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Sarcopenia caused by aging is an important factor leading to a decline in the quality of life of
older people. Apoptosis in muscle atrophy accelerates the process of muscle loss in older
populations. The present study aimed to investigate the effects of 32 weeks of high-
intensity interval training (HIIT) and resistance training (RT) on the skeletal muscle-related
indices and provide a theoretical basis for regulating the mitochondrial-mediated pathway
to delay sarcopenia. We randomly selected 10 from eight-month-old male SD rats (N =
130) as the baseline group; after 1 week of adaptive feeding, the rats were sacrificed. The
remaining rats were randomly assigned to one of three groups: control group (C, N = 40,
natural aging for 32 weeks), HIIT group (H,N = 40, performed six loops of 3 min at 90% and
3min at 50% VO2 max speed treadmill running, with 5 min at 70% VO2 max speed at the
beginning and the end of the training, 3 times a week for 32 weeks), and resistance group
(R, n = 40, 46 min per day, 3 days per week, with a 30%maximum load on a treadmill with
a slope of 35°, 15 m/min). The soleus muscles were collected for analysis at baseline and
every 8 weeks. Aging resulted in decreased soleus muscle mass and Bcl-2 levels in the
mitochondria, while the levels of reactive oxygen species (ROS) and Bax did not change.
HIIT reversed the age-associated activation of pro-apoptotic processes, but RT did not. In
addition, when rats were aged from 8 to 16months, the level of Cyt-C did not change, the
Caspase-9 levels and Caspase-3 levels decreased gradually in the soleus muscles, the
rats of both the HIIT and RT groups had these indices decreased at 32 weeks. The results
suggest that the age-associated loss of muscle mass was reversed by training, and the
effect of RT was better than that of HIIT. Both the HIIT and RT rats showed a decrease in
the apoptosis of skeletal muscle cells after 32 weeks of intervention. HIIT performed better
for long-term intervention regarding the pro-apoptotic factors. This study warranted further
research to delineate the underlying mechanism of effects of different exercise methods on
the changes of aging skeletal muscle at in vivo level.
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INTRODUCTION

Populations are rapidly aging worldwide. Data from the World
Health Organization on aging and health projects show that the
population over the age of 60 will double from 11%, in 2000, to
22% by 2050, increasing from 605 million to 2 billion
(Organization, 2016). Due to the dramatic growth of the
elderly population, the proportion of the elderly in society is
increasing; therefore, the issue of aging is of great concern
globally.

Sarcopenia caused by aging is an important factor leading to a
decline in the quality of life of older people (Cosquéric et al., 2006;
Swan et al., 2021). Sarcopenia is the muscle failure associated with
aging. Studies have shown that exercise is an effective way to delay
sarcopenia, which can be achieved by balancing skeletal muscle
synthesis and catabolism, improving the skeletal muscle
mitochondrial density and activity, reducing apoptosis, among
other ways (Ziaaldini et al., 2017).

Apoptosis in muscle atrophy accelerates the process of muscle
loss in older populations, which may be the key mechanism
leading to muscle performance impairment (Dupont-
Versteegden, 2005; Marzetti et al., 2013; Faitg et al., 2017).
With aging, the mitochondrial-mediated pathways may induce
apoptosis in skeletal muscle, playing an important role in
sarcopenia (Dirks & Leeuwenburgh, 2002; Marzetti &
Leeuwenburgh, 2006; Song et al., 2006; Kob et al., 2015;
Ziaaldini et al., 2015). The over-opening of the mitochondrial
permeability transition pore (MPTP) leads to the release of many
pro-apoptotic proteins into the cytoplasm, such as cytochrome C
(Cyt-C). It forms an apoptotic body with apoptosis protease-
activating factor-1 and caspase-9. The apoptotic body causes
caspase-9 to transform into Caspase-9 and to activate Caspase-
3, causing apoptosis (Feldstein and Gores, 2005). Caspase-3 can
degrade the actomyosin complex, and the degraded products are
degraded by other protein systems in cells, resulting in a decline
in skeletal muscle mass and strength (Du et al., 2004).

