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Objectives: Our objective was to simulate the distribution of human
papillomavirus (HPV) DNA test results from a 96-well microplate assay
to identify results that may be consistent with well-to-well contamination,
enabling programs to apply specific quality assurance parameters.
Materials and Methods: For this modeling study, we designed an al-
gorithm that generated the analysis population of 900,000 to simulate the
results of 10,000 microplate assays, assuming discrete HPV prevalences of
12%, 13%, 14%, 15%, and 16%. Using binomial draws, the algorithm
created a vector of results for each prevalence and reassembled them into
96-well matrices for results distribution analysis of the number of positive
cells and number and size of cell clusters (22 positive cells horizontally or
vertically adjacent) per matrix.

Results: For simulation conditions of 12% and 16% HPV prevalence,
95% of the matrices displayed the following characteristics: 5 to 17 and 8
to 22 total positive cells, 0 to 4 and 0 to 5 positive cell clusters, and largest
cluster sizes of up to 5 and up to 6 positive cells, respectively.
Conclusions: Our results suggest that screening programs in regions
with an oncogenic HPV prevalence of 12% to 16% can expect 5 to 22 pos-
itive results per microplate in approximately 95% of assays and 0 to 5 pos-
itive results clusters with no cluster larger than 6 positive results. Results
consistently outside of these ranges deviate from what is statistically ex-
pected and could be the result of well-to-well contamination. Our results
provide guidance that laboratories can use to identify microplates suspi-
cious for well-to-well contamination, enabling improved quality assurance.

Key Words: HPV DNA testing, cervical cancer, screening,
quality assurance, Latin America, low-resource settings

(J Low Genit Tract Dis 2018;22: 219-224)

C ervical cancer is caused by infection by oncogenic human
papillomaviruses (HPVs) and is a leading cancer killer of
women in low-resource settings. This neoplasia is preceded by
persistent infection with HPV, which can lead to precancerous
lesions several years before development of invasive cancer.
Detection of oncogenic HPV genotypes in cervical or vaginal

'PATH, Seattle, WA; and 2Global Coalition Against Cervical Cancer, Arlington, VA

Reprint requests to: Francesca Holme, MPH, Program Officer, Women's
Cancers, PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121.
E-mail: fholme@path.org

This article is based on research funded in part by the Bill & Melinda Gates
Foundation. The findings and conclusions contained within are those of the
authors and do not necessarily reflect positions or policies of the Bill &
Melinda Gates Foundation.

F.H. presented at a meeting of QTAGEN's shipping and logistics department, for
which her travel expenses were paid by QIAGEN. J.J. was the co-owner and
deputy manager of Onco Prev International, a Peruvian company, from
2012 to March 2017. Onco Prev International offers cervical cancer
screening services. E.B. and R.S. have declared they have no conflicts
of interest.

Supplemental digital content is available for this article. Direct URL citations
appear in the printed text and are provided in the HTML and PDF versions
of this article on the journal’s Web site (www.jlgtd.com).

Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on
behalf of the ASCCP. This is an open access article distributed under the
Creative Commons Attribution License 4.0 (CCBY), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

DOI: 10.1097/LGT.0000000000000391

Journal of Lower Genital Tract Disease e Volume 22, Number 3, July 2018

samples allows screening programs to identify women at higher
risk for developing this disease.' Human papillomavirus DNA
testing has a higher sensitivity than other screening methods and
allows longer screening intervals.* Recently, a low-cost HPV DNA
test (careHPV, QIAGEN, Gaithersburg, MD) was introduced through
the public health systems in Guatemala, El Salvador, Honduras, and
Nicaragua with assistance from PATH, a nongovernmental organiza-
tion, and in collaboration with local partner organizations.> Despite
the accuracy of HPV DNA screening, we observed unexpected test
results from some of the Central American laboratories, including
higher-than-predicted numbers of positive results.

The assay is carried out in a 96-well microplate by a validated
technician. The testing procedure includes manual steps such as
pipetting specimens and reagents into microplate wells; washing,
decanting, and blotting the microplate; and transferring the micro-
plate from the bench top to a heater/shaker and luminometer. Some
manual steps have been identified by the test manufacturer as
potential opportunities for well-to-well contamination,® whereby
material from a positive sample in one well is transferred to an ad-
jacent well and produces a false-positive result in that well. Although
the risk of contamination is lower for a signal amplification test (such
as careHPV) than a polymerase chain reaction test, the manual proce-
dures such as decanting or washing the plate could result in a signif-
icant amount of material being moved between wells.

