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Electroencephalogram (EEG) signals are often used as an input modality for Brain

Computer Interfaces (BCIs). While EEG signals can be beneficial for numerous types

of interaction scenarios in the real world, high levels of noise limits their usage to

strictly noise-controlled environments such as a research laboratory. Even in a controlled

environment, EEG is susceptible to noise, particularly from user motion, making it

highly challenging to use EEG, and consequently BCI, as a ubiquitous user interaction

modality. In this work, we address the EEG noise/artifact correction problem. Our goal

is to detect physiological artifacts in EEG signal and automatically replace the detected

artifacts with imputed values to enable robust EEG sensing overall requiring significantly

reduced manual effort than is usual. We present a novel EEG state-based imputation

model built upon a recurrent neural network, which we call SRI-EEG, and evaluate

the proposed method on three publicly available EEG datasets. From quantitative and

qualitative comparisons with six conventional and neural network based approaches, we

demonstrate that our method achieves comparable performance to the state-of-the-art

methods on the EEG artifact correction task.

Keywords: EEG artifact correction, time series imputation, robust EEG sensing, brain computer interface,

recurrent neural networks

1. INTRODUCTION

Electroencephalography (EEG) is a non-invasive and widely-adopted approach to capture surface
electrical activity in the human brain with electrodes placed on the scalp. EEG data has been
widely used in domains including neuroscience, cognitive science, cognitive psychology, and
mental health (Henry, 2006). One line of research has explored EEG as a potential interaction
method, e.g., brain computer interfaces (BCIs). Specifically, by extracting context or intention
from EEG data, hands-free BCI applications have been tested. Those applications include
playing games (van de Laar et al., 2013), controlling a mouse cursor (Aydemir and Kayikcioglu,
2014), controlling robotic arms (Latif et al., 2017), managing smart home appliances (Anindya
et al., 2016), and using smartphones (Kumar et al., 2017; Rashid et al., 2018). EEG has
also been used as an accessible input modality when traditional input methods are not a
feasible option. For example, brain-to-text communication (Willett et al., 2021) and hands-
free wheelchair control (Singla et al., 2014) have enabled paralyzed or disabled users to
communicate and move without assistance. Moreover, there is a growing number of EEG enabled
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BCI devices for consumers. Galea1, Emotiv2, Advanced Brain
Monitoring3, and Muse4 are some representative devices that
allow integration of various brain signals into a single headset
for use in daily life and virtual reality applications. Research-
grade EEG caps such as those developed by OpenBCI5 are being
used to support both lab-based researchers as well biosensing
enthusiasts. In addition, less bulky devices, such as the InEar
BioFeed Controller (Matthies, 2013) or the Kokoon EEG-based
sleep headphones6 are part of a new set of devices called hearables
designed to track neural and physiological function of a user over
long periods of time (Goverdovsky et al., 2017).

Although EEG-aided BCIs have seen significant interest
and development since the 1970s, an open and challenging
research question is to build robust user experiences under
unconstrained (i.e., general and everyday use) conditions, given
that EEG signals are easily contaminated by artifacts from
users and their environment (Aricò et al., 2018). To deal with
artifacts, the recorded EEG signals usually need to be heavily
processed by sophisticated software, proprietary algorithms,
or manual inspection before use. For example, independent
component analysis (ICA) is a widely used approach that plays
an important role in the EEG pre-processing phase for artifact
removal. Though ICA variants and other advanced methods
(e.g., canonical correlation analysis, wavelet transform algorithm,
empirical-mode decomposition) have been introduced over
the years, the EEG artifact correction procedure still requires
manual inspection of the signal data to pick out noise .
Furthermore, random and irregularly-occurring artifacts make
signal correction increasingly challenging. The complex, time
consuming, and labor intensive pre-processing requirements
thus limit the robustness and generalization of EEG supported
BCIs for many consumer use cases, and hinder the development
of ubiquitous EEG-based applications. Therefore, developing an
automatic EEG artifact correction approach that can significantly
reduce manual tagging time and expense is imperative to making
BCI broadly useful as a general purpose input method.