Mitochondrial caspase-dependent apoptosis (endogenous
apoptosis) is regulated by Bcl-2 family proteins. Bcl-2 and Bcl-
XL are anti-apoptotic proteins, and Bax is a pro-apoptotic protein
(Ashkenazi et al., 2017). In addition, ROS are closely related to
“oxidative stress.” A large amount of oxidative stress produces
high levels of ROS, which breaks the balance between oxidation
and antioxidants, damages the genetic material, changes the
permeability of the mitochondrial membrane, and then
induces apoptosis (Schieber and Chandel, 2013). Compared
with young individuals, the expression of endogenous
apoptosis-related proteins is increased in the skeletal muscle of
older individuals (Dirks and Leeuwenburgh, 2002; Marzetti and
Leeuwenburgh, 2006; Song et al., 2006; Kob et al., 2015; Ziaaldini
et al., 2015).

So far, most of the research has mainly focused on the changes
in endogenous apoptosis after sarcopenia transformation, and
there is a lack of research on the temporal changes of the proteins
related with the endogenous apoptosis pathway during aging.
Compared with traditional exercise intervention methods, such
as aerobic exercise and RT, HIIT, which is a new training method,
is characterized by alternating short cycles of intense exercise with

less intense periods of recovery (Bartlett et al., 2011; Heinrich
et al., 2014). On role of physical activity in sarcopenia, many
studies have shown that resistance exercise, aerobic exercise and
HIIT can delay sarcopenia (Luo et al., 2013; Li et al., 2019; Neto
et al., 2020). At present, there have been many studies on the
effects of HIIT and aerobic exercise on skeletal muscle
(Chavanelle et al. Sci Rep 2017; Martinez-Huenchullan et al.,
2018; Martinez-Huenchullan et al., 2019). However, there are still
are lacunae in the literature on role of compare different physical
activity in sarcopenia, especially, research on the difference in the
effects of RT and HIIT in sarcopenia on the aging process is rare.
Therefore, In present study, the natural aging model of 32 weeks
rats was established, and the rats were intervened with HIIT and
RT during the aging process. The materials were taken every
8 weeks to observe the morphological changes of skeletal muscle
and the changes of cytochrome c, caspase-9 and caspase-3
activities in the caspase dependent apoptosis pathway
mediated by mitochondria of skeletal muscle cells, And the
changes of Bcl-2 protein, Bax protein and ROS affecting
caspase apoptosis pathway. The aim of the present study was
to explore the effects of different exercise methods on the changes
in the endogenous apoptotic pathway in the process of aging in
order to provide a theoretical basis for exercise to delay the
degeneration of aging skeletal muscle by regulating the
endogenous apoptotic pathway. It was hypothesized that both
HIIT and RT could both effectively reduce sarcopenia during
aging, and improve endogenous apoptosis signaling pathway.
And for endogenous apoptosis the effect of HIIT may be batter.

MATERIALS AND METHODS

Experimental Animals
All experimental protocols were approved by the Institutional
animal care and use committee of the Beijing Sport University
(Ref. No: 2019026A). A total of eight-month-old male Sprague-
Dawley rats (N= 130), weighing 650–700 g, were provided by Sipeifu
Biotechnology (Beijing, China). According to Sengupta’s research,
eight-month-old rats are approximately equivalent to twenty-year-
old humans (Sengupta, 2013). After 1 weeks of acclimatization to the
laboratory environment, 10 rats were randomly selected and
sacrificed as the baseline group. Remaining rats were randomly
divided into control group (C), HIIT group (H) and resistance group
(R). Each group contained 40 rats.

Rats were given free access to standard food (includes water
≤10%, protein ≥18%, fat ≥4%, fiber ≤5%, fiber ≤8%, calcium
~1.4%, phosphorus ~0.8%) and water in the animal room of the
Beijing Sport University (Certificate no. JDXT0029). The
temperature of the animal room was 25 °C, with alternating
light/dark cycles every 12 h (Specific Pathogen Free, SPF). Group
C was fed for 32 weeks without exercise intervention; group H
received HIIT intervention, and group R received RT
intervention, which also lasted for 32 weeks.

Training Protocol
Rats of group H performed a maximal oxygen uptake test before
the intervention and every 4 weeks subsequently, in order to
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determine and appropriately adjust the speed of the treadmill for
the HIIT. The tests were performed using an OxyMax Deluxe
system (Columbus Instruments, USA). The rats were subjected to
treadmill running at a speed corresponding to 70% VO2max for
5 min. Then, six loops of 3 min at 90% and 3 min at 50%VO2max
speed treadmill running. Then, finishing with a speed
corresponding to 70% VO2max for 5 min. HIIT was
conducted for 32 weeks, 3 days per week, with each training
session lasting for 46 min.

RT was performed on a treadmill (Weng et al., 2013) at a speed
of 15 m/min and a slope of 35°. Rats were outfitted with a specially
designed vest with 30% of max-weight bearing. The weight was
adjusted according to the maximum weight-bearing capacity of
rats, which was tested before intervention and every 4 weeks
subsequently, to avoid adaptation to the intervention. Rats’max-
weight bearing capacity were the weight they could barely moving
on a treadmill, at a speed of 15 m/min and a slope of 35°.The
training plan for group R is shown in Table 1. RT lasted for
32 weeks, 3 days per week, with each training session lasting for
46 min.

Tissue Collection and Preservation
Before the training intervention, 10 rats were randomly selected,
fasted for 24 h, and euthanized as the baseline group. After
beginning the exercise intervention, every 8 weeks, 10 rats (if
there was no mortality) in each group were rested and fasted for
24 h and were then euthanized to provide experimental samples.
The rats were weighed and anesthetized using an intraperitoneal
injection of 2% pentobarbital sodium (50 mg/kg). The soleus
muscles of both legs were stripped and weighed, and the proximal
fragment was used for the cross-sectional area (CSA) and the
distal part was used for the ROS level and western blot tests.

Soleus Muscle Mass Index Analyses
At the time of sampling, the bilateral soleus muscles of rats were
stripped and weighed, and the SMI was obtained by dividing the
sum of the bilateral soleus muscles of each rat by the
corresponding rat body weight.

CSA Analyses
The muscles were immersed in a paraformaldehyde stationary
solution (Cat. No. G1101, Servicebio, China) for 24 h. Paraffin
sections were prepared from the tissues soaked in the fixative, and
then a H&E Staining Kit (Cat. No. G1005, Servicebio, China) was
used for H&E staining. After taking pictures of the slices using a
microscope (Nikon, Japan), a caseviewer (3DHISTECH,
Germany) was used to scan the pictures. Five fields of view

were selected from the center and four corners of each slice
and saved in the TIF format. Image pro Plus6.0 (Media
Cybernetics, Inc. United States) was used to calculate the
skeletal muscle area in each visual field, which was then
divided by the number of skeletal muscle fibers in the visual
field to obtain the CSA.

Muscle ROS Detection
The total protein in the muscle tissue was quantified using a
protein assay kit (Thermo Fisher Scientific, United States). ROS
levels were measured using kits from Jianglai Biotechnology (Cat.
No. JL21051) using an enzyme-linked immunosorbent assay.
After the muscle tissues were stored at 4°C, PBS was added
and the mixture was homogenized. After centrifugation at 4°C
and 5,000 × g for 10 min, the supernatants were aspirated.
Subsequently, the tests were performed according to the
manufacturer’s instructions.

Extraction of Mitochondria From Skeletal
Muscle
A tissue mitochondria isolation kit (Beyotime Biotechnology, China,
Cat. No. C3606) was used to extract the mitochondria from the
skeletal muscle. We weighed 50mg of soleus muscle and washed
oncewith 600 μl of PBS. The soleusmuscle was placed in a centrifuge
tube, minced with ophthalmic scissors on ice, 1 ml of PBS was added
to the centrifuge tube and ice bathed for 3min. Put the centrifuge
tube into a low temperature centrifuge, centrifuge at 600 × g at 4°C
for 10–20 s, and discard the supernatant. Add 800 μl of trypsin
digestion solution to the centrifuge tube, ice bath for 20 min, put the
centrifuge tube into a low temperature centrifuge at 4°C and
centrifuge at 600 × g for 10–20 s, and discard the supernatant.
Add 200 μl of separation reagent to the centrifuge tube,
resuspend the tissue, put the centrifuge tube into a low
temperature centrifuge at 600 × g for 10–20 s at 4°C, and discard
the supernatant. 800 μl of separation reagent and 8 μl of PMSF were
added to the centrifuge tube, and homogenized with a homogenizer.
Put the centrifuge tube into a low temperature centrifuge and
centrifuge at 600 × g for 5min at 4°C, take the supernatant and
transfer it to another centrifuge tube. Put the centrifuge tube into a
low temperature centrifuge and centrifuge at 3,500 × g at 4°C for 10 s,
discard the supernatant, and the precipitate is mitochondria.

