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Abstract

The ability to assay genome-scale methylation patterns using high-throughput sequencing makes it possible to carry out
association studies to determine the relationship between epigenetic variation and phenotype. While bisulfite sequencing
can determine a methylome at high resolution, cost inhibits its use in comparative and population studies. MethylSeq,
based on sequencing of fragment ends produced by a methylation-sensitive restriction enzyme, is a method for
methyltyping (survey of methylation states) and is a site-specific and cost-effective alternative to whole-genome bisulfite
sequencing. Despite its advantages, the use of MethylSeq has been restricted by biases in MethylSeq data that complicate
the determination of methyltypes. Here we introduce a statistical method, MetMap, that produces corrected site-specific
methylation states from MethylSeq experiments and annotates unmethylated islands across the genome. MetMap
integrates genome sequence information with experimental data, in a statistically sound and cohesive Bayesian Network. It
infers the extent of methylation at individual CGs and across regions, and serves as a framework for comparative
methylation analysis within and among species. We validated MetMap’s inferences with direct bisulfite sequencing, showing
that the methylation status of sites and islands is accurately inferred. We used MetMap to analyze MethylSeq data from four
human neutrophil samples, identifying novel, highly unmethylated islands that are invisible to sequence-based annotation
strategies. The combination of MethylSeq and MetMap is a powerful and cost-effective tool for determining genome-scale
methyltypes suitable for comparative and association studies.
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Introduction

New methods that assay epigenetic modifications over the whole

genome promise to reveal insights into cell differentiation and

development [1–15]. Moreover, incorporation of genome-scale

epigenetic data into case-control studies is now becoming feasible,

and has the potential to be a powerful tool in the study of disease

[16]. Recent evidence has suggested that epigenetic variation is

heritable, and may underlie phenotypic variation in humans ([17],

our own observation with the human and chimpanzee methy-

lomes). Such comparative studies rely both on the ability to obtain

genome-scale epigenomic information cheaply and efficiently, and

on the availability of methods for analysis of the data produced.

Cytosine methylation, which in vertebrates is mostly confined to

CG dinucleotides, cooperates with other epigenetic modifications

to suppress transcription initiation [3,18] (in this paper we denote

a cytosine that is followed by a guanine as CG, rather than CpG,

and similarly CCGG is equivalent to CpCpGpG. We leave the

notation for CpG islands unchanged). In vertebrates, most CGs

are methylated. However, early experiments with the methylation-

sensitive restriction enzyme HpaII showed that unmethylated CGs

are clustered in ‘‘HpaII Tiny Fragment Islands’’ [19]. These

unmethylated islands are frequently active promoter elements.

Methods used to annotate them on a genomic scale have been

based only on sequence composition, because until recently

genome-scale assessment of HpaII fragments has not been

practicable. The methylation status of these regions, known as

CpG islands, has not been considered in their annotation and is

generally unknown. Genome-scale survey of the methylation status

of CGs would enable the annotation of CpG islands based on their

methylation states, rather than their sequence. Patterns of

unmethylated islands differ among tissues, and changes in the

methylation states of certain regions are associated with disease,

particularly cancer [2,3,20–22].

High-throughput sequencing technologies have catalyzed the

development of new methods for measuring DNA methylation.

These methods can be broadly classified as methyltyping versus

methylome sequencing, in analogy with genotyping versus genome sequencing

for DNA. Methyltyping technologies allow for the assessment of

genome-scale methylation patterns, while emphasizing low cost at

the expense of high resolution. Assays based on sequencing avoid

problems associated with hybridization to arrays. Examples

include MethylSeq, which is based on digestion with a

methylation-sensitive enzyme and is the focus of this paper, and
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RRBS which is based on digestion with a methylation-insensitive

enzyme followed by bisulfite sequencing [3,23]. In contrast to

methyltyping, whole-genome bisulfite sequencing offers the ability

to measure absolute levels of DNA methylation at single-

nucleotide resolution [7,24,25], but it is expensive because it

requires sequencing of whole genomes. The issues of cost and

coverage are complicated by a number of other issues. In the case

of bisulfite sequencing, conversion may not always be complete.

Also, the analysis requirements for the different assays vary in

difficulty. For these reasons, there has been a proliferation of

methods whose pros and cons are constantly changing as

sequencing technologies change. A recent analysis (Table 2 in

[26]) suggested that MethylSeq is the method with the most

favorable profile of pros and cons, with respect to the measures

chosen for comparison. Table 1 summarizes characteristics of

MethylSeq and of the most commonly used alternative methods.

MethylSeq retrieves information spanning more of the genome

than RRBS, because of a more favorable profile of fragment sizes

produced by HpaII relative to MspI (see the discussion of size

selection bias below and the Methods section).

MethylSeq is a convenient methyltyping strategy because it is

cost-effective, requires only small amounts of material, and avoids

bisulfite conversion. Briefly, the assay works by digestion of DNA

with a methylation-sensitive enzyme (HpaII) that cuts unmethy-

lated CGs at CCGG sites. Subsequent sequencing and mapping to

the genome reveals unmethylated CGs (Figure 1). Although the

experiment is relatively simple, interpretation of the sequencing

data is confounded by the dependence of read depth at a given site

on the methylation status of neighboring sites. This has limited the

use of MethylSeq; previous studies either pointed out the need for

a method of site-specific normalization [1], or attempted to deal

with the bias by removing problematic HpaII sites from the

analysis [5](resulting in the loss from the analysis of more than

19% of HpaII sites in CpG islands, see Methods).

In order to make effective use of MethylSeq for genome-scale

methyltyping we developed a freely available program, called

MetMap, that infers methylation at individual CGs by modeling

biases inherent in MethylSeq experiments. An additional impor-

tant feature of MetMap is the annotation of strongly unmethylated

islands (SUMIs) which, as opposed to the current definition of

CpG islands, incorporate information from both a reference

sequence and genome-scale methylation data. We have validated

MetMap’s site-specific analysis, as well as its unmethylated-island

annotation, with bisulfite sequencing of specific sites.

We demonstrate the use of MethylSeq with MetMap by

methyltyping four male human individuals, and annotating their

unmethylated islands. We show that the picture revealed by such

analysis is sufficient to survey methylation states across the

genome. Such analysis gives significant insight into the methylome

of each specimen, inside and outside of CpG islands, at site specific

resolution. We show evidence that the mean extent of methylation

of an island is more informative than the methylation state of the

different sites in the island, because the correlation between the

methylation states of any two samples improved when considering

the mean. MetMap identifies numerous unmethylated regions, of

varying lengths, which have not previously been annotated as

CpG islands and are associated with other features indicative of

transcriptional function. We conclude that MetMap leverages the

cost-efficiency and practical ease of MethylSeq to produce

informative genome-scale methylation annotations (methyltypes)

that are suitable for both region- and site-specific comparative and

case-control studies.

Author Summary

In the vertebrates, methylation of cytosine residues in DNA
regulates gene activity in concert with proteins that
associate with DNA. Large-scale genomewide comparative
studies that seek to link specific methylation patterns to
disease will require hundreds or thousands of samples, and
thus economical methods that assay genomewide meth-
ylation. One such method is MethylSeq, which samples
cytosine methylation at site-specific resolution by high-
throughput sequencing of the ends of DNA fragments
generated by methylation-sensitive restriction enzymes.
MethylSeq’s low cost and simplicity of implementation
enable its use in large-scale comparative studies, but
biases inherent to the method inhibit interpretation of the
data it produces. Here we present MetMap, a statistical
framework that first accounts for the biases in MethylSeq
data and then generates an analysis of the data that is
suitable for use in comparative studies. We show that
MethylSeq and MetMap can be used together to
determine methylation profiles across the genome, and
to identify novel unmethylated regions that are likely to be
involved in gene regulation. The ability to conduct
comparative studies of sufficient scale at a reasonable
cost promises to reveal new insights into the relationship
between cytosine methylation and phenotype.

Table 1. Features of different methyltyping techniques.

Site
specific

Pre-chosen
regions

Spanning
of human
genome

Spanning
of CpG
islands #CG sites

Bisulfite
conversion Read length

Constraints on
analysis

Comparable with
low amounts of
input DNA

MethylSeq Yes No 9.2% 92.9% *1:4M Not Needed 32bp suffice Inference Procedure
Needed

Yes

RRBS Yes No 8.1% 69.8% *1:4M Needed Longer = more
coverage

Low Sequence
Complexity

Yes

Affinity-based (MeDIP,
mDIP, mCIP)-Seq

No No whole
genome

all - Not Needed 32bp suffice Binding Biases No

Affinity-based (MeDIP,
mDIP, mCIP)-Array

No Yes pre-chosen pre-chosen - Not Needed - Binding Biases+Array
Biases

No

For definition of spanning and determination of number of sites, see Methods. Constraints on analysis: for MethylSeq, see this paper. For RRBS, bisulphite conversion
lowers sequence complexity, complicating alignments. Affinity based methods are complicated by effects of methylation density on binding, and by noise created by
non-specific binding. Array methods are complicated by noise in the hybridization step. This table makes use of information from Laird 2010 [26].
doi:10.1371/journal.pcbi.1000888.t001

MetMap Enables Genome-Scale Methyltyping
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The remainder of this paper is organized as follows. We begin

by explaining in detail significant biases present in MethylSeq

experiments. We then describe the MetMap framework, which is

designed to correct for such biases, starting with a description of

MetMap’s graphical model and continuing with a description of

the software’s different outputs. We then describe the validation of

MetMap’s procedure, using the methyltypes of four human

individuals, and our discovery of new unmethylated regions in

the human neutrophil genome, found through the use of MetMap

on MethylSeq data. Finally, we discuss the advantages of using

MetMap with MethylSeq to generate and analyze large numbers

of samples, and outline our plans for the extension of MetMap’s

framework.

Results

Computational Model
Rationale. MetMap is a statistical inference framework that

exploits MethylSeq data to accurately ascertain the extent of

methylation across a genome. It uses a novel graphical model to

assign probabilities of methylation at single-HpaII-site resolution,

annotate regions of the genome that are hypomethylated along

with a score indicating their extent of hypomethylation, and

indicate the sites that are in the scope of the MethylSeq

experiment and may be included in comparative studies.

A central feature of MetMap is its ability to normalize the bias

introduced in short-read sequencing experiments in which the

genome is not randomly fragmented. In MethylSeq experiments, all

unmethylated HpaII sites are present at the ends of the digested

fragments, but a size selection step required by the sequencing

protocol limits sequencing to fragments of a narrow size range. The

methylation status of the neighbors of an unmethylated HpaII site

determines whether the fragments with this site at their ends will

pass the size selection step and be sequenced (Figure 2.a). Moreover,

the methylation state of CG sites can be heterogeneous even within

a population of a single cell type [5,14]. This complicates correction

for the bias introduced by size selection (Figure 2.b). MetMap

incorporates experimental data derived from a site’s ‘‘neighborhood

methylation structure’’ to achieve unbiased estimates of the

probability of methylation, at single-site resolution.

Another bias is an issue of all ‘‘shotgun’’ sequencing

experiments. The read count of a given fragment gives only an

estimate of its abundance in the solution, and can be viewed as the

number of times the fragment was randomly sampled. Therefore,

different fragments present in the specimen in similar quantities

will not always be sequenced to the same extent. The site-specific

inference procedure used by MetMap considers the extent to

which all fragments in a HpaII site’s neighborhood were

sequenced, so that more information is considered to determine

the state of each HpaII site.

MetMap’s graphical model. The analysis of a MethylSeq

experiment by MetMap begins with the generation of a directed

graphical model. The model’s specific structure is determined by a

reference genome and the specifications of the given experiment.

We outline the different types of variables in MetMap’s model, the

dependencies between the variables, and how the data is

incorporated into the ‘‘observed’’ states.

For a given reference genome, MetMap denotes every CG that

is within a HpaII site (CCGG) by a random variable (denoted by

Y s, large open circles in Figure 3.b), and every non-HpaII CG by

Figure 1. Determination of genome-scale methylation states with MethylSeq/MetMap. Genomic DNA is digested with the methylation-
sensitive restriction enzyme HpaII. Unmethylated HpaII sites (open circles) are digested and thus found at the ends of restriction fragments, while
methylated HpaII sites (black circles) are not digested. Restriction fragments are size-selected according to the Illumina protocol; fragments that are
either too long or too short are removed. Fragments that pass the size-selection are used to construct sequencing libraries. After sequencing, the raw
reads are aligned against the reference genome and processed with MetMap to derive maps of genome-scale methylation.
doi:10.1371/journal.pcbi.1000888.g001

Table 2. Counts of the SUMIs annotated in the four human neutrophil samples.

All Neutrophil
SUMIs Overlapping CGIs

Not Overlapping
CGIs Overlapping BFIs

Not Overlapping
BFIs

Not Overlapping
CGIs or BFIs

Sample 1 16,903 14,071 2,832 12,076 4,827 2,266

Sample 2 17,595 15,008 2,587 12,834 4,761 2,044

Sample 3 18,178 15,273 2,905 13,082 5,096 2,308

Sample 4 18,699 15,274 3,425 13,229 5,470 2,729

Union 20,985 16,334 4,651 13,931 7,054 3,797

Intersection 14,308 12,838 1,470 11,123 3,185 1,116

Union - The set of regions annotated as a SUMI in at least one of the four individuals. Intersection - The set of regions annotated as a SUMI in all four individuals. CGIs -
UCSC CpG islands. BFIs - BF-islands.
doi:10.1371/journal.pcbi.1000888.t002

MetMap Enables Genome-Scale Methyltyping
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a random variable (denoted by Zs, small open circles in

Figure 3.b). Each HpaII site variable takes on one of six states.

Each state incorporates one of the three values fM, U , Pg
determining the site as methylated, unmethylated and heteroge-

neously methylated respectively, and one of the two values fI , Ng
determining the site’s presence (or not) in an unmethylated island.

Each non-HpaII-site CG variable (Z) has two possible states:

fI , Ng. Z variables do not incorporate methylation values

because there is no experimental data on non-HpaII CG sites.

Every genomic fragment that could be produced by cleavage of

any two HpaII sites, and which passes the size selection step, has a

corresponding random variable (denoted by V s, blue circles in

Figure 3.b). In other words, these are all possible fragments in the

given size range that have a HpaII site at each end. The V

variables are the observed variables of the model. Each V variable

has a state determining the relative extent (0 being the lowest and

9 the highest) to which the specific fragment it represents was

detected by MethylSeq. V variables range over 0–9 to account for

heterogeneous methylation of sites within a population of cells

[5,7] and are assigned by a normalization procedure that is

applied to the read counts (Methods). In summary, the variables of

the model have the following possible states:

Yi [ fMI , PI , UI , MN, PN, UNg,
Zi [ fI , Ng,

Vi [ f0, 1, . . . , 9g:

Dependencies between the variables are modeled using

probability distributions of three types, making use of 54

parameters. The first type of probability distribution captures

the dependencies between adjacent CG sites with respect to

whether the sites are part of an unmethylated island, and is

modeled by transition probabilities of a hidden Markov model

(HMM) that incorporates the distances between adjacent sites.

The second determines, for each Yi, its probability of being in

each of the three methylation values described above, given

placement of the site in an unmethylated island (or not). The third

type models the generation of MethylSeq experimental results, and

thus the bias present in such experiments: the presence of a

fragment (a V variable) in the data requires that it was cut at its

ends, and not between them. MetMap incorporates values for

p(vDConf ), where v denotes a state of V , and Conf is some

methylation value configuration of the Y variables (ends and

interior) on the fragment V represents. Further details about the

transition functions are found in the Methods section.

In summary, the reference genome specifies the structure of the

graphical model, and the MethylSeq data is incorporated into this

model by fixing the states of all of the V variables (Figure 3.a,b).

This integrates into one inference model our knowledge of the

MethylSeq data, of the main sources of experimental bias, and of

the genome sequence.

Site-specific methylation probabilities. After building the

probabilistic model and assigning the V variables, MetMap infers,

for each of the ‘‘hidden’’ Y and Z variables, the posterior

probability over its states (Figure 3.c). To do this MetMap uses

belief propagation on the junction-tree graph built from the

directed model [27]. The computation is tractable and efficient

because the tree width of the model is small (Methods). Given the

posterior probabilities, the probability of each restriction site, Yi,

to be unmethylated or methylated is respectively:

pi(U)~pi(UI)zpi(UN)z
1

2
(pi(PI)zpi(PN))

pi(M)~pi(MI)zpi(MN)z
1

2
(pi(PI)zpi(PN)):

It is important to restrict analysis only to sites that are within the

scope of the MethylSeq experiment, namely, to sites for which the

MethylSeq experiment holds some information regarding their

methylation state. MetMap identifies these sites from the structure

of the graphical model (Methods) and outputs a file with

coordinates of all CCGG sites in the scope of the experiment,

along with their inferred p(U) values.

Strongly unmethylated islands (SUMIs). As unmethylated

CGs tend to be clustered in vertebrate genomes, we would like to

annotate the coordinates of these clusters. We call such regions

SUMIs (strongly unmethylated islands) and emphasize that they are

defined by experimental data and so are specific to a dataset. In

MetMap’s graphical model the posterior probability of a variable to

be in an ‘‘unmethylated island’’ state is dependent on both the

genome sequence and the experimental data (for any Yi variable

Figure 2. The methylation state of restriction site B cannot be
determined by its read count alone. Suppose that due to the size
selection step, only fragments of length 50–300bp are sequenced. The
four adjacent restriction sites (denoted by circles) may have different
methylation states, resulting in epialleles with different ‘‘neighborhood
methylation structures’’ of B. Site B is sequenced only from fragments of
type B–C–D, which are the product of alleles in which sites B and D are
unmethylated (and cut) and site C is methylated (and not cut). (a) B is
unmethylated in both case 1 and case 2, but it receives different read
count values. In case 1 sites A,B and D are unmethylated and therefore
digested by HpaII, giving fragments A–B of length 10bp and B–C–D of
length 100bp. Fragment A–B is too short to be sequenced, but B–C–D
has its ends sequenced. In case 2 all four HpaII sites are digested, giving
fragments A–B, B–C and C–D. A–B and B–C are too short and are not
sequenced, and so site B is not sequenced. In case 3, site B is
methylated, is not cut by HpaII, and is not sequenced. Note that the
read counts at site B alone cannot distinguish case 2 from case 3. (b)
Analysis is complicated by heterogeneous methylation within a
population of cells. The extent to which site B is methylated in the
cell population cannot be determined given only the read count at site
B. In case 4, although site B is cut in 90% of the cells, it is sequenced
only infrequently, because site C is unmethylated and cut in 90% of the
cells, resulting in a B–C fragment that is too short for sequencing. In
contrast, in case 5 site B is cut in only 10% of the cells. But site C is
methylated in 90% of cells, so the majority of the fragments in which
site B has been cut will yield a B–C–D fragment and will be sequenced.
Thus the methylation structure of neighboring restriction sites strongly
influences the frequency with which a site will be sequenced.
doi:10.1371/journal.pcbi.1000888.g002

MetMap Enables Genome-Scale Methyltyping
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this posterior probability is pi(I)~pi(MI)zpi(PI)zpi(UI)). This

could cause sites with a very high concentration of CGs around

them to get high posterior probabilities of being in the

‘‘unmethylated island’’ state, regardless of experimental data at

those regions. MetMap accounts for this by annotating SUMI

regions based on several different properties: the inferred

probabilities of being in an unmethylated island, of being

unmethylated and the direct MethylSeq data (Methods). Each

SUMI receives a score indicating the extent to which the entire

SUMI is unmethylated. This score is the mean of the p(U) scores of

all of the HpaII sites within that SUMI. SUMIs can be used as

‘‘comparative units’’, facilitating the comparison of datasets.

MetMap outputs a file with the coordinates and scores of the

SUMIs inferred for a dataset.

Evaluating MetMap’s Performance
We carried out MethylSeq on specimens of a single homogeneous

and uncultured cell type, the neutrophil, from four male humans.

HpaII fragments were size selected in the range 50–300bp and

sequenced on a first generation Illumina Genome Analyzer yielding

23,731,359 32bp reads. Although longer reads are currently

available, reads for our assay only need to be sufficiently long so

that they can be mapped correctly to the reference genome. The

reads were aligned to the reference human genome (hg18 [28]) with

Bowtie [29] resulting in 18,218,420 alignments (Table S1), and each

of the four samples was analyzed with MetMap.

To infer methylation states from read depths, we first segmented

the genome into 6,000 non-overlapping regions (of size 0.5Mbp)

that could be analyzed separately. For each region, MetMap

returned methylation probabilities for those CCGG sites for which

information on site-specific methylation could be obtained from

the MethylSeq experiment, and annotated SUMIs. The CCGG

subset contained 59% of the CCGG sites (4.8% of all CG sites) in

the human genome. Of the sites for which information could be

obtained, 80% (1,035,243 sites) were outside CpG islands as

annotated in the UCSC Genome Browser [30], and 20% (257,540

sites) were inside, resulting in a two-fold enrichment of the

proportion of CCGG sites that are in such CpG islands.

Figure 3. Inference of site-specific probabilities of unmethylation and annotation of strongly unmethylated islands from
MethylSeq read counts. MetMap constructs a directed graphical model (b) from the genome and read counts (a). The methylation state of each
CCGG site is represented by a random variable that also encodes whether it is in an unmethylated island. CpG sites are also represented in the model,
with the distance between sites affecting the parameters. The read counts are used to set the state of the observed random variables corresponding
to the possible sequenced fragments (for simplicity of representation, only a sample of these variables is outlined in the figure). The numbers in the
blue circles represent normalized read counts. Dark edges correspond to boundaries of fragments. MetMap inferences of the extent of unmethylation
(c) are shown alongside the values attained from a bisulfite sequencing validation. The raw read counts are scaled by the cmax value chosen for
sample 4 (Methods). Strongly Unmethylated Islands are annotated from the posterior distributions inferred at sites and the total read counts. The
example shows part of an inferred SUMI on chromosome 19 from sample 4.
doi:10.1371/journal.pcbi.1000888.g003

MetMap Enables Genome-Scale Methyltyping
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To test whether MetMap was correcting bias in the raw counts

(Figure 3), we directly determined the methylation status of 22

regions in the human genome using bisulfite sequencing [31]

(Methods). Each CG in the bisulfite experiment received a score

from the set (0,0.25,0.5,0.75,1) based on the observed proportion

of alleles in which that site was unmethylated in a sample [32].

We correlated the bisulfite scores (taken as being the true

methylation status) with the read counts and with the MetMap

predictions. Each of the 46 validated sites had three different

scores for the extent to which it was unmethylated: a bisulfite

score, a read count score, and a MetMap score. The Pearson

correlation coefficient between the raw read counts and the

bisulfite values was 0.67 while the Pearson correlation coefficient

between the MetMap methylation score of those sites and the

bisulfite values was improved to 0.90.

As the bisulfite scores may be an imprecise measure of the true

extent of methylation (Methods) we tested the sensitivity of our

results to the bisulfite scores. We ‘‘adjusted’’ bisulfite scores,

assigning to each value of the two sets of scores, the read-count set

and the MetMap predictions set, a separate ‘‘adjusted’’ bisulfite

value, that is within a predetermined range. The range available

for adjustment was determined by the initial bisulfite score

(Methods). After this adjustment, the correlation coefficient of the

read counts with the bisulfite scores was 0.73 and the correlation

coefficient of the MetMap scores with the bisulfite scores was 0.95.

While the correlation values increased as expected, the difference

between the performance of MetMap and that of read counts

remains similar. This indicates that the improvement in using

MetMap instead of raw read counts was not due to the procedure

by which bisulfite scores were assigned.

Examples of MetMap’s ability to accurately detect partially and

fully methylated sites are shown in Figure 3, Figure S1 and Text

S2. Both the extent and variability of methylation in a region are

better predicted by MetMap than by the read counts.

To determine which parameter might be more informative for

genome-scale methyltyping, we compared methylation states for

individual sites and for SUMIs between pairs of samples. Although

the methylation status of individual sites within SUMIs was variable,

the average probability of methylation for the whole SUMI was

consistent across individuals (Figure 4). This observation suggests

that the mean methylation state of a SUMI is more constrained than

the methylation states of the individual sites within it, and thus a

change in mean SUMI methylation is more likely to have functional

consequences than a change at a specific site. Based on this, we

propose that the mean SUMI methylation status is the more

informative parameter for comparative or association studies.

Similar read counts at orthologous restriction sites in two or

more samples indicate that their methylation status is similar;

however determination of their true extent of methylation requires

a statistical method such as MetMap. Thus the degree of

consistency observed among MetMap’s site-specific inferences

for different samples is supported by the high correlation of the

corresponding raw read counts (e.g.: a correlation of 0.667

between sample 1 and sample 4).

Figure 4. The average probability of methylation at SUMIs is highly stable across individuals of the same sex. All pairings among the
four individuals tested are shown. On the left side of each pair the correlations between the site specific MetMap scores are presented for sites within
SUMIs. On the right side of each pairing the correlations of the SUMI scores are presented. The distribution of the sites that are highly unmethylated
in one sample but methylated to different extents in the other sample is discussed in Text S3.
doi:10.1371/journal.pcbi.1000888.g004

MetMap Enables Genome-Scale Methyltyping
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MetMap Identifies Novel Unmethylated Islands
Associated with Promoters and Open Chromatin Regions

We mapped the 20,986 SUMIs present in at least one of the

four individuals, and examined their relationship to purely

sequence based definitions of CpG islands (Figure 5.a). Of the

20,986 SUMIs present in at least one of the four individuals, 4,652

do not overlap UCSC CpG islands, and 7,055 do not overlap the

‘‘bona fide’’ islands [33] with an epigenetic score larger than 0.5

(as recommended by Bock et al. [33], termed here BF islands).

This result is consistent with the higher specificity, but lower

sensitivity, of BF compared to UCSC island prediction. Details

regarding the extent of overlap between SUMIs and the BF and

UCSC islands can be seen in Table 2.

We compared the length distribution of our SUMIs with the

length distributions of both the UCSC and BF islands (Figure 5.b).

SUMIs were similar to BF islands, but the length distribution of

the UCSC CpG islands resembled a geometric distribution. The

process by which UCSC CpG islands are annotated will produce

false positives that follow a geometric length distribution, with the

number of false positive CpG islands increasing as a function of

decreasing length (Methods). Since the length distributions of

SUMIs and BF islands do not follow the same trend as the UCSC

CpG island distribution, it is probable that at the shorter lengths

the majority of predicted UCSC CpG islands are false positives.

SUMIs did not overlap completely with BF islands: of the 21,626

BF islands, 13,899 were identified as SUMIs. BF islands are

determined with a support vector machine that uses epigenetic

data from multiple sources to train its prediction model. In

contrast, MetMap’s SUMI predictions originate from an exper-

imental signal for unmethylation in the cell type analyzed. The

probable explanation for the MetMap/BF discrepancy is that the

two methods have used epigenetic data from different tissues.

More data from distinct cell types will shed light on this issue.

We therefore validated with direct bisulfite sequencing five

regions that are annotated as part of both a UCSC CpG island

and a BF island, and did not overlap with SUMIs; we also

sequenced three regions in BF islands that did not overlap with

SUMIs or with UCSC CpG islands. In all cases those regions

were validated as methylated in the neutrophil samples (Figure

S1.j–q). This is consistent with the notion that while these

islands might be unmethylated in other cell types, they are

methylated in the neutrophil. We analyzed four cases of

SUMIs with scores higher than 0.5 that overlapped UCSC

CpG islands but not BF islands (Figure S1.a–d). In each SUMI

a region was picked and bisulfite sequenced. All four regions

were determined as fully unmethylated (all CG sites received a

score of 1).

3,797 SUMIs do not overlap with BF islands or CpG islands,

revealing new regions that are unmethylated in neutrophil cells. Of

these novel SUMIs, 2,317 (61%) are within regions experimentally

determined by the ENCODE project as open chromatin

(Methods), 1,882 (50%) are within regions determined as

conserved by the 17-way UCSC conservation track, 2,274 (60%)

are within 2Kbp of RefSeq genes, and 837 (22%) are within 2Kbp

of the 59 end these genes (Figure. 5.c and Table 3).

Consistently with their similarity to conventional CpG islands,

SUMIs are enriched near the transcription start sites (TSSs) of

RefSeq genes, with a preference for the downstream side

Figure 5. Strongly Unmethylated Islands (SUMIs) in the neutrophil methylome. Genomewide SUMI predictions (a) reveal strongly
unmethylated islands that are proximal to genes and that do not always correspond to sequence-based annotations of CpG islands shown in the
tracks ‘BF islands’ and ‘CpG islands’ (e.g., the promoter of LRG1 and in an intron of SH3GL1). (b) SUMI and BF island length distributions have a
different shape than the CpG island length distribution, suggesting numerous short false positives in the latter. (c). Some SUMIs appear 59 of
alternative promoter sites.
doi:10.1371/journal.pcbi.1000888.g005
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(Figure 6.a). We observe the same property also when we consider

novel SUMIs alone (Figure 6.b), or when we consider only SUMIs

that do not overlap UCSC CpG islands (Figure 6.c) or BF-islands

(Fig. 6.d). This indicates that the distribution of novel SUMIs

around the TSSs does not originate from a characteristic present

in only one of these sets. We find that the proportion of SUMIs

that maps at a distance from TSSs is larger for novel SUMIs than

for all SUMIs, but that novel SUMIs have a degree of association

with open chromatin similar to that observed for all SUMIs

(Table 3); this suggests that novel SUMIs may often represent

distal regulatory sequences.

Discussion

The possibilities and potential of DNA methylation analysis

with new sequencing technologies have been described as a

‘‘revolution’’ [26]. The vast number of methods for methylation

analysis, along with many papers describing exciting findings,

suggests that this revolution is underway. For the foreseeable

future, methods that rely on the construction of a sequencing

library produced by methyl-sensitive enzymes, followed by

sequencing to measure methylation, are the practical approach

for the analysis of large numbers of samples [26]. The efficient use

of MethylSeq data requires a computational method that can infer

true methylation states by considering biases inherent in the

technical method. We have developed MetMap, which makes it

possible to use MethylSeq for genome-scale methyltyping.

MetMap facilitates the rapid calling of restriction-site-specific

methylation, and of unmethylated regions, to produce methylation

maps that are suitable for comparative analysis. Validation of

MetMap calls with bisulfite sequencing shows that it compensates

for bias present in the MethylSeq data. MetMap can combine

experimental data and genome sequence to identify many strongly

unmethylated islands (SUMIs) that were previously unannotated,

suggesting that it can identify novel functional regions.

The annotation of experiment-specific strongly unmethylated

islands (SUMIs) reconciles the original definition of CpG islands,

based on their sensitivity to methylation-sensitive restriction

enzymes [19] with the sequence-based definitions now used. The

definition of SUMIs is functionally more exhaustive than the

standard definition of CpG islands, since it couples sequence clues

to methylation (abundance of CpGs) with experimental measure-

ments of methylation. In our comparison of four humans, we

noted that the average methylation states of SUMIs were more

conserved among individuals than the methylation states of sites

within them, suggesting that average methylation is more likely to

be functionally important and so is a more informative parameter.

SUMIs lie proximal to genes (77% are within 2Kbp of genes; 60%

are within 2Kbp of the 59 end), and are likely to be directly

involved in regulation of gene expression.

Overall, we predicted 3,797 SUMIs that do not overlap UCSC

CpG islands or BF islands. Their sequence conservation and

correlation with open chromatin suggests that they are functional,

but they are less frequently associated with transcription start sites

than the general set of SUMIs. We speculate that many novel SUMIs

are enhancers. The discovery of these novel regions illustrates the

utility of using experimental data to annotate CpG islands.

As more methylation data becomes available, the MetMap

program we have developed can be refined and improved. For

example, with the advent of methylation-based case-control

studies, it should be possible to define methyl-haplotypes and to

leverage MetMap to explore variation within and between

individuals. MetMap’s graphical model can also be used to learn

the dependencies between the methylation states of neighboring

CG sites, which will expand the scope of MethylSeq experiments

to include sites that are not directly assayed. As more data-types

Table 3. Percentages of neutrophil SUMIs, UCSC CpG islands and BF-islands that overlap regions associated with functionality.

Human Neutrophil
SUMIs UCSC CpG islands BF islands Novel SUMIs

Open Chromatin 70.0% 52.9% 65.3% 61.0%

UCSC 17-way Conservation Track 71.1% 68.5% 76.2% 49.6%

Gene Regions 76.9% 77.7% 79.7% 59.9%

TSS Regions 59.8% 52.2% 61.4% 22.0%

‘‘Open Chromatin’’ - the union of the regions determined by the ENCODE project as open chromatin in five different cell types (Methods). For the gene regions and TSS
regions the RefSeq genes were used, and a window of 2Kbp was taken around each gene/TSS.
doi:10.1371/journal.pcbi.1000888.t003

Figure 6. Transcription start sites and their close surroundings are enriched with novel SUMIs. The number of SUMIs that overlap each
location within 5Kbp from RefSeq transcription start sites is shown for (a) all neutrophil SUMIs (b) Novel SUMIs (SUMIs that do not overlap UCSC CpG
islands or BF islands) (c) SUMIs that do not overlap BF islands (d) SUMIs that do not overlap UCSC CpG islands.
doi:10.1371/journal.pcbi.1000888.g006
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are produced together with methylation experiments, we envision

expanding MetMap to include information from related genomes,

and possibly other related measurements. Ultimately, we look

forward to the coupling of methylation data with other functional

information, including expression measurements and chromatin

structure assays, to fully reveal the roles and consequence of DNA

methylation.

Methods

Ethics Statement
Human samples were collected with CHORI’s IRB approval

after obtaining informed consent.

Software
The MetMap software takes as input: (1) the mapped reads of a

MethylSeq experiment, (2) the boundaries on the lengths of the

fragments sequenced (determined by the size-selection step), and

(3) a reference genome. It outputs two files: (1) a list of the HpaII

sites in the scope of the experiment with their MetMap scores, and

(2) a list of SUMI regions with their scores.

MetMap is free, open source software, and can be downloaded

from the following site:

http://www.cs.berkeley.edu/meromit/MetMap.html

Evaluating Per-Site Coverage and Span of Methods for
Methyltyping

In the Methylseq experiment, information regarding the

methylation state of a CCGG site can be obtained for the subset

of CCGGs that are present on some fragment that has CCGG

sites at its ends and that passes the size selection step (see ‘‘CG sites

in the scope of the MethylSeq experiment’’ section for details). We

computed the number of CCGGs of the human genome that fulfill

this criterion to be 1,349,378.

In the RRBS protocol the genome is digested with the

methylation-insensitive restriction enzyme MSPI (which cuts at

CCGG sites), and the fragments of size 40–220bp are size-selected

and have their ends sequenced (after bisulfite treatment). For the

human genome RRBS determines the methylation status of

*1:4M CGs [23].

We determine the span of a methyltyping method by considering

regions in which that method profiles methylation. By doing so we

gain an insight to the broadness of a method with respect to the

regions for which it profiles methylation. In MethylSeq, methylation

status is determined for a subset of the CCGG sites and in RRBS

methylation status is determined for CG sites that are within

fragments that have CCGG sites on both ends and which are of

relative short length (up to 220bp). We therefore computationally

categorized all CCGG sites of the human genome as 1/0 based on

the ability to infer their methylation state with each method. All

regions (bounded by CCGG sites) in which all CCGG sites received

a ‘‘1’’ were considered as spanned by the method. When

determining the span for CpG islands, the regions spanned were

computed in the same manner, but considered only regions within

CpG islands. In cases that the CCGG nearest to an edge of the

island was determined as ‘‘1’’ the region between that CCGG and

the edge of the island was also considered as spanned.

Coverage of Ball MP et al. (Nat Biotech 27:361–368
(2009))

In the protocol used for this study the genome is digested with

the methylation-sensitive restriction enzyme HpaII and only

CCGG sites that follow certain criteria (as outlined in Ball MP

et al.) are considered for their methylation status. One of the

requirements is that the CCGG site be at least 40bp away from at

least one of its two neighboring CCGG sites. In the human

genome 19% of the CCGG sites have both of their neighboring

CCGG sites at a distance smaller than 40bp, and are therefore

excluded from the analysis.

Characterization of False-Positive UCSC CpG Islands
CpG islands in the UCSC track are defined in [34] as regions

with a GC content of 50% or more, a length greater than 200bp,

and a greater than 0.6 ratio of observed CG dinucleotides to the

expected number based on the GC content of the segment. The

segments to consider are collected by scoring all dinucleotides (+17

for CG and 21 for others) and identifying maximally scoring

segments. Under this model, the probability that a region from the

null model (sequence which is not an unmethylted region) fulfills

these requirements increases as the length of the region decreases.

This statement holds for models in which the probability of

observing an A/T in the null model is larger than that of observing

a C/G. This is indeed the case in humans. The likelihood of false

positives in the UCSC CpG island set has been noted [33,35].

MethylSeq Experiment
We obtained whole blood from four young adult male humans

and obtained neutrophils by first isolating peripheral blood

mononuclear cells by Ficoll separation, then purifying neutrophils

with anti-CD16 antibodies conjugated to magnetic beads

(Miltenyi); we verified that the purified samples contain w99%
neutrophils by Wright-Giemsa staining and visual inspection by a

hematologist. Genomic DNA was isolated using the DNeasy Blood

& Tissue isolation kit (Qiagen), quantified using a Nanodrop

spectrophotometer, and quality-controlled for purity with an

Agilent Bioanalyzer. Genomic DNA (2mg) was digested with HpaII

under conditions that make it very likely that digestion is complete

(overnight with enzyme boosting), fragments 50–300bp long were

isolated from an agarose gel, and single-read sequencing libraries

were prepared following the manufacturer’s protocol (Illumina).

Libraries were sequenced on a first-generation Illumina Genome

Analyzer and 32 base reads were generated. Only reads beginning

with ‘‘CGG’’ (the sequence of the ends produced by restriction

with HpaII) were retained and analyzed with MetMap.

MetMap’s Algorithm
MetMap receives as input the output of the MethylSeq

experiment mapped to a reference genome, the reference genome,

and the minimal and maximal lengths of the fragments sequenced,

denoted by lmin and lmax. MetMap generates its graphical model

(the Y , Z and V variables along with their dependency relations)

from the reference genome and the values of lmin and lmax. Having

the graphical model’s structure in place, MetMap incorporates the

MethylSeq data by assigning values to all V variables (all fragments

that may be sequenced in the MethylSeq experiment): each V
variable is assigned a score between 0 and 9, by fixing a dataset-

specific ‘‘capping’’ value, denoted cmax (see next section), and to

each Vi, with paired-end read count ci, assigning

h(ci)~q
min(ci,cmax)

cmax

:9r. In case of a single-end dataset a

transformation approximates a paired-end dataset, and the data is

scaled as if it were paired-end (Text S1). MetMap is modular,

allowing for potential incorporation of methods that normalize for

biases generally present in short-read sequencing technologies [36].

Several types of probability distributions annotate the dependen-

cies between the variables of MetMap’s model. The transition

probabilities between each pair of adjacent variables of type Y and/
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or Z (which represent adjacent CGs) take into account the reference

genome but not the MethylSeq data, and are the prior distribution

over the hidden states. In case that the two adjacent variables are of

type Z, they take on a state (denoted by z) from fI ,Ng. The transition

probabilities are p(zi~I Dzi{1~I ,di), p(zi~N Dzi{1~I ,di),
p(zi~I Dzi{1~N,di) and p(zi~N Dzi{1~N,di), where di is the

distance between Zi{1 and Zi. Each function determines the

probability that Zi is in its island state given that Zi{1 is in the given

island state, that a CG is observed at Zi and that no CGs are observed

for the distance of di. The parameters 0.00031434, 0.0257, 0.10178,

0.01298 and 0.013, respectively determine the probability of entering

an island, of leaving an island, the probability of the sequence ‘CG’

occurring in an island, and out of one, and the initial probability that

a site of the genome is in an island. These parameters were set using

maximum likelihood estimates, calculated using chromosomes 21

and 22 of the human genome (Text S1). In cases where the successor

variable of a pair of adjacent variables is of type Y , the methylation

value of the state is considered. MetMap’s current version assumes

independence of the neighboring sites’ methylation values, given the

island values.

Parameters 0.2269, 0.05 and 0.7231 determine the probabilities

of having an M, P or U methylation value, given an unmethylated

island status (I ). Parameters 0.8087, 0.05 and 0.1413 determine

these probabilities, given an outside of unmethylated island status

(N) (Text S1). The transition function to any state of Y is

determined as the product of the transition probability considering

only island values (as specified above) and the probability of

observing the methylation value of the state at hand, given its

island value. The third type of probability distribution in MetMap

annotates the dependencies between the Y and V variables. Each

V variable is dependent on the methylation values of the Y
variables on the fragment it represents (Figure 3.b). Therefore, a

dependency function is denoted for each Vi variable as

p(vi DConfi), where vi [ f0,::,9g is a state of Vi and Confi is some

configuration (assignment) of the values fM, P, Ug of all the

restriction sites on fragment i. We limit the number of Y variables

in the interior of such structures to at most 3 (by random choice

from the interior variables), and unite methylation configurations

that are equivalent with respect to the probability function,

resulting in lookup tables of size at most 5610. The parameters in

the lookup table were determined using a linear program that

takes into consideration the internal constraints of the probability

distributions (Text S1). Artificial restriction of the number of

interior variables is not common because the maximum fragment

length imposed by the size selection is relatively short.

MetMap infers the posterior probabilities of its hidden states by

building the junction-tree graph and using belief propagation [27].

The structure of the graph makes this computation tractable and

efficient: the running time for the inference procedure is less than

an hour for large chromosomes on a small sized cluster.

MetMap generates two output files. One holds for each HpaII

site in the scope of the experiment a MetMap score, indicating the

inferred frequency of alleles in the MethylSeq sample that are

unmethylated at that site. The second file holds the coordinates

and scores of the annotated SUMIs.

Generating cmax

To generate a value for cmax, MetMap builds a histogram of the

read count intensities for the subset of fragments of length 50–

80bp, which do not hold internal restriction sites, and are located

inside UCSC CpG islands. The fragments participating in the

histogram contain a greatly reduced amount of bias (due to the

lack of restriction sites in their interior) and are assumed to be

mostly unmethylated (as they are in CpG islands). Under the

assumption that the distribution of the histogram is close to

Poisson, because the sequencing of fragments is equivalent to

sampling them from the digest, we assume the variance is equal to

the mean, and take cmax to be the value two standard deviations

away from the mean of the distribution. The procedure described

is carried out to avoid setting cmax in a way which is harshly

influenced by PCR amplification bias, a phenomenon that causes

some sites of the genome to receive extremely high counts,

regardless of the extent to which they are methylated.

CG Sites in the Scope of the MethylSeq Experiment
MetMap outputs methylation scores only for the HpaII sites

(CCGGs) that are in the scope of the MethylSeq experiment. A

HpaII site is in the scope of an experiment if and only if it lies on

some fragment that has HpaII sites at its ends, and is of length l
such that lminƒlƒlmax, where lmin and lmax are the minimal and

maximal fragment lengths for a specific MethylSeq experiment.

MetMap’s graphical model identifies these sites; they are all HpaII

site variables (Y variables) that have an edge to some fragment

variable (V variable). Importantly, this condition does not require

a site to be at an end of a fragment that satisfies the length

requirements; a site may be in the interior of such a fragment.

Annotating SUMIs
The SUMI regions annotated by MetMap are the union of two

sets of regions. The first set consists of those continuous regions in

which each Z or Y variable of the MetMap model (CG sites)

received a probability of being in an unmethylated island (p(I))
that is larger than 0.1, and in which the MethylSeq data directly

supports the presence of at least two fragments. This set will

include regions with relatively weak direct experimental evidence

but with strong sequence evidence for being unmethylated. The

second set is generated by setting a 600bp interval around each

HpaII site that had a p(I) value smaller than 0.1 and a p(U) value

higher than the prior probability of being unmethylated outside of

an unmethylated-island (0.1663). All overlapping windows are

concatenated and the regions taken are those in which at least

30% of the HpaII sites had a p(U) larger than the prior-set

threshold (0.1663), and in which the MethylSeq data directly

supports the presence of at least two fragments. This set includes

regions with weaker sequence support for unmethylation, but with

extensive evidence that they are unmethylated. Each SUMI

receives a score, specifying the mean of the MetMap scores at all of

the sites within the SUMI.

The SUMI lists for the four human neutrophil samples can be

found at:

http://www.cs.berkeley.edu/meromit/SUMIs_Human_Neutrophil/

Validation with Bisulfite Sequencing
DNA was treated with the MethylEasy bisulfite conversion kit

(Human Genetic Signatures), PCR-amplified with locus-specific

primers that recognized human target sequences, and sequenced

using standard Sanger chemistry. Since all epialleles from a single

specimen were sequenced in bulk in the same mixture, we

estimated the ratio of unmethylated/methylated alleles at each CG

in the sequence by examining the relative heights of the ‘C’ and

‘T’ traces in the sequencing output. Each CG site received a score

from the set (0,0.25,0.5,0.75,1), based on the relative C/T peak

height [32]. A score of 1 indicates the site is fully unmethylated,

meaning that only the ‘T’ trace was observed at the C position of a

given CG, while a score of 0 indicates the site is fully methylated,

meaning that only the ‘C’ trace was observed at the C position of a

given CG.
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‘‘Adjusted’’ Bisulfite Values
We tested the extent to which our results may be affected by the

representation of the bisulfite scores on a discrete five-point scale,

since the true proportion of alleles that are unmethylated is a close

to continuous measure. Each data point was assigned an ‘adjusted’

bisulfite score, within a tolerance window specified by the true

bisulfite value of that data point. The ‘feasible ranges’ allowed for

the ‘adjusted’ bisulfite scores were as follows: (0,0.15) for a 0

bisulfite score, (0.15,0.35) for a 0.25 score, (0.35,0.65) for a 0.5

score, (0.65,0.85) of a 0.75 score and (0.85,1) for a 1 score. For

example, for a site with bisulfite score 0.25, read count score 0 and

MetMap prediction 0.4 we would get two pairings (0.15,0) for

(adjusted-bisulfite, read count score), and (0.35,0.4) for (adjusted-

bisulfite, MetMap score). The score ranges were based on an

assumption that assignments of ‘‘0.5’’ scores were the least precise.

The adjustment of the bisulfite score to the read counts was done

by generating a normalized read count value, in the 0–1 range,

using the same ‘‘capping’’ value as MetMap.

Open Chromatin ENCODE Files
One file of open chromatin was compiled from:

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeChromatinMap/

using the files: wgEncodeUncFAIREseqPeaksH1hesc.narrowPeak

wgEncodeUncFAIREseqPeaksNhek.narrowPeak

wgEncodeUncFAIREseqPeaksGm12878V2.narrowPeak

wgEncodeUncFAIREseqPeaksHuvec.narrowPeak

wgEncodeUncFAIREseqPeaksPanislets.narrowPeak

Supporting Information

Figure S1 Validation of MetMap predictions by site-specific

bisulfite sequencing.

Found at: doi:10.1371/journal.pcbi.1000888.s001 (0.45 MB PDF)

Table S1 Read counts of the different samples.

Found at: doi:10.1371/journal.pcbi.1000888.s002 (0.09 MB PDF)

Text S1 Supporting material on MetMap’s algorithms and

parameters.

Found at: doi:10.1371/journal.pcbi.1000888.s003 (0.24 MB PDF)

Text S2 Supporting information on MetMap’s performance and

sensitivity.

Found at: doi:10.1371/journal.pcbi.1000888.s004 (3.48 MB PDF)

Text S3 Supporting information for Figure 4.

Found at: doi:10.1371/journal.pcbi.1000888.s005 (0.02 MB PDF)
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