Automated artifact correction methods using deep-
learning-based signal processing have achieved state-of-the-art
performance on a variety of time series data. One line of research
has explored the use of recurrent neural networks (RNNs) for
time series data imputation to predict noisy or missing portions
from the remaining segments of data. A large set of relevant
works [e.g., GRU-D (Che et al., 2018a), MR-HDMM (Che
et al., 2018b), MRNN (Yoon et al., 2017), GAIN (Yoon et al.,
2018), and BRITS (Cao et al., 2018)] have shown that RNNs can
effectively encode the temporal relationships in time series data
and are, thus, able to achieve satisfactory performance on the
data imputation task. Additionally, transformer-based neural
networks have achieved impressive performance in various
research domains including natural language processing and

1Galea: https://openbci.com/community/introducing-galea-bci-hmd-

biosensing/.
2Emotiv: https://www.emotiv.com/.
3Advanced Brain Monitoring: https://www.advancedbrainmonitoring.com/.
4Muse: https://choosemuse.com/.
5OpenBCI: https://openbci.com/.
6Kokoon: https://kokoon.io/.

computer vision. Motivated by their success, recent work has
started to tackle time series data in a sequence-to-sequence
manner by applying the self-attention mechanism common in
transformer-based models. For example, Zerveas et al. (2021)
and Tran et al. (2021) present two representative works to adapt
transformer-based encoders on the classification, regression and
imputation problems in time series data and achieve superior
performance.

While EEG is a type of time series data, the automatic
imputation designed for correcting artifacts, caused by EEG’s
susceptibility to various types of noise during data collection,
remains a relatively unexplored and challenging area. To address
this challenge and take advantage of recent success of deep
learning methods for time series data imputation, we propose
a state-based recurrent neural network (RNN) for EEG artifact
correction (SRI-EEG) in an automatic manner. Our network is
built upon an RNN as its backbone structure. It takes into account
the state information encoded in EEG signal representing
features of stimuli applied during EEG data recording. Added
to the state information is a spatial decay matrix to model
EEG channel dependencies. We evaluate the performance of
our proposed network on three publicly available datasets:
Bike (Bullock et al., 2015), Kaggle (Margaux et al., 2012), and
SMR (Tangermann et al., 2012) (Section 6).

In summary, ourmain contributions include: (1) an automatic
imputation method to correct irregularly-occurring artifacts
in EEG data leading to significantly reduced manual effort
that could encourage broader usage of EEG based interaction
modalities; (2) a novel bidirectional long short-term memory
(LSTM) model for imputing artifacts in EEG signals. This
approach captures the temporal and spatial dependencies of
recorded data, and leverages EEG state features to enable
automatic artifact correction through data imputation; (3) results
from a qualitative and quantitative evaluation of SRI-EEG on
three publicly available EEG datasets. Experimental results show
that our algorithm achieves state-of-the-art performance on EEG
imputation.

2. RELATED WORK

2.1. Time Series Imputation
Time series data imputation is defined as replacing data gaps
with predicted values computed from the remaining data. Simple
methods replace the missing data with the mean or median of
non-empty values, or the last observed value. Such methods offer
a fast and easy way to impute missing portions from known data.
However, these approaches are based on simple statistical rules
and can easily introduce large errors, e.g., imputing long-range
missing segments from limited known data.

Non-deep-learning-based techniques have been commonly
adopted as they outperform the aforementioned simple
imputation methods and do not demand dense computation.
K nearest neighbors (KNNs)-based imputation (Zhang and
Zhou, 2007) utilizes the statistical dependency in neighboring
data, and imputes missing parts using the mean of K nearest
neighbors. Factorization-based techniques (Friedman et al.,
2001), decompose the non-missing signal into basis vectors
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to approximate values at missing points. Adaptations of
factorization-based algorithms, such as multivariate imputation
by chained equations (MICE) (Azur et al., 2011) and
SoftImpute (Mazumder et al., 2010), have also been explored with
varying levels of success. However, one of the main limitations of
these approaches is the inability to capture long-term temporal
dependencies in time series data.