Western Blot Analysis
The total protein in themuscle tissue andmusclemitochondria tissue
was extracted and quantified using a protein assay kit (Thermo Fisher
Scientific, United States). Proteins were separated on 15 wells of 12%
SDS-PAGE gels, 20 μg in each well, by electrophoresis. The proteins
were then transferred onto polyvinylidene fluoride (PVDF)
membranes. Using Bovine serum albumin (BSA) as the blocking
reagent and the target proteins were blocked and probed overnight at
4 °C using a Bax antibody (1:1,000, Cat. No. 2772T, CST,
United States), Bcl-2 (1:4,000, Cat. No. ab196495,
Abcam, United States), Cyt-C (1:5,000, Cat. No. ab133504,
Abcam, United States), Caspase-3 (1:1,000, Cat. No. 9662S, CST,
United States), Caspase-9 (1:2,000, Cat. No. ab184786, Abcam,
United States), GAPDH (1:3,000, Cat. No. ab9485,

TABLE 1 | Training plan for RT.

Program Training content

1 Weight bearing run for 15 s
2 Rest for 30 s
3 Repeat program 1–2 four times and rest for 3 min
4 Repeat program 3 three times and rest for 10 min
5 Repeat program 3 three times and finish the training
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Abcam, United States), and COXIV (1:2,000, Cat. No. 4850, CST,
United States). All primary antibodies are fromRabbit. The following
day, after washing with a TBST solution three times for 10min each,
the membranes were incubated with goat horseradish peroxidase
(HRP)-conjugated goat anti-rabbit IgG (1:10,000, Cat. No. ab205718,
Abcam, United States) at 25°C for 1 h. The membranes were washed
six times with TBST for 5min each. Signals were detected using an
enhanced chemiluminescence (ECL) reagent. All bands were
analyzed semi-quantitatively using ImageJ software and Total Lab
Quant V11.5 (Newcastle upon Tyne, United Kingdom).

Statistical Analyses
Statistical analysis was performed using SPSS 22.0 (IBM SPSS
Statistics, Armonk, NY, United States). All data are presented as

mean ± SEM. All indices were analyzed using two-way ANOVA,
time and exercise patterns were assessed as independent variables.
The significance level was set at p < 0.05.

RESULTS

Skeletal Muscle Morphology and Weight
The results, as shown in Figure 1, indicate that age-related
muscle fiber CSA loss occurred at 32 weeks in group C (p <
0.001). The muscle fiber CSAs of groups H and R were higher
than those of group C at 8, 16, and 32 weeks (p < 0.05) and
that of group R was higher than that of group H at 8 and
32 weeks (p < 0.001). At 8 and 32 weeks, the muscle fiber
cross-sectional area of the R group rats was higher than at

FIGURE 1 | HE staining sections of soleus muscle of rats in each group were observed under 400 times microscope.
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other time points (p < 0.05) (Figure 1, ×400 magnification;
Figure 2).

Age-related SMI loss occurred at 32 weeks in group C (p <
0.05). The SMI values of the rats of groups H and R were higher
than those of group C rats at 16 and 32 weeks (p < 0.05) and those
of group R rats were higher than those of group H rats at 16 and
32 weeks (p < 0.05). The SMI values of group H rats were higher
than the baseline level at 16 weeks (p < 0.05), and those of group R
were higher at 32 weeks than the baseline level and the levels at
24 weeks (p < 0.05) (Figure 3).

Factors Affecting Apoptosis
The level of ROS in group C rats at 8 and 32 weeks was higher
than that at 16 and 24 weeks (p < 0.05). The ROS levels of H group
decreased significantly at 8 weeks of training (p < 0.05) and
remained stable during the 8–32 weeks period. Those of group
R decreased significantly at 8 weeks (p < 0.05) but increased
significantly at 32 weeks (p < 0.001). The ROS levels of groups H
and R were significantly lower than those of group C at 8 weeks
(p < 0.001), but only those of group H were lower than those of
the other groups at 32 weeks (p < 0.001) (Figure 4).

The levels of Bcl-2 in the mitochondria of the soleus muscle in
group C decreased significantly at 8 and 24 weeks (p < 0.001), and
showed a gradual downward trend. The Bcl-2 levels in group H
showed a downward trend in the 8–24 weeks period of training,
but increased at 32 weeks (p < 0.05). It is apparent from this table
that the Bcl-2 levels in group H were significantly higher in
groups C and R at 24 and 32 weeks of training (p < 0.001). In
addition they were decreased in group R at 16 and 24 weeks of
training (p < 0.05), and were higher than in other groups at 8 and
16 weeks (p < 0.05) but were equal to the baseline value at 24 and
32 weeks (p < 0.05) (Figure 5).

The level of Bax in the mitochondria of the soleus muscle in
group C increased at 16 and 24 weeks, and decreased at 32 weeks,
but there was no significant difference at each time point (p >
0.05). The Bax level in group R increased at 16 weeks and

decreased at 24 weeks (p < 0.05). Group H presented a similar
Bax level trend as group R, but none of these differences were
statistically significant (p > 0.05) (Figure 6).

Endogenous Apoptotic Protein
There was no age-related change in the level of Cyt-C protein
in the soleus muscle of group C at 32 weeks of aging. The Cyt-c
level increased significantly in group H at 24 weeks (p = 0.001)
and decreased significantly at 16 and 32 weeks (p < 0.05) and
that of group R increased significantly at 8 weeks and
decreased significantly at 16 and 32 weeks (p < 0.05). The
Cyt-c level in group H was significantly lower than that in

FIGURE 2 | The soleusmuscle fiberCSAof rats in eachgroup. * Significant
different from C and other group; # Significant different from H and R; &
Significant different from Baseline and other weeks; @ Significant different from
8 weeks and other weeks; $ Significant different from 16 weeks and other
weeks; % Significant different from 24 weeks and other weeks (p < 0.05).

FIGURE 3 | The soleus muscle mass index of rats in each group.
* Significant different from C and other group; # Significant different from H and
R; & Significant different from Baseline and other weeks; @ Significant different
from 8 weeks and other weeks; $ Significant different from 16 weeks
and other weeks; % Significant different from 24 weeks and other weeks
(p < 0.05).

FIGURE 4 | The ROS level of soleus muscle in each group. * Significant
different from C and other group; # Significant different from H and R; &
Significant different from Baseline and other weeks; @ Significant different
from 8 weeks and other weeks; $ Significant different from 16weeks and
other weeks; % Significant different from 24 weeks and other weeks.
(p < 0.05).
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group C at 16 weeks (p < 0.05), and that of group R was
significantly higher than that of group C at 8 weeks, but was
significantly lower than that of group C at 32 weeks (p < 0.05)
(Figure 7).

An age-related decrease in the caspase-9 level in the soleusmuscle
was observed in all groups. Interestingly, the decrease inH groupwas
observed to occurmainly at 16 and 32 weeks (p < 0.05). At 16 weeks,
the caspase-9 protein level in group H was higher than that of group
R (p < 0.05). At 24 weeks, that of group H was higher than those of
groups C and R (p < 0.05). However, at 32 weeks, those of groups H
and R were lower than those of group C (p < 0.05) (Figure 8).

The level of caspase-3 in the soleusmuscle in groupC decreased at
8 weeks (p< 0.001), and then remained stable. In groupH, the level of
Caspase-3 in the soleusmuscle decreasedwith age. It was significantly
higher than that of groups C and R at 8 weeks, but lower than that of
group C at 32 weeks (p < 0.001). In group R, the caspase-3 level
increased at 16 weeks and decreased at other time points (p < 0.001),
being significantly higher than that of groups C and H at 16 weeks,
but lower than that of group C at 32 weeks (p < 0.001) (Figure 9).

DISCUSSION

In this study, through continuous observation of naturally aging rats, it
was confirmed that the decrease in the muscle mass index and in the
CSA of the soleus muscle in naturally aging rats was the earliest at 16-
months-old of aging, which updated the time of age-related muscle
atrophy. Several reports have shown that the SMI of rats over
24months of age is significantly lower than that of rats aged

4–6months (Rice et al., 2005; Song et al., 2006; Liu, 2018). The
earliest age-related decrease in the soleus CSA has occurred at
25months of age (Wang et al., 2015). Most of these studies are
cross-sectional studies, which cannot demonstrate when age-related
atrophy of the rat soleus muscle occurs. In this study, a longitudinal
observation of aging rats (8–16-months-old) was conducted to explore
the problem and yielded different results, which filled the gap in
existing research.

Exercise can improve the age-related atrophy of muscles (Cui
et al., 2021; Luo et al., 2013; Zhao et al., 2016; Ribeiro et al., 2017;
Li et al., 2019; Neto et al., 2020); however, most current studies
have been performed on elderly rats undergoing 12 weeks of
exercise training, in comparison with the skeletal muscle of
the control group rats. The results of this study suggest that
both HIIT and RT can effectively increase the SMI of soleus
muscle in rats after 16 and 32 weeks of training, and both
methods can effectively increase the CSA of the rat soleus
muscle at 8 and 32 weeks of training. One interesting finding
is that the increase of SMI and CSA caused by exercise
occurred at different times. However, this result has not
previously been described. It may support the hypothesis
that exercise induced increases in muscle fiber number
(Gonyea et al., 1986). In addition, the muscle
enhancement effect of 32 weeks of RT intervention was
better than that of HIIT, which may be because RT can
better activate the pathways related with muscle synthesis
(Ribeiro et al., 2017; Neto et al., 2020).

In conclusion, the earliest age-related loss of the soleus muscle
occurred at 16 months of age, a 32-weeks exercise intervention

FIGURE 5 | Age and exercise training effects on Bcl-2 levels in mitochondria of soleus muscle, were evaluated by Western blot. * Significant different from C and
other group; # Significant different fromH and R; & Significant different fromBaseline and other weeks; @ Significant different from 8weeks and other weeks; $ Significant
different from 16 weeks and other weeks; % Significant different from 24 weeks and other weeks. (p < 0.05).
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can improve the aging atrophy of the soleus muscle in rats, and
the effect of RT is better than that of HIIT.

High concentrations of ROS can damage the outer membrane
of mitochondria, leading to MPTP, which increases the release of
Cyt-C to promote apoptosis (Schieber and Chandel, 2013). Many
studies have discussed the age-related increase in ROS levels
(Muller et al., 2007; Sullivan-Gunn and Lewandowski, 2013;
Ziaaldini et al., 2015; Boengler et al., 2017; Damiano et al.,
2019; Jiang, 2019), but it is uncertain when this phenomenon
first occurs. In this study, in contrast to other studies, however,
there were no differences in the ROS levels between each time
point and the corresponding baseline value in the control group.
This may be due to the different strains and living environments
of the rats. In addition, this study found that 32 weeks of HIIT
reduced the ROS levels. These relationships may partly be
explained by HIIT improves the ability of the skeletal muscle
to scavenge ROS and the mitochondrial respiration ability or
other pathway (Alhadlaq et al., 2019; Chrois et al., 2019).
Although many studies have shown that exercise can reduce
the ROS levels (Vezzoli et al., 2019; Bartlett et al., 2020), in this
study, 32 weeks of RT intervention increased the ROS levels. It is
speculated that a higher exercise intensity of RT leads to oxidative
stress (Liu et al., 2008) and ROS accumulation at 32 weeks. This
indicates that HIIT may be a better intervention option for
reducing the ROS levels.

Bax, which is a pro-apoptotic protein, can also induce MMPT.
This can lead to the release of Cyt-C and, ultimately, promote
apoptosis. Bcl-2 can reduce apoptosis by inhibiting the activity of
Bax (Ashkenazi et al., 2017; Hikita and Takehara, 2017). This
study confirmed that the Bcl-2 level in the mitochondria of

skeletal muscle cells decreases with aging, and that the Bax
level does not change with aging. Many studies have focused
on the aging changes in the Bcl-2 and Bax levels, but the results
are contradictory (Dirks and Leeuwenburgh, 2002; Baker and
Hepple, 2006; Song et al., 2006; Liao et al., 2017). In general, the
gene expression of Bcl-2 and Bax in the skeletal muscle decreases
with aging. The protein expression of Bcl-2 in skeletal muscle
showed an age-related decrease, whereas the expression of Bax
showed an opposite trend. In skeletal muscle mitochondria, the
expression of these proteins does not change with age. In this
study, we not only found an age-related decrease in the Bcl-2 level
in skeletal muscle mitochondria, but also found that it first
occurred at 10 months of age. What is surprising is that this
time point is much earlier than that observed in other studies,
suggesting that the age-related changes in the levels of Bcl-2
family proteins in skeletal muscle mitochondria may occur
earlier. Unfortunately, there were no age-related changes in
Bax expression. In addition, some studies found that exercise
training resulted in adaptations in the apoptotic signaling by Bcl-
2 family proteins in the skeletal muscle of old rats (Song et al.,
2006; Lin et al., 2013; Liao et al., 2017; Li et al., 2019); however,
they did not compare the effect of HIIT and RT on the Bcl-2
levels. We found that RT was more effective before 16 weeks of
aging, and that HIIT was more effective after the 16-weeks time
point. This finding, while preliminary, suggests that HIIT is a
more suitable long-term form of exercise for increasing the Bcl-2
level in skeletal muscle mitochondria. It is worth noting that RT
can significantly increase the expression of Bcl-2 in the first
16 weeks (12-months-old), which may be the reason why the
drastic changes in the early stage activated the feedback

FIGURE 6 | Age and exercise training effects on BAX levels in mitochondria of soleus muscle, were evaluated by Western blot. @ Significant different from 8 weeks
and other weeks; $ Significant different from 16 weeks and other weeks. (p < 0.05).
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regulation of the body or HIIT activates other pathways (Ahamed
et al., 2020)and, finally, caused it to lose its function after
16 weeks. In addition, the expression of Bax in mitochondria
was not affected by exercise. The specific reasons and
mechanisms require further studies. Overall, HIIT performed
better as a long-term intervention regarding the ROS and Bcl-2
levels.

Cyt-C initially exists on the cristae of mitochondria and plays an
important role in mitochondrial respiration. When the
mitochondrial membrane permeability changes, Cyt-C is released
into the cytoplasm and induces apoptosis. The release of Cyt-C is
considered to be a marker of the activation of the mitochondrial
apoptotic pathway (Dirks and Leeuwenburgh, 2002). We detected
the level of Cyt-C in the rat soleus muscle every 8 weeks, and found
that it remained unchanged during the 32 weeks of aging (8–16-
months-old); some studies have drawn a similar conclusion (Dirks
and Leeuwenburgh, 2002; Chung andNg, 2006), but they only tested
young and old rats. It is not yet clear when the aging-associated
increase in the Cyt-C level occurs. It is worth noting that some
studies found that, compared with 3-month-old rats, the content of
Cyt-C in the skeletal muscle of 8-month-old rats increased (Ziaaldini
et al., 2015) and, compared with 4-month-old rats, the content of
Cyt-C in the skeletal muscle of 22-month-old rats increased (Kang
et al., 2013). This study showed that there was no age-related change
in the Cyt-C content in skeletal muscle from 8 to 16months of age.
According to these data, we can infer that the aging changes in the
Cyt-C content in skeletal muscle may occur in rats under 8months
of age. We observed that 16- and 32-weeks HIIT interventions can
reduce the release of Cyt-c. However, eight- and 24-weeks HIIT

interventions increased the release of Cyt-C, which is consistent with
the results of previous studies (Wang, 2018). This may be due
to the fact that long-term HIIT intervention results in skeletal
muscle adaptation regarding Bcl-2 and ROS in old rats. In
addition, HIIT intervention can downregulate hist1h1c (Li
et al., 2019) and improve the respiratory capacity of skeletal
muscle mitochondria (Chrois et al., 2019), which can reduce
the release of Cyt-c. RT can reduce the release of Cyt-C in the
skeletal muscle of aged rats (Luo et al., 2013; Lin et al., 2014).
We found that 32 weeks of RT intervention could achieve this
effect. More importantly, at 32 weeks, the effect of HIIT was
not as good as that of RT, in contrast with the results obtained
for ROS and bcl-2. We speculate that RT can achieve this effect
by changing the mitochondrial membrane potential and the
levels of mitochondrial fusion protein (Su et al., 2020).

Caspase-9 can activate caspase-3 and promote apoptosis,
and some studies have found an age-related increase in the
caspase-9 level in skeletal muscle (Alway et al., 2002; Baker &
Hepple, 2006). However, it is not known when it happens. In
this study, no age-related increase in the caspase-9 level was
found in the skeletal muscle of rats aged 8–16 months.
Therefore, the specific time of this phenomenon requires
further study. After 32 weeks of HIIT and resistance
exercise intervention, the expression of caspase-9
decreased in the skeletal muscle of rats. The difference is
that the caspase-9 level in the skeletal muscle of rats treated
with HIIT from 8 to 24 weeks showed no significant changes,
but it decreased at 32 weeks, which is similar to the trend
observed for Cyt-C in group H. However, resistance exercise

FIGURE 7 | Age and exercise training effects on Cyt-3 levels in mitochondria of soleus muscle, were evaluated by Western blot. * Significant different from C and
other group; & Significant different from Baseline and other weeks; @ Significant different from 8 weeks and other weeks; $ Significant different from 16 weeks and other
weeks; % Significant different from 24 weeks and other weeks. (p < 0.05).
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can cause the skeletal muscle mass of rats to decrease
gradually during aging, which indicates that resistance
exercise will play a bigger role in this in the beginning.

But, the changes in the levels of Cyt-C and caspase-9
observed in group R were different during aging,
indicating that resistance exercise may also reduce the

FIGURE 8 | Age and exercise training effects on Caspase-9 levels in mitochondria of soleus muscle, were evaluated by Western blot. * Significant different from C
and other group; # Significant different from H and R; & Significant different from Baseline and other weeks; @ Significant different from 8 weeks and other weeks; $
Significant different from 16 weeks and other weeks; % Significant different from 24 weeks and other weeks. (p < 0.05).

FIGURE 9 | Age and exercise training effects on Caspase-3 levels in mitochondria of soleus muscle, were evaluated by Western blot. * Significant different from C
and other group; # Significant different from H and R; & Significant different from Baseline and other weeks; @ Significant different from 8 weeks and other weeks; $
Significant different from 16 weeks and other weeks; % Significant different from 24 weeks and other weeks. (p < 0.05).
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level of caspase-9 through other factors (Mejías-Peña et al.,
2017; Ribeiro et al., 2017; Neto et al., 2020), which requires
further study.

This study confirmed that the content of Caspase-3 in the soleus
muscle of aging rats decreased at 10-months-old and remained
unchanged at 10–16- months-old. Some studies have shown that the
level of Caspase-3 in skeletal muscle remains unchanged during
aging (6-month-old rats were compared with 24-month-old rats)
(Dirks and Leeuwenburgh, 2002; Chung and Ng, 2006). However,
Some outcomes are contrary to that of Dirks et al. who found that
compared with the 6–8-month-old rats, the level of caspase-3 was
significantly increased in 27–35-month-old rats (Baker and Hepple,
2006; Song et al., 2006). Therefore, we speculate that the age-related
increase in the level of Caspase-3 in the skeletal muscle of rats occurs
after 24months of age. In this study, the reason for the decrease in
the caspase-3 level at the age of 10 months may be that the
metabolism of cells in young rats is exuberant, and the cell
renewal is fast; thus, apoptosis is active. At the age of
10–16months, the metabolic rate decreases with the increase in
age; therefore, the level of caspase-3 decreases and remains stable,
comparedwith that at the age of 8months (Ying and Liang, 2015). In
addition, this study confirmed that 32 weeks of HIIT and RT
intervention can reduce the level of Caspase-3 in the skeletal
muscle of aging rats. However, in the aging process, HIIT can
gradually reduce the caspase-3 level in skeletal muscle, while RT can
increase and decrease the caspase-3 level. Therefore, the effect of
HIIT appeared to be more stable than that of RT.We found that the
results of the levels of caspase-9 and caspase-3 were consistent after
32 weeks of intervention. However, the changes in the Caspase-3
level in the three groups presented a different trend than that
observed for the caspase-9 level during aging. It is speculated that
aging and exercisemay regulate the caspase-3 level through the death
receptor pathway and endoplasmic reticulum pathway, and this
process may affect the levels of Bad (BCL-XL/Bcl-2-associated death
promoter), TNF-α, Caspase-8, caspase-12, and so on (Marzetti &
Leeuwenburgh, 2006; Luo et al., 2013; Mejías-Peña et al., 2017;
Ribeiro et al., 2017; Ahamed et al., 2018; Ahamed et al., 2021).

In conclusion, the level of Cyt-C in the soleus muscle remained
unchanged, while the levels of caspase-9 and caspase-3 decreased
during the 32 weeks of aging. Exercise training for 32 weeks
reduced the level of Caspase-3 through Cyt-C and caspase-9.
The effects of HIIT and RT were the same at 32 weeks.

CONCLUSION

This study set out to find a better way to delay sarcopenia and
explore the effects of different exercise methods on the
changes in the endogenous apoptotic pathway in the
process of aging. We demonstrated that the age-associated
loss of muscle mass was reversed by training, and that the
effect of RT was better than that of HIIT. There was no age-
related increase in skeletal muscle apoptosis in 8–16-month
old rats. However, both HIIT and RT reduced the apoptosis
level of skeletal muscle cells after 32 weeks of intervention.
HIIT performed better in long-term intervention regarding

the pro-apoptotic factors, and there was no difference in the
effect of HIIT and RT on apoptosis at 32 weeks. Although these
results generally support the idea that exercise reduces skeletal
muscle apoptosis in aged rats, we could not find the specific time
of the age-associated increase in apoptosis; therefore, further
studies aimed at observing the apoptosis of skeletal muscle for a
longer period are required to assess this.
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