The concerning observations from Central America were
some microplates with a higher positivity rate than expected based
on the predicted oncogenic HPV prevalence for the geographic re-
gion and multiple and/or large clusters of positive test results in
the microplate. We hypothesized that statistical modeling of the
distribution of positive results under expected positivity rates for
the population would demonstrate whether these observations
were consistent with well-to-well contamination. This would
enable us to create parameters that could be useful in identifying
microplates suspicious for contamination.

The objective of this modeling study was to simulate micro-
plate assay results based on discrete oncogenic HPV prevalence to
investigate 3 categories for quality assurance (quality categories):
(1) number of positive wells per microplate, (2) number of clusters
of positive wells per microplate, and (3) size of the largest cluster
per microplate and to compare statistics from the simulation
results with observed test results for each category.

MATERIALS AND METHODS

We started by carrying out a literature review of articles
published between 1996 and 2016 pertaining to women in
Latin America and the Caribbean to determine the oncogenic
HPV prevalence in Central America for use in our simulation
algorithm. Search terms included (“HPV” OR “human papillo-
mavirus” OR “papillomavirus infection) + (“cervical cancer” OR
“uterine cervical neoplasms”) + (“prevalence” OR “epidemiology”).
Of 216 articles retrieved, we selected studies that (1) screened a
general population using validated HPV testing, (2) provided the
age of women screened, and (3) had a study size of more than
400 women. The articles we used reported prevalence using tests
that detected 13 to 18 oncogenic HPV genotypes. When possible,
we used the reported prevalence for women closest to the target age
range of 30 to 64 years used by the Central American screening
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programs. The prevalence of oncogenic HPV infection from this
review ranged from 12% to 16%. This range was used for our
modeling exercise.” '3

Statistical analysis for this project was carried out in the
programming language R. We wrote an algorithm to simulate
test results stochastically, assuming discrete HPV prevalence of
12%, 13%, 14%, 15%, and 16%—where each prevalence is the
simulation condition—and to execute the following analytical
steps for each (see Appendix A for more details on the algorithm
and examples of the R code).

The algorithm first created the analysis population of 900,000,
representing women of the target age for screening. We specified
900,000 draws from the binomial distribution (positive or negative
for HPV), which assumes that each draw has a consistent and
independent probability of being positive. The probability of each
draw equaled the simulation condition (discrete HPV prevalence).
We selected 900,000 draws to simulate the individual results of
10,000 microplate assays. This generated a vector of results
where each entry was either 1 or 0 (a positive or negative test
result, respectively).

Because each 96-well microplate contains 6 control wells
(3 positive, 3 negative) and 90 test wells, the vector was divided
into 10,000 groups each containing 90 simulated results, and
each group had 6 “not applicable” (NA) values appended to
the beginning of the vector to represent the control wells. The
96-element vectors were then reshaped to become 12 x 8 ma-
trices to represent 96-well assay microplates in shape and structure
(see Figure 1). The process by which each matrix was shaped
followed the order in which laboratory technicians fill the micro-
plate with calibrators and specimens, beginning in the top-left
corner and moving columnwise from left to right. We used these
matrices as a basis for calculating aggregate measures to be com-
pared with real microplate test results (see Figure 1).

After assembling the 10,000 96-cell matrices, the algorithm
aggregated the results to create analytical measures in each
quality category.

As noted previously, the quality categories planned for anal-
ysis were (1) number of positive cells per matrix, (2) number of
clusters of positive cells per matrix, and (3) size of the largest clus-
ter per matrix, where the matrices represent 96-well microplates.
Thus, the first tabulation was the number of positive cells per
matrix for all matrices in the simulation, giving a distribution
of expected results under the simulation conditions (when viewed
as a percentage of cells that are positive, this is roughly equal to
the HPV prevalence defined as the simulation condition).

Next, we defined a cluster as 2 or more positive cells hori-
zontally or vertically adjacent and defined the size of a cluster to
be the number of cells that make up the cluster (see Figure 1).
Based on our observation of the manual assay steps, including pi-
petting reagents and manipulating the microplate, and considering
the shape of the microplate, we determined that it was improbable
for material to be carried from one well to a diagonal well without
also transferring material to an adjacent well; therefore, we did not
designate diagonal cells as a site for possible contamination. To
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[1,] NA 1 0 0 0
[2,] NA 0 0 0 0
[3.] Na 0 0
[4,] Na 0 0 0 0
[5.] NA 0 0 0 1
[6,] NA 0 0 0 0
[7.] 0 0 1 0 1
[s,] 0 0 0 0 0
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generate data for the analysis of these quality categories, the algo-
rithm identified the clusters in each matrix of simulated results to
enable their tabulation and analysis. This was carried out by first
identifying pairs of adjacent positive cells and then grouping those
pairs into clusters.