Recent advancements in deep learning have shown desirable
capability to encode long-range temporal correlations and have
achieved state-of-the-art imputation performance on time series
datasets (Moritz and Bartz-Beielstein, 2017; Luo et al., 2018;
Miller et al., 2018; Yuan et al., 2018; Suo et al., 2019; Zhang and
Yin, 2019; Tang et al., 2020; Miao et al., 2021; Zerveas et al., 2021).
Among these works, BRITS (Cao et al., 2018) and MRNN (Yoon
et al., 2017) use bidirectional RNNs, which impute missing
values based on hidden states updated in both the forward and
backward directions. These two approaches have achieved state-
of-the-art performance on one of the most popular multivariate
time series datasets, PhysioNet Challenge 2012 (Goldberger et al.,
2000). MRNN takes the values to-be-imputed as constraints and
does not encode correlations between the missing segments.
BRITS does not impose strong assumptions on the imputation
setup such as linear dynamics in the hidden states, and enables
imputing correlated missing segments.

Motivated by the successful adoption of bidirectional RNNs
on the time series imputation problem, we build our network’s
backbone using a bidirectional LSTM. The LSTM processes time
series data in both the forward and backward directions with two
separate sequences of hidden states. The two sequences are then
averaged to predict imputed values. Such a backbone network
has mostly been used for general time series data in prior work
(e.g., air quality, human activity, and health care datasets). It fails
to impute EEG signals containing a large amount of irregularly
occurring artifacts. To tackle this limitation, we introduce
encoded EEG state constraints into the network along with taking
as input the spatial correlations between signal collected by all
the electrodes in an EEG cap. Through our evaluation, reported
in Section 6, we demonstrate the effectiveness of our approach
targeted at the EEG artifact imputation problem.

2.2. EEG Artifact Correction
Artifacts in EEG are undesired noise mainly originating from
two types of sources: (1) extrinsic artifacts include environment
noise and experimental errors, and (2) intrinsic artifacts include
physiological artifacts (Jiang et al., 2019) such as body motions or
eye movements. Extrinsic artifacts can be eliminated by filtering
recorded signal or following proper experimental procedures.
However, preventing intrinsic artifacts is more challenging and
their removal requires particular algorithms (Anderer et al.,
1999). In this work, we focus on eliminating physiological
artifacts stemming from the human body, specifically body
motions, eye movements, and cardiac activities. Therefore, in
this section we focus on work most closely related to handling
physiological artifacts in EEG data.

Blind source separation (BSS) approaches, including principal
component analysis (PCA) and independent component analysis
(ICA), are widely used for EEG artifact removal. PCA (Berg and
Scherg, 1991) is a widely used BSS technique. It decomposes

EEG signals into uncorrelated variables, called principal
components (PCs), through an orthogonal transformation. The
PCs representing artifacts are removed to denoise the signal,
while the remaining PCs are used to reconstruct clean EEG
data. PCA typically fails to unravel signal dependencies and can
mistakenly discard non-artifact signal (Casarotto et al., 2004).
ICA (Somers and Bertrand, 2016) is a flexible BSS method. It
assumes that collected EEG signals are linear mixtures of artifacts
and non-artifacts. The first step involves decomposing recorded
signals into independent components (ICs). Sejnowski (1996)
introduces artifactual and non-artifactual ICs as independent
ICs, such that obvious artifactual ICs can be segregated easily.
By eliminating ICs representing artifacts, ICA reconstructs clean
signal with the remaining ICs. Built upon the conception of ICA,
recent research has studied EEG artifact removal with various
ICA variants and demonstrated their effectiveness (Flexer et al.,
2005; Bian et al., 2006; Li et al., 2006; Ting et al., 2006; Zhou and
Gotman, 2009; Winkler et al., 2011; Rejer and Górski, 2015, 2019;
Dimigen, 2020; Klug and Gramann, 2020). Although a large
number of ICA variants have been developed over the last twenty
years to control EEG artifacts in different scenarios, the inherent
idea of how ICA works imposes assumptions on the recorded
signal but the assumptions are not always satisfied. For example,
ICA can estimate non-Gaussian signals (one of the premises of
ICA), but recorded signals are usually unknown to be Gaussian
or non-Gaussian (Jiang et al., 2019).

Though ICA is an effective standard for EEG artifact
correction in general, using ICA alone still requires careful
manual effort and time to inspect the source signal, which may
not have satisfactory properties to fit ICA. We use ICA to detect
artifacts followed by automatically imputing them using our
proposed method. Combining ICA with the proposed automatic
imputation approach achieves improved performance compared
to using ICA alone as shown in Section 6.1.

2.3. Brain Computer Interfaces and Brain
Signals
Depending on the features of interest, EEG based BCIs can
be categorized into two classes (Lotte, 2015): (1) event-related
potential (ERP) based BCI, and (2) oscillatory activity based
BCI. ERP BCIs can detect high-amplitude and low-frequency
brain responses to known stimuli. They usually contain well-
stereotyped waveforms and are robust across subjects (Fazel-
Rezai et al., 2012). The robustness of ERPs thus enables
efficient learning of ERP features using machine learning based
algorithms. For example, the P300 response, one type of ERP,
is evoked by visual stimuli, and forms identifiable electrical
waveforms. Other types of ERPs, such as motor imagery,
also induce recognizable waveforms. Prior deep-learning-based
methods have deployed various classifiers to distinguish between
different ERP types (Lawhern et al., 2018; Santamaría-Vázquez
et al., 2019, 2020; Wen et al., 2019; Zhao et al., 2020; Zang
et al., 2021). Oscillatory BCIs can detect the signal power
of EEG frequency bands. Due to low signal-to-noise ratio
and great variations across subjects (Pfurtscheller and Neuper,
2001), oscillatory BCIs are typically challenging to model using
machine learning models. An example of oscillatory BCIs is
the sensorimotor rhythm (SMR). Subjects produce lower SMR
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amplitudes when the corresponding sensorimotor regions are
active, and higher amplitudes otherwise (Arroyo et al., 1993).
SMR data is greatly variable across and even within subjects, and
thus demands subject training for data collection, and longer
signal calibration session for practical use (Krusienski et al.,
2008).

To assess the generality and robustness of the proposed EEG
artifact imputation method under different EEG paradigms, we
evaluate SRI-EEG on two ERP datasets: Bike (Bullock et al., 2015)
and Kaggle (Margaux et al., 2012), and one oscillatory dataset:
SMR (Tangermann et al., 2012).

3. METHOD

Similar to the standard bidirectional LSTM for time series
data imputation, our network takes as input a data matrix,
a mask matrix and a time gap matrix processed from raw
data. However, unlike using a bidirectional LSTM designed for
general time series data, we also take into account a spatial
gap matrix for modeling EEG channel dependency. Added to
that is a state vector of encoded EEG event features to handle
irregularly occurring artifacts that form a typical but challenging
problem for EEG based BCI modalities. Section 3.1 introduces
the preliminaries covering notation and definitions. Section 3.2
presents the backbone bidirectional LSTM for general time series
imputation and discusses its limitations. Sections 3.3 and 3.4
present our design based on the RNN backbone network to
specifically tackle the EEG imputation problem. Section 3.5
discusses the learning objectives. Figure 1 shows an overview of
the SRI-EEG architecture.

3.1. Preliminary
We denote the raw EEG data as a two-dimensional matrix where
the first dimension represents time: X i = {x1, x2, ..., xt , ..., xT} is a
sequence of data with T timestamp observations collected at trial
i. The t-th observation xt ∈ R

D consists of values from D EEG
channels {x1t , x

2
t , ..., x

d
t , ..., x

D
t } at timestamp t. Note that the time

range 1 to T and the channels 1 to D in this section are from any
single trial of data, where trial i is defined as a segment/epoch of
interest during EEG data collection.

The time difference between successive valid (non-artifact)
observations varies due to artifacts of random lengths. To model
the changing time gaps between neighboring valid observations,
we define a temporal decay matrix: δdt at time t and channel d
similar to Cao et al. (2018):

δdt =

{ 0 t = 1

t − (t − 1)+ δdt−1 t > 1, md
t−1 = 0

t − (t − 1) t > 1, md
t−1 = 1

(1)

where we denote a binary mask matrix M =

{md
1 ,m

d
2 , ...,m

d
t , ...,m

d
T} along the time domain from channel

d ∈ D to mask out the artifacts in the data matrices. Specifically,

md
t =

{

1 xdt at time t and from channel d is observed and non-artifact

0 otherwise

(2)

FIGURE 1 | SRI-EEG input and network structure. In the SRI-EEG Input,

based on the EEG data matrix X i , we compute the mask matrix M, and the

temporal decay matrix δdt . Additionