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Abstract

Summary: Phylogenetic comparative methods are powerful but presently under-utilized ways to identify microbial
genes underlying differences in community composition. These methods help to identify functionally important
genes because they test for associations beyond those expected when related microbes occupy similar environ-
ments. We present phylogenize, a pipeline with web, QIIME 2 and R interfaces that allows researchers to perform
phylogenetic regression on 16S amplicon and shotgun sequencing data and to visualize results. phylogenize applies
broadly to both host-associated and environmental microbiomes. Using Human Microbiome Project and Earth
Microbiome Project data, we show that phylogenize draws similar conclusions from 16S versus shotgun sequencing
and reveals both known and candidate pathways associated with host colonization.

Availability and implementation: phylogenize is available at https:/phylogenize.org and https:/bitbucket.org/

pbradz/phylogenize.
Contact: kpollard@gladstone.ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Shotgun and amplicon sequencing allow previously intractable mi-
crobial communities to be characterized and compared, but translat-
ing these comparisons into gene-level mechanisms remains difficult.
Researchers typically correlate microbial gene abundances with
environments using metagenomes, either from shotgun sequencing
(Nayfach and Pollard, 2016) or imputed from amplicon sequences
(ABhauer et al., 2015; Langille er al., 2013). However, related
microbes tend to both share genes and occupy similar environments,
causing spurious correlations. Phylogenetic methods can correct for
such confounding in metagenomics data (Bradley et al., 2018), but
are currently implemented only in command-line, computationally
intensive software.

We developed phylogenize, a pipeline allowing researchers with-
out specific expertise in phylogenetic regression to analyze their own
data via the web, an R package (R Core Team, 2017), or the popular
microbiome workflow tool QIIME 2 (Bolyen et al., 2019). An im-
portant innovation specific to phylogenize is that input data can be
shotgun metagenomes or 16S amplicon data, the latter being lower-
cost and available for more environments. Using these taxonomic
profiles and sample environments (i.e. sources), the tool returns
genes associated with differences in community composition across
environments.

©The Author(s) 2019. Published by Oxford University Press.

2 Overview

Users provide phylogenize with taxon abundances and sample anno-
tations, in tabular or BIOM (McDonald et al., 2012) format.
Shotgun data should be mapped to species using MIDAS (Nayfach
et al., 2016). MIDAS defines microbial species based on genome
clustering and uses single-copy, universal bacterial gene families
(Wu et al., 2013) to estimate taxon abundances; MIDAS also yields
strain-specific information for species with sufficient coverage, but
only species-level data are required for phylogenize. Amplicon data
should be denoised to amplicon sequence variants (ASVs) with
DADA2 or Deblur. phylogenize uses BURST (Al-Ghalith and
Knights, 2017) to map ASVs to MIDAS species via individual
PATRIC genomes (Wattam et al., 2014), using a default cutoff of
98.5% nucleotide identity (Rodriguez-R et al., 2018) and summing
reads mapping to the same species. Taxa are linked to genes using
MIDAS and PATRIC, and then gene presence is tested for associ-
ation with one of two possible phenotypes: prevalence (frequency
microbes are observed) or specificity (enrichment of microbes rela-
tive to other environments; see Bradley ez al., 2018).

phylogenize is an R package with a QIIME 2 wrapper written in
Python and a web front-end written in Python with the Flask frame-
work (https://www.palletsprojects.com/p/flask) and a Beanstalk-
based queueing system (https://beanstalkd.github.io). phylogenize
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Fig. 1. (A) Effect sizes computed with phylogenize based on HMP shotgun (x-axis) and 16S amplicon (y-axis) data are correlated. FIGfam gene families with ¢ < 0.05 in one or
both analyses shown with their Pearson correlation. Examples of SEED subsystems enriched for positively associated genes with both data types include ‘Sporulation gene
orphans’ in Firmicutes (qspogun = 3.1 X 1072, g16s = 1.3 x 107'%) and “Type III, Type IV, Type VI, ESAT secretion systems’ in Proteobacteria (@shotgun = 6.9%
10738 gi6s = 7.0 x 107%). (B) SEED enrichments in EMP data using phylogenize (x-axis; 61 subsystems) or a linear model (y-axis; 200 subsystems). Larger circles represent
the terms ‘nitrogen fixation’ and ‘nitrogen metabolism’. Full list of enrichments in Supplementary Table S1

reports include interactive trees showing the phenotype’s phylogen-
etic distribution, heatmaps of significantly positively associated
genes, tables showing which SEED subsystems (Overbeek et al.,
2005) are significantly enriched, and links to tab-delimited files con-
taining complete results.

3 Example applications

3.1 Human Microbiome Project

The Human Microbiome Project (HMP; Human Microbiome Project
Consortium, 2012) collected both 16S amplicon and shotgun sequences
from 16 body sites on 192 individuals. Shotgun data processing was pre-
viously described (Bradley et al., 2018). Amplicon samples (7 = 6577)
were downloaded from the NCBI SRA and denoised with DADA2
(Callahan e al., 2016), combining reads from the same individual and
site. We ran phylogenize on both data types to identify genes whose pres-
ence is associated with prevalence in the gut. Despite differing read depth
and sequencing technology (454 versus Illumina), effect sizes for genes
associated with gut prevalence were similar for amplicon and shotgun
(0.33 < r < 0.57) and similar pathways were enriched (Fig. 1A).

3.2 Earth Microbiome Project

The Earth Microbiome Project (EMP; Thompson et al., 2017) com-
prises 16S data from many biomes and habitats. Using the balanced
subset of 2000 samples processed using Deblur (Amir et al., 2017), we
ran phylogenize and linear models (no phylogenetic correction) to iden-
tify genes whose presence is specific to plant rhizosphere compared to
other environments. Linear models identified many more positively
associated genes (24 728 versus 7490, g < 0.05) and SEED subsystem
enrichments (200 versus 61 subsystems, g < 0.25). However, though
nitrogen fixation is a key function of plant rhizospheres (Mylona ez al.,
1995), fewer linear model enrichments were in the terms ‘nitrogen fix-
ation’ or ‘nitrogen metabolism’ (4/200 versus 5/61 or 2.0% versus
8.2%; Fig. 1B). Since significant genes unique to the linear model were
also more correlated with phylogeny in 4 out of the 5 phyla (Ives-
Garland o = 24.0 versus 11.4, p < 2 x 107'%: Supplementary Fig.
S1), this suggests dilution by false positives.

4 Conclusion

Many microbes of interest to clinicians, ecologists and microbiologists
are poorly characterized or experimentally intractable. By making it
easier to analyze either 16S or shotgun data with more precise statistic-
al tools, phylogenize expands the toolkit for identifying mechanisms
driving differences in microbial community composition.
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