

Networks are composed of small building blocks called graphlets. Statistically over-repre-
sented graphlets are commonly calledmotifs [17]. Even though over-representation depends
on the null model employed as baseline [18, 19], graphlets still represent local structural pat-
terns that may be assigned functional roles [20]. Moreover, the existence of several graphlets
has been functionally characterized in GRNs ranging from bacteria to higher animals [21–27].
Therefore, graphlets-basedmetrics could be used to describe and compare structural properties
of biological networks [28, 29]. In consequence, previous work has proposed graphlet distribu-
tion [19, 30], graphlet degree distribution [28, 31, 32] and graphlet correlation distance [33].
Despite particularities, all these metrics reflect global properties of the network structure, disre-
garding local structural differences that may be useful to identify changes in the regulation of
gene expression. To do so, the identification of subnetworks is a logical step forward. There are
several methods to identify subnetworks that change in different non-directed network states,
either based on graphlets [34] or based on other similarity metrics [35]. While the former
methods focus on identifying graphlets that change in co-expression networks the latter rely
on using the Hamming distance to identify changes between different co-methylation net-
works. On the other hand, node-based comparisons such as node degree [10] and node central-
ities [1, 36] can identify those nodes whose relationship with other components of the network
changes in different states of the network. Furthermore, other approaches implicitly consider
the dynamic properties of GRNs. In these dynamic methods, individual edges [37], or graphlets
[38], are associated with a vector of temporal events that denotes their presence and absence
over time.

Considering the relevance of graphlets, we have developed a graphlet based metric called
REC that quantifies the rate of graphlets reconstruction to compare the local structure of
GRNs. REC was also expanded to create the RGD, a metric that identifies the subset of nodes
with the highest topological variation between different states of a network. This work
describes the application of both REC and RGD to perform comparisons of condition specific
GRNs that represent the growth of E. coli in two different conditions; in suspension and in bio-
films. In doing so, the regulatory core of TFs and its neighborhoodof target genes with the
higher variation over time and conditions were identified, shedding light on the adaptation
process occurringwhen E. coli transits from suspension to biofilm, and vice versa. Our method
is freely available to the academic community as an on-line web server at http://dlab.cl/loto.

Materials and Methods

Expanding the definition of graphlets

In this study, graphlets are defined as small induced subgraphs formed by three nodes with at
least two regulatory relationships (true edges) among them. Thus, 13 graphlets could be formed
considering all possible connectivity patterns that meet the previous definition (Fig 1).

Graphlet Based Metrics for the Comparison of Gene Regulatory Networks

PLOS ONE | DOI:10.1371/journal.pone.0163497 October 3, 2016 2 / 16

Centro Interdisciplinario de Neurociencias de

Valparaiso (CINV) [ICM-Economia P09-022-F]

(http://www.iniciativamilenio.cl/). AJMM and SCR

acknowledge economical support from Fondo

Nacional de Desarrollo Cientifico y Tecnologico

project [11140342] (FONDECYT http://www.

conicyt.cl/fondecyt/). SCR acknowledges

economical support from Beca asistencia

academica from Universidad Andres Bello (http://

www.unab.cl/). CD acknowledges economical

support from Fondo Nacional de Desarrollo

Cientifico y Tecnologico postdoctoral project

[3140007] (FONDECYT http://www.conicyt.cl/

fondecyt/). DSH acknowledges economical support

to Fondo Nacional de Desarrollo Cientifico y

Tecnologico project [1130683] (FONDECYT http://

www.conicyt.cl/fondecyt/). Powered@NLHPC: This

research was partially supported by the

supercomputing infrastructure of the Chilean

National Laboratory for High Performance

Computing (NLHPC) [ECM-02] (Cominsion

Nacional de Investigacion Cientifica y Tecnologica-

Programa de Investigacion Asociativa (CONICYT-

PIA http://www.conicyt.cl/pia/).

Competing Interests: The authors have declared

that no competing interests exist.

http://dlab.cl/loto
http://www.iniciativamilenio.cl/
http://www.conicyt.cl/fondecyt/
http://www.conicyt.cl/fondecyt/
http://www.unab.cl/
http://www.unab.cl/
http://www.conicyt.cl/fondecyt/
http://www.conicyt.cl/fondecyt/
http://www.conicyt.cl/fondecyt/
http://www.conicyt.cl/fondecyt/
http://www.conicyt.cl/pia/


Importantly, the classical definition of graphlets proposed in [17] was expanded by making
equally relevant both the presence and absence of regulatory interactions between nodes.
Under this definition, all graphlets depicted in Fig 1, except number 13, require non-existing
regulatory relationships (false edges) between nodes. Another important characteristic of these
graphlets is the number of nodes that necessarily must encode for TFs. While type 1 is the only
graphlet that requires a single gene encoding for a TF, types 2 to 6 require at least two genes,
and types 7 to 13 require three genes to encode for TFs.

Of note, our definition of graphlets could be further extended to consider graphlets formed
by more than three nodes. However, connected graphlets formed by more than three nodes do
include at least a graphlet formed by three nodes [39]. Thus, three nodes graphlets are implic-
itly included in larger graphlets. Moreover, considering graphlets with more than three nodes
is an np-hard problem that requires non polynomial time as a function of the extra nodes used
to define larger graphlets.

Comparing the structure of GRNs

To compare different states of GRNs, one needs a formal framework. LetG be a state of a GRN
with V nodes and E edges, we want to compare its local structure (topology) with another state

Fig 1. Graphlets composed by three nodes. The direction of edges indicate the direction of the transcription regulation. Straight black edges

denote true interactions, and dashed edges depict false ones. Grey nodes represent genes that are required to be TF encoding genes, white nodes

represent genes that do not require to code for TF. Adapted from [17].

doi:10.1371/journal.pone.0163497.g001
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of the networkG0. In this way, G0 should be composed of the same set of nodesV, or a subset of
them V j V0 � V, differing from G in the set of edges, E0. Thus, a comparison between the local
topology of G = (V, E) and G0 = (V�, E0) should be performed,whereV� represents eitherV0 or
V. To do so, we propose a novel metric called REC. REC accounts for the rate of graphlets
reconstruction (see below): it first enumerates the number of true and false edges between the
same triplets of nodes in both states, then it compares them and summarize the comparison
into a single value. Therefore, REC provides a new approach to determine variations in the
local structure of different states of the network. These states represent a biological system in
different conditions, either temporal or environmental. Further elaboration of REC, led to the
development of RGD, the average REC for all graphlets in which the same node participates.
RGD can be used to identify the subset of nodes with the highest topological variation between
different states of a network, highlighting how the GRN was rewired.
Accessing the rate of graphlets reconstruction. The rate of graphlets reconstruction

(REC) between network states G and G0 measures how similar is the connectivity pattern
between edges spanning through the same triplet of nodes in both states. Consistently with
binary classification problems, existing edges (true) and absent ones (false) are transformed
into numerical values, 1 and 0, respectively. LetA and B be the adjacency matrices representing
the induced subgraph formed by the same triplet of nodes in G and G0, and aij and bij equiva-
lent elements of A and B, REC for a single graphlet is calculated using Eq (1). Considering our
definition of graphlets,N = 3 and N × (N − 1) = 6 in Eq (1). In other words, REC is equivalent
to the percentage of correctly classified edges, or accuracy, belonging to the subgraphs formed
by the same three nodes between the two compared network states. Thus, REC ranges from 0
to 1; 0 indicating total disagreement and 1, a perfectmatch.

REC ¼ 1 �
1

NðN � 1Þ

XN

i;j¼1;i6¼j

jaij � bijj; ð1Þ

REC compares edges, so for those cases in which a node is only present in one of the network
states and absent in the other one, all interactions of this node in the state where it is absent are
considered as false edges.
Identifying network rewiring. Importantly, REC can be averaged over all graphlets in

which a node participates,K, by calculating the RGD as Eq (2)

RGD ¼
1

K

XK

1

1 �
1

NðN � 1Þ

XN

i;j¼1;i6¼j

jaij � bijj

 !

; ð2Þ

RGD can be applied to identify those nodes that exhibit the largest variation in their local
connectivity and their neighborhoodof genes. Therefore, RGD also gives a way to determine
the subnetworks whose expression and regulation should be affected by the changes driving
the adaptation to the conditions depicted in the compared network states.
Graphlet assignment. Since graphlets involve three nodes, a brute force implementation

would have a complexity of O(n3), where n is the total number of nodes in the network. In
GRNs, edges only connect genes encoding TFs to their targets, therefore it is possible to reduce
the complexity to find graphlets to O(t � n2), where t is the number of genes encoding TFs. In
our implementation, networks are represented using an adjacency list. The adjacency list con-
tains only true edges arising from genes encoding TFs, thus, using less memory resources and
allowing to take advantage of GRNs being sparse. Self-connections are not included in the adja-
cency list, so the three nodes forming a graphlet are forced to represent different genes. For
each gene encoding TFs, a loop over each of its true connections, stored in the adjacency list, is
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carried out. This reduces the computational cost in finding the first true edge of each graphlet
from O(t � n) to O(t � k), where k, the number outgoing true connections or outdegree of each
gene encodingTFs, is<< n for most of the nodes and at most equal to n. Therefore, the total
estimation of computational complexity of the algorithm to find graphlets becomesO(t � k � n).

Further details about how REC and RGD are calculated, including an example of how to use
both metrics to compare two small networks, are shown in S1 Fig. Basal values of REC and
RGD on randomized networks and a table resuming the efficiency and averaged running times
on random GRNs of different sizes are shown in S1 Text.

Generating Condition specific GRNs

Condition specificGRNs were built based on gene expression experiments following a similar
approach to that adopted in [40]. To this end, edges found in a gold standard or reference net-
work were kept only when they originate from nodes encoding for TFs whose expression is cor-
roborated by an experimental procedure. The GRNs analyzed were built by using data from
time series experiments generated to study differential gene expression betweenE. coli forming
biofilms and cultured in suspension (GEO accession GDS2768, [41]). In this study, gene
expression was evaluated in the two aforementioned conditions at 4, 7, 15 and 24 hours. To
determine whether genes encoding TF are expressed or not, a threshold of 0.05 for the P-value
of the probeset signal (as reported in the expression measurements) was employed. When
there is no match between the gene names in the experiment and the reference network, the
names in the latter were kept.

The gold standard for the E. coli GRN was constructed from RegulonDB [42] version 8.7.
Data from this database was used to determine all true edges known for the entire E. coli
genome as follows. First, the list of TFs was linked to their product IDs and the product IDs to
their respective genes. This step determinedwhich genes encode for TFs. In the second step,
each gene encoding TFs was linked to their target genes; those genes whose expression is regu-
lated by the TF. TF IDs were linked to their regulons, regulons to their functions, functions to
promoters, promoters to transcription units and, finally, each transcription unit to its gene
IDs. All genes encoding TFs and all genes not encoding TFs with at least one true connection
were kept. Other gene products that also regulate gene expression, such as sRNAs, were not
taken into account for the sake of simplicity, but they could be easily included when GRNs are
created. RegulonDB only contains information about true edges (actual regulatory interac-
tions); therefore, false edges were assumed to occur between all nodes not linked by a true edge.
An image of this gold standard network is shown in S2 Fig.

All the condition specific and gold standard GRNs can be downloaded from the website at
http://dlab.cl/loto.

Network visualization and centrality measures

Networks images were created using Cytoscape [43]. Centrality metrics commonly applied to
describe nodes in a network were also computed in Cytoscape by using its built-in NetworkA-
nalyzer [36]. The metrics compared with RGD were average shortest path length, betweenness
centrality, closeness centrality, clustering coefficient, eccentricity, edge count, in-degree, out-
degree, stress centrality and neighborhoodconnectivity described in [1, 36] and defined in S3
Table). To do so, they were calculated for each node in both networks to then compare their
values, i.e., calculating the absolute value of the difference. This procedure was followed for
each network comparison, so the correlation of each metric with RGD was calculated.

Graphlet Based Metrics for the Comparison of Gene Regulatory Networks
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Statistical tests

The R package [44] (version 3.0.2) was used to perform statistical tests and to compute correla-
tion coefficients.A one-way ANOVA test was applied to evaluate the statistical significance of
the rate of RGD variation, with a P-value of 0.05 considered as threshold for significant varia-
tions. The correlation coefficients employed to establish the existence of a relationship between
RGD and differences in the centrality metrics mentioned above were Spearman’s rank correla-
tion (ρ), Kendall’s rank correlation (τ) and Pearson correlation (r).

Results and Discussion

Assessing the dynamic behavior of GRNs

The occurrence of graphlets in the condition specific networks (see Methods) was calculated to
reveal how the local structure of GRNs changes over time and in different conditions. The
number of nodes, true edges and TFs, forming each state of the condition specific networks
and the gold standard, are described in S1 Table. Interestingly, the number of genes encoding
TFs in the case of biofilm was always higher than that of suspension, with the only exception of
the networks at four hours. Consequently, this trend was also observed for the number of
nodes and true edges forming the networks.

The occurrence of each type of graphlets and the number of genes not forming any graphlet
(NOG) in each condition specificGRN is shown in S2 Table. It is worth noting that the fraction
of nodes that participate in any graphlet remained almost invariable in all the networks (at
most 0.5% of the genes do not form graphlets), demonstrating that graphlet-basedmetrics do
actually consider most of the nodes in GRNs. Notably, all graphlet types but type 9, occurred in
these condition specificGRNs. The absence of type 9 graphlets was expected as they were also
absent in the gold standard. In addition, the occurrence of each graphlet type maintained
approximately the same ratio as in the gold standard, but exhibited a reduction proportional to
the also diminished number of target nodes and genes encoding TFs. Three graphlets of type
12 and one graphlet of type 13 found in the E. coli gold standard were also detected in the con-
dition specific networks. This indicates that at least the portions of the GRN formed by these
four graphlets remained unaltered independently of the time point and condition studied.

The average REC per graphlet type was also calculated by considering equivalent time
points, as shown in S3 Fig. The relatively small variation of the average REC indicates that the
majority of the local topology remains unaltered over time. As observed in Fig B in S3 Fig, it
seems that, on average, most of the graphlets present in the suspension networks were also
maintained in biofilm. The largest difference observed is in both cases at 15 hours, with less
pronounced changes at 7 and 24 hours. Interestingly, most of the variation observed affects
graphlets that require their three forming nodes to encode for TFs (types 8, 10 and 11).

The proportion of genes showing changes in their local topology according to their RGD
was determined (Fig 2) to study in more depth changes occurring in the structure of the GRNs.
All genes were considered for further analysis. A one-way ANOVA statistical test was per-
formed in order to obtain a P-value to establish the significance of the comparisons. Notably,
the number of genes encoding TFs exhibits a higher variation than that of the genes not coding
for TFs. When considering the statistical analysis for genes coding for TFs, significant varia-
tions occurred at 7 and 24 hours, with 66% and 62% variation, respectively. These results sup-
port the notion that the adaptation process between both conditions requires dramatic changes
in the topology of the regulatory core of the GRN [45–47]. Interestingly, these results appeared
to disagree with the original analyses [41], in which the largest difference on gene expression
levels was reported at 4 and 7 hours, with 3.2% and 2.5% of the genes changing their
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expression, respectively. Despite this apparent difference, it should be noted that instead of
changes on gene expression, RGD reports changes of the network structure. These changes
imply that a different cohort of regulators (i.e. TFs) appear over time suggesting that the GRN
had been rewired.

Genes not coding for TFs showed a different behavior: the largest number of genes with a
RGD< 1.0 occurs at 7 hours (49% of the genes), followed by 15 hours (47%), then at 24 (44%)
and the smallest at 4 hours (15%). As evident, compared to the rate of variation of genes coding

Fig 2. Statistical significance of RGD variation. Fraction of genes with RGD < 1.0 for genes participating in at least one graphlet comparing different

conditions and time points. BS: biofilm versus suspension, for all four time points analyzed. B: biofilm, at consecutive time points. S: suspension, at

consecutive time points. TF: genes coding for TFs. NTF: genes non coding for TFs. Statistically significant P-values obtained from a one way ANOVA test

(0.05 threshold) are marked with an �.

doi:10.1371/journal.pone.0163497.g002
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for TFs, the adaptation between both conditions requires a smaller change to the local structure
of genes not coding for TFs in the GRN.

In a comparison between consecutive time points, the largest variation in RGD for genes
coding for TFs occurred between 7 and 15 hours (74%), and between 4 and 7 hours (70%), for
biofilm and suspension respectively. In the case of genes not coding for TFs, the largest varia-
tion in RGD occurred between 7 and 15 hours in biofilm (66%) and between 4 and 7 for sus-
pension (61%). These results indicate that the majority of the changes on the structure of the
GRN occurs during the transition from early stages of development to mature biofilms (7 to 15
hours) and earlier when E. coli was cultured in suspension (4 to 7 hours).

Comparison of RGD with other centrality metrics

To determine whether a relationship betweenRGD and the variation of node centralities exists
or not, we studied the comparisons of condition specific networks at 15 hours. Notably, REC
calculated at this point exhibited the largest variation and therefore, the local structure of
GRNs should display the largest topological variations between the two analyzed conditions
(see S3 Fig). Three different correlation coefficientswere employed: Kendall and Spearman
correlations that compare order relationships and Pearson correlation that measures the
strength of the linear relationship.

Absolute values of the correlation coefficients betweenRGD and the centralities were in the
[0.15, 0.65], [0.13,0.6] and [0.06,0.45] ranges for Spearman, Kendall, and Pearson correlations
respectively (see S3 Table). These values indicate the existence of a weak relationship between
several of these node centralities and RGD. However, the strength of this relationship varies
depending on the metric and network used as reference in the comparison. Interestingly, the
results of the correlation analysis also indicated the existence of discordance between RGD and
the variation in centrality measures. This partial disagreement was confirmed by looking at the
number of nodes identified simultaneously by RGD and by node centrality metrics and the
number of nodes only identified by either RGD or by the centralities. As shown in S3 Table,
with the only exception of neighborhoodconnectivity, the number of nodes identified by the
centralities is smaller than the number of nodes identified by RGD. In other words, RGD is
capable to identify more topological changes than any of the assayed centrality measures. Cen-
trality metrics can be separated into two groups, those that require the calculation of shortest
paths and those that are not based on shortest paths. Metrics based on shortest paths—average
shortest path length, betweenness, closeness, eccentricity and stress centrality—consider the
relationship of each node with all other nodes in the same connected component of the net-
work. On the other hand, degrees, clustering coefficient and neighborhoodconnectivity only
take into account the local topology of each node. Since our graphlet-basedmetrics reflect the
local topology of a node, it is not surprising that the metrics that do not rely on shortest paths
show better correlation and higher overall agreement with RGD. Centrality values were also
plotted against the respective RGD values for each gene (shown after S3 Table in the same file).
These comparisons were performed to investigate if the correlation coefficients shown in S3
Table were dominated by any trend in the values of the metrics. As an example, Fig 3 shows
the relationship of clustering coefficientwith RGD on the same comparisons used to build S3
Table. As seen, in a similar way with the other metrics (see the figures below S3 Table), the rela-
tionship betweenRGD and clustering coefficient does not follow any obvious trend, thus rein-
forcing the evidence to demonstrate that our graphlet-basedmetrics and node centralities are
in fact different approaches.

Graphlet Based Metrics for the Comparison of Gene Regulatory Networks
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Using RGD to identify nodes encoding TFs with the highest variation in

their local topology

The five genes encoding for TFs with the largest local topology variation according to their
RGD using biofilm and suspension as references are shown in Table 1. This table shows both
the RGD of each gene and their graphlet degree, i.e., the number of graphlets in which each of
these genes participate. The subnetworks composed of those genes found in the same graphlets
as the genes encoding TFs with the lowest RGD using biofilm as reference, are shown in Fig 4.
On the other hand, Fig 5 shows the subnetworks belonging to those genes encoding TFs with
the lowest RGD using suspension as reference. There are 26 genes encoding TFs in the largest
connected component of the subnetwork identified using biofilm as reference. The subnetwork
identified using suspension as reference contains 31 genes encoding TFs in its largest compo-
nent. Thirteen genes coding for TFs appear in the two subnetworks, indicating that RGD was
able to identify the subnetworks that better explain the differences between the two compared
conditions independently of which condition was employed as reference. Since both largest

Fig 3. RGD versus absolute value of the change in CLustering Coefficient (CLC) at 15 hours. Left panel shows values of the metrics calculated using

the suspension network as reference and right panel using the biofilm condition as reference in the comparison. Regression line calculated with R using as

dependent variable RGD, regression coefficients between brackets.

doi:10.1371/journal.pone.0163497.g003

Table 1. Genes coding for TFs with the lowest RGD comparing the two networks at 15 hours.

Biofilm as reference Suspension as reference

TF Graphlet Degree RGD TF Graphlet Degree RGD

pgrR 1 0.667 dicA 21 0.667

xapR 1 0.667 nsrR 3662 0.686

agaR 49 0.680 norR 93 0.710

galR 66 0.735 paaX 114 0.719

ecpR 216 0.755 mntR 9 0.778

doi:10.1371/journal.pone.0163497.t001
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connected components share as many nodes encoding for TFs, it is suggested that RGD was
able to identify the subnetworks that better explain the differences between the two compared
conditions independently of which condition was employed as reference. The majority of the
genes encoding TFs with the lowest RGD were interconnected in this large component. This
implies both an interdependency of their regulation and also an exquisite fine-tuning pro-
moted by a small number of TFs. Noticeably, the only genes coding for TFs whose subnetworks
were disconnected from the largest connected component were already disconnected in the
gold standard. These genes were pgrR and xapR in the case of biofilm as reference, whereas for
suspension as reference, the only disconnected gene coding for TFs is dicA. To further explore
the role of these genes, their regulation, co-regulation and interaction with other genes forming
the subnetworks, their functions were reviewed using EcoCyc [48] and RegulonDB [42], as
described in S2 Text. Interestingly, most of the genes coding for TFs identified by RGD, were
found to actually regulate the expression of genes involved in several of the main functional
clusters mentioned in the original article [41]. These clusters were motility and fimbriae (ecpR);
stress response genes (pgrR,mntR, nsrR and norR); transport genes (galR, agaR, xapR, nsrR
and paaX); extracellularmatrix (pgrR); respiratory genes (nsrR); and indole and sulfur genes
(nsrR). Notably, the explicit employment of graphlets to uncover these genes encoding TFs
allowed, not only the identification of their target genes, but also to establish the relationship
with their regulators. Thus, RGD identified key TFs that become predominant when E. coli

Fig 4. Merged sub-network of the TFs with the lowest RGD using biofilm network at 15 hours as reference. The TF encoding genes identified using

their RGD are colored in red; other TFs are colored in orange and they are named True Positive (TP) because their expression was detected in the two

compared networks; effector genes, those that do not code TFs are colored in purple if their expression was detected only in the reference network (False

Negative (FN) nodes) and in blue if their expression was detected in both networks; with respect to the edges, they are colored in black if they were present

in both networks (TP edges), light purple if they were found only in the reference network (FN edges) and yellow when they were detected only in the

compared network (False Positive (FP) edges). The same image but with TP edges removed is shown in S4 Fig.

doi:10.1371/journal.pone.0163497.g004
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transits between biofilm and suspension, shedding light on how the GRN changes its topologi-
cal structure to allow the adaptation to new conditions.

Conclusion

As a whole, our results indicate that both REC and RGD are good quantitative metrics that can
be used to determine the topological similarity betweenGRNs representing the same system
under diverse conditions. Notably, RGD was able to identify the nodes and the subnetworks
that undergo the largest topological variations when E. coli transits between biofilm and sus-
pension. Changes on these networks account for the functional variations that are involved in
phenotypic adaptations to the aforementioned conditions. Thus, our method proved its useful-
ness by providing a complementary approach to methodologies based on quantifications of
alteration in gene expression levels or centrality metrics. Of note, using RGD we discovered a
large subnetwork connecting TFs with the lowest RGD. The existence of this connected com-
ponent implies both an interdependency of the regulation of the genes that are part of it and
also an exquisite fine-tuning promoted by a small number of TFs. These observations open up
new opportunities for experimental investigation of the regulation of gene expression.

Fig 5. Merged sub-network of the TFs with the lowest RGD using suspension network at 15 hours as reference. The TF encoding genes identified

using their RGD are colored in red; other TFs are colored in orange and they are named TP because their expression was detected in the two compared

networks; effector genes, those that do not code TFs are colored in purple if their expression was detected only in the reference network (FN nodes) and in

blue if their expression was detected in both networks; with respect to the edges, they are colored in black if they were present in both networks (TP edges),

light purple if they were found only in the reference network (FN edges) and yellow when they were detected only in the compared network (FP edges). The

same image but with TP edges removed is shown in S5 Fig.

doi:10.1371/journal.pone.0163497.g005
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Supporting Information

S1 Fig. Topological comparison of two small networks: Example on how REC and RGD are
used to compare two simple networks.A) shows the two small networks that are been com-
pared; B) identification of each graphlet in each network; C) calculation of REC for each graph-
let; D) computation of how RGD for node B. Black edges denote true interactions, and red-
dashed edges depict false ones.
(PDF)

S2 Fig. RegulonDB 8.7 E. coli gold standard.This image shows visually the gold standard
used through the study with different purposes. Transcription Factor encoding genes are col-
ored in red. The eleven nodes that do not form graphlets are shown within a red box.
(PDF)

S3 Fig. Comparison of equivalent time points under the two conditions studied using REC
for each graphlet type.The plots in the first row show REC cumulative results for each graph-
let type using the four states of the condition specific networks for the biofilm formation as ref-
erence network (sub-figure A) or suspension (sub-figure B).
(PDF)

S4 Fig. Merged sub-network of the TFs whoseRGD varies themost using biofilm network
at 15 hours as reference.Only FP and FN edges are shown. Color codes are the same as in Figs
4 and 5 in the main text.
(PDF)

S5 Fig. Merged sub-network of the TFs whoseRGD varies themost using suspension net-
work at 15 hours as reference.Only FP and FN edges are shown. Color codes are the same as
in Figs 4 and 5 in the main text.
(PDF)

S1 Table. Components of the condition specific and gold standard GRNs. This table shows
the number of TFs, nodes (genes) and true edges occurring at four time points of the GRN of
E. coli cultured in suspension and forming biofilms.
(PDF)

S2 Table. Graphlets in condition specific and gold standard GRNs. This table shows the
occurrence of each graphlet type and the number of genes that do not form any graphlet
(NOG) along four time points when E. coli was cultured in suspension, forming biofilms and
in the entire gold standard. Graphlets of types 9 are absent in all these condition specific net-
works.
(PDF)

S3 Table. Comparison of RGD with other centralitymetrics in condition specific networks
at 15 hours.Columns in this table show, from left to right, Spearman’s correlation (ρ); Ken-
dall’s correlation (τ); Pearson correlation (r); The rate of disagreement (d = nodes identified
only by one metric/# nodes); The rate of disagreement for nodes with variations in the metric
(dc = nodes identified only by one metric/nodes identified only by one or the two metrics met-
ric); The number of nodes identified by both metrics (Both); only by RGD (RGD); only by the
other metric (M); and the total number of nodes (#). The comparisons were performed using
only those nodes for which both RGD and the centrality measurements could be computed
using the Biofilm networks as reference (BS) and the Suspension network as reference (SB).
Centrality metrics are (Cent): Average Shortest Path Length (ASPL); BetweennessCentrality
(BC); Closeness Centrality (CC); Clustering Coefficient (CLC); Eccentricity (E); Edge Count
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(EC); Indegree (ID); Outdegree (OD); NeighborhoodConnectivity (NC); and Stress Centrality
(SC). See below for a definition of the centralities used. This file also contains the definition of
the centrality metrics employed and several figures showing the comparison of these centrality
metrics versus RGD on the comparisons performed using the biofilm and suspension networks
at 15 hours as reference.
(PDF)

S1 Text. Assessing REC and RGD on comparisons of randomnetworks.This text explains
the procedure followed to generate random GRNs of any given size and to randomize the E.
coli gold standard. The file also shows the performance of the method with respect to network
size and the values of REC and RGD on comparisons of randomized E. coli with the reference
network.
(PDF)

S2 Text. Functional characterizationof genes coding TFs with lowest RGD at 15 hours.
(PDF)
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