To identify pairs of adjacent positive cells, the algorithm
assigned an identification (ID) number between 1 and 96 to each
matrix cell, including those cells with an NA value. The ID num-
bers were assigned consecutively in the same order by which the
matrices were populated, beginning in the top-left corner and
moving columnwise from left to right. The algorithm then located
pairs of adjacent positive cells by calculating the difference be-
tween cell ID numbers. When the difference between the cell ID
numbers was equal to £8, the cells were horizontally adjacent.
When the difference between the cell ID numbers was equal to
+1, the cells were vertically adjacent. To ensure that perimeter
cells with a difference of +1 that were located in different columns
were not counted as adjacent, the algorithm removed these 11
pairings from consideration as adjacent positive results. The algo-
rithm then returned a list of pairs of adjacent positive cells.

Next, the algorithm considered every combination of pairs in
the matrix and combined those with shared cell IDs to identify
complete clusters in each matrix. The algorithm then counted
the number of clusters per matrix and the size of the largest cluster
per matrix to give a distribution for the expectation of these
metrics under the simulation conditions.

The algorithm generated results for each matrix in the simula-
tion and created curves of normal distributions for each parameter
evaluated (number of positive cells, number and size of clusters in
the matrices); the simulation results yielded the frequency distri-
bution in each quality category for the simulation conditions of
12%, 13%, 14%, 15%, and 16%. In the Discussion, we convert these
parameters to numbers and clusters of wells in microplates and
convert the conditions (12%—16%) to oncogenic HPV prevalence.

To confirm the sample size, we inspected the distribution of
results in each quality category when using sizes ranging from
1 matrix to 10,000 matrices. All chosen measures across simu-
lation conditions stabilize well before reaching 10,000 matrices,
giving us confidence in the simulation sizes.

In addition, to provide guidance for screening programs in
low-resource settings outside of Central America, we ran the anal-
ysis described in this article for prevalence rates 8% to 11% and
17% to 23% as a supplemental analysis.'*

Role of the Funding Source

The funding source had no involvement in the development
of the methodology.

RESULTS

We present our results for the 3 parameters that were
evaluated as tables with numerical values for each condition
and parameter.
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FIGURE 1. Output for one 12 x 8 matrix representing a hypothetical assay microplate. Clusters of positive results are outlined in red.

See Appendix A for details of the algorithm.

220

© 2018, ASCCP



Journal of Lower Genital Tract Disease e Volume 22, Number 3, July 2018

Modeling for HPV Test Quality Assurance

TABLE 1. Results for Number of Positive Cells Per Matrix by
Simulation Condition (12%-16%)

TABLE 2. Results for Number of Clusters Per Matrix by
Simulation Condition (12%-16%)

Simulation Range Range for Simulation Range Range for

condition, %  of results 95% of results Median Mode condition, %  ofresults 95% ofresults Median Mode
12 1-23 5-17 11 10 12 0-7 04 2 1
13 2-25 6-18 12.5 12 13 0-8 0-5 2 2
14 2-27 7-19 13 12 14 0-8 0-5 2 2
15 3-26 720 13 13 15 0-7 0-5 2 2
16 3-29 8-22 14 14 16 0-8 0-5 3 2

Number of Positive Cells Per Matrix

For a simulation condition of 12% (i.e., simulating HPV
prevalence of 12%), the number of positive cells per matrix ranged
from 1 to 23, with 95% of the matrices having between 5 and 17
positive cells (see Table 1). For a simulation condition of 16%,
the number of positive cells per matrix ranged from 3 to 29, with
95% of the matrices having between 8 and 22 positive cells, and
for conditions between 12% and 16%, results were intermediate.
As the simulation condition increased, the middle 95% of the data
points shifted toward higher values (see Table 1), and the distribu-
tion curve shifted to the right, as did the mode for positive cells
found in the distribution (see Figure 2).

Number of Cell Clusters Per Matrix

For a simulation condition of 12%, the number of cell clusters
per matrix ranged from 0 to 7, with 95% of the matrices in the sim-
ulation having between 0 and 4 clusters. For a simulation condition
of 16%, the number of cell clusters per matrix ranged from 0 to 8, with
95% of the matrices having between 0 and 5 clusters (see Table 2).

Size of the Largest Cell Cluster Per Matrix

For a simulation condition of 12%, the size of the largest cell
cluster per matrix ranged from 1 (no cluster) to 9 positive cells,
with 95% of the matrices in the simulation having a largest cluster
size between 1 and 5 positive cells. For a simulation condition of
16%, the size of the largest cell cluster per matrix ranged from 1
(no cluster) to 11 positive cells, with 95% of the matrices in the
simulation having a largest cluster size between 1 and 6 positive
cells (see Table 3). As the condition of the simulation increases,
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the frequency distribution of results shifts toward larger numbers
for all quality categories.

Results for Additional Prevalence Ranges

For simulation conditions 8% to 11% and 17% to 23%, the
frequency distribution of results shifts toward lower numbers for
all quality categories as the condition of the simulation decreases
and higher numbers as the condition increases (Supplemental
Tables 1 http://links.Iww.com/LGT/A90, 2 http://links.lww.com/
LGT/A91, and 3 http:/links.lww.com/LGT/A92).

DISCUSSION

To discuss our results in terms of a laboratory setting, instead
of using the modeling terminology of cells and matrices, we now
will refer to results or wells and microplates. To the best of our
knowledge, this is the first statistical modeling exercise conducted
for evaluating the likelihood of well-to-well contamination in
96-well microplates. Our interpretation of the modeling results
as applied to laboratory practice is that microplate results that
are not consistent with the simulations are either consistent
with well-to-well contamination or do not hold with the assump-
tions of the simulation.

Our results suggest that HPV DNA screening programs in
regions with an oncogenic HPV prevalence of 12% to 16% can
reasonably expect to observe between 9 and 17 positive results
per microplate in approximately 50% of assays and between 5 and
22 positive results per microplate in approximately 95% of assays.
These ranges represent the exterior limits of the middle 50% and
middle 95% of the data points when comparing across the 12%
to 16% prevalence simulations without aggregating. We would

Simulation conditicn

(HPF prevalencs)
W 2%
16%
16 18 20 22 24 26 28 30

Mumber of positive cells per matrix

FIGURE 2. Frequency distributions of the number of positive cells under simulation conditions of 12% and 16% (simulated HPV
prevalence). Each simulation results in 10,000 matrices. As the simulated prevalence increases, the distribution range shifts to the right.
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TABLE 3. Results for the Size of the Largest Cluster Per Matrix
by Simulation Condition (12%-16%)

Simulation Range Range for

condition, %  ofresults 95% ofresults Median Mode
12 1-9 1-5 2 2
13 1-9 1-5 2 2
14 1-11 1-5 3 2
15 1-15 1-6 3 2
16 1-11 1-6 3 3

expect the most frequent number of positive results per plate to
be between 10 and 14. Results consistently outside the range of
5 to 22 positive results deviate from what is statistically ex-
pected and could be the result of well-to-well contamination.
Similarly, our findings suggest that these same screening pro-
grams should anticipate between 0 and 5 positive clusters per
microplate, representing at least 95% of all data points of the
simulation results under each prevalence condition. Our results
also indicate that in general, clusters are likely to be present.
Furthermore, screening programs in Central America would not
anticipate a cluster larger than 6 positive wells per microplate,
with most clusters having 2 to 3 positive wells. Cluster sizes that
are not within the range of the modeled results would be suspi-
cious for well-to-well contamination. Screening programs in other
regions may anticipate lower or higher numbers of positive wells
and clusters, as well as smaller or larger sizes of the largest cluster
per microplate, depending on local HPV prevalence.

These modeled results can be used to provide quality assur-
ance parameters for screening programs implementing HPV tests
conducted in batches on a 12 x 8 microplate with 6 control wells
when microplates are run with 90 samples. For example, in Central
America, screening programs may decide that microplates with
greater than 22 positive results, with more than 5 clusters, or
containing clusters of more than 6 positive wells are suspicious
of well-to-well contamination and do not meet quality standards.

While presented individually, the 3 quality categories are in-
terdependent, and therefore, constraining the allowable outcomes
in one category also constrains the outcomes in the other 2. For
example, when constraining the total number of positive cells,
the number of possible clusters is constrained at half the number

30 g Masimum number of clusters
Meximum size of largest cluster

25

20

a 2 4 ] 8 10 1z 14

16

of positive cells and the possible size of the largest cluster is
constrained at the total number of positive cells (see Figure 3).
Despite this interdependency, it is necessary to consider all 3 cat-
egories in the context of contamination because constraining one
category leaves enough freedom in the remaining categories to
allow for conditions suspicious of contamination.

Our analysis requires a known underlying oncogenic HPV
prevalence, which is a constraint in areas where HPV screening is
novel and prevalence is not yet established. It also is limited by
the assumption that prevalence is constant throughout a community
and, therefore, that samples from women screened together are not
more or less likely to have the same results. However, studies have
reported that prevalence is not always consistent throughout a com-
munity and can vary depending on factors such as age, geographic
location, and HIV prevalence. In Central and South America, HPV
prevalence is highest in women younger than 25 years, after which
it decreases, and is lowest in women aged 35 to 44 ?/ears, before
reaching a second peak in women older than 45 years.'® Prevalence
may vary between rural and urban areas, and it correlates posi-
tively with HIV prevalence in a given population.'®2° Therefore,
screening programs that develop quality assurance tools based on
our analysis should reconsider periodically the characteristics of
the population being screened and how this may impact expected
HPV positivity rates in their assays.

This analysis is limited to providing statistical considerations
for the likelihood of well-to-well contamination and does not diag-
nose causes of observed patterns and outlying positivity rates. For
example, our results are not able to identify at which assay step
well-to-well contamination may have occurred or, in a plate with
a positivity rate below the lower normal limit, what factors may
have contributed to these outlier results. Similarly, it does not
account for other possible errors outside the test process such
as tainted or mislabeled specimens, reagents, or calibrators. Further-
more, because of the nature of our defined quality categories, con-
tamination in a plate that has a low but normal number of positive
wells can go unnoticed if, for example, a sole cluster of positive wells
does not meet the defined threshold for suspicion. For the quality
category of number of positive wells per plate, we consider both
upper and lower limits in this analysis. While an increased number
of positive wells could be the result of well-to-well contamination,
results that fall below the lower limit could indicate (1) a problem
with the samples collected or how they were stored or (2) failure to
pipette the accurate volume of sample into the assay microplate.

18 20 22 24 26 28 30 3z

Mumber of positive cells

FIGURE 3. Maximum possibilities for the number of clusters and the size of the largest cluster when the number of positive cells in a

matrix is constrained.
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CONCLUSIONS

Our analysis provides guidance that laboratories can use to
identify microplates suspicious for well-to-well contamination.
Each country or screening program will need to determine the
range of acceptable results for each quality category (number of
positive wells, number of clusters, and size of largest cluster) based
on the oncogenic HPV prevalence in the community screened.
Programs will also need to determine the action to be taken
whether a microplate fails to meet quality standards, such as re-
peating the microplate assay or retraining technicians.

Quality assurance parameters developed for screening pro-
grams based on these results could be used to identify laboratory
technicians who are in need of additional training. These pa-
rameters also can be used to develop a simple tool that laboratory
technicians can reference when interpreting the results of each
microplate, enabling them to monitor their own performance.

For Central America, we developed and piloted such a tool
for laboratory technicians. Although results for most of the micro-
plates observed in these screening programs have been within the
middle 95% of data points, in cases where results have fallen out-
side this range, this tool has enabled local laboratory technicians
to identify those microplates as suspicious for well-to-well contam-
ination and has helped programs identify laboratory technicians in
need of skills reinforcement. Further evaluation of the use of this
tool in the field could provide additional guidance for cervical
cancer screening programs in other countries.

As discussed as part of the limitations of this analysis, it may
take time for screening programs initiating HPV testing to determine
the expected oncogenic HPV prevalence in the region they are
serving; therefore, programs should carry out periodic reassessments
of the quality assurance parameters.

As countries with emerging economies adopt HPV DNA
testing as a primary screening test for cervical cancer prevention,
quality assurance programs are needed to ensure valid testing and
the accuracy of results delivered to patients. A results interpreta-
tion tool such as the one discussed in this article is one example
of' how screening programs can use statistical analyses to establish
parameters that can be adopted and implemented at the laboratory
level, saving time and resources at the central program level.
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APPENDIX A

All analyses for this project were carried out in the statistical programming language R, Version 3.2.4, with which we wrote an al-
gorithm to conduct the simulations and characterize results. The simulation algorithm is as follows. The binomial distribution B(n,p) de-
scribes the probability of observing some number of successes in a group of n observations, where each successful outcome has the same
independent probability p. Simulated test results were drawn as random variates from the binomial distribution. Each simulation generated
10,000 matrices of test results, representing the results from 10,000 microplates. Multiple simulations were run with different independent
probabilities (the simulation condition), representing communities with different underlying HPV prevalence between 12% and 16%.

The backbone of simulating from the binomial distribution in R is the rbinom function from the stats package; we specified one trial
0f'900,000 observations, where each observation has a consistent probability p of being positive. This generated a vector where each com-
ponent is either 1 or 0 (a positive or negative test result, respectively).

Using the split, lapply, and matrix base R commands (see code snippet below), the single vector was modified to resemble 10,000 of the
96-well microplates described above. The vector was reshaped into a list with 10,000 elements, where each list element contained 90 of the
simulated results. Each list element had 6 NA values appended to the beginning of the vector of 90 results and was reshaped from a vector
to a 12 x 8 matrix (filled columnwise). The resulting matrices represent assay microplates in shape and structure.

cases <— rbinom (n = 900,000, size = 1, prob = p)
caselist <— split(cases, f = ceiling(seq_along(cases)/90))
plates <— lapply(X = caselist, FUN = function(x){
matrix(data = c(rep(NA, 6), x), nrow = 8, ncol = 12, byrow = FALSE)})
R code snippet for simulating 10,000 assay plates of test results.

To achieve the first analysis goal of characterizing the number of positive cells per matrix, the algorithm took the sum of all the cells in a matrix.

The second analysis goal was to characterize the number of clusters of positive cells per matrix. First, the algorithm located pairs of positive
cells in the matrices by assigning a cell ID number to each matrix cell, identifying the position of each positive cell, and identifying each possible
combination of positive cell IDs in each matrix. Because the cell ID numbers were assigned columnwise from the top left, if the difference
between any pair of positive IDs from a matrix was equal to 1, the 2 positives were vertically adjacent in a matrix, and if the difference was 8,
the 2 positives were horizontally adjacent in a matrix. To ensure that consecutive positives at the top and bottom borders of the plate were not
counted as adjacent, any combinations of bottom- and top-border cells were removed from consideration as adjacent positives. Subsetting the
positive ID combinations to only those whose difference was 1 or 8 returned a list of adjacent positives.

A group of 3 positive cells in a row would initially be identified as 2 different adjacent pairs. Therefore, after compiling an R list of
adjacent positive cell pairs for each matrix in the simulation, the adjacent pairs were grouped into clusters. Positive cell IDs were defined to
be in the same cluster if there existed a path between them only along adjacent positive cells.

Any 2 adjacent pair vectors with a positive cell ID in common must be touching and therefore part of a single cluster. Starting with the
positive cell ID numbers in the first vector in the list (representing 1 adjacent pair in the matrix), the following vectors in the list were checked for
cell IDs in common with the first pair. Cell IDs from the subsequent pair were added to the IDs in the first vector, creating a cluster (and repeating
1 of the ID numbers). After compiling all the cell clusters, duplicate ID numbers were removed. As a result, each element in the list represented a
single cluster of positive cells in the matrix; within each list element was a vector containing the matrix position IDs involved in the cluster.

clusterlist <— lapply(diffpairs, FUN = function(y){
betwnpos <— apply(y, 2, diff)
adjpairs <— y[, which(betwnpos == 1 | betwnpos == 8)]
clusterlist <— as.list(as.data.frame(adjpairs))
# combine all adjacent pairs that share positive [Ds
npairs <— length(clusterlist)
dupind <— ¢()
if(npairs > 1){
for(i in 1:(npairs — 1)){
for(j in (i + 1):mpairs){
if(any(clusterlist[[i]] %in% clusterlist[[j]])){
# add cluster lists that share wells
clusterlist[[i]] <— c(clusterlist[[i]], clusterlist[[j]])
dupind <— c(dupind, j) # keep track of list elts that get duplicated
}
}

}

if(length(dupind) > 0){
clusterlist <— clusterlist{—dupind] # remove repeated clusters
clusterlist <— lapply(clusterlist, unique) # remove repeated wells

}

clusterlist

1)

The third analysis goal was to characterize the expected size of positive cell clusters (the numbers of cells that make up the clusters).
The algorithm measured the size of clusters by taking the length of each element in the list of clusters on a matrix. We recorded the size of
each cluster and noted the size of the largest cell cluster in each matrix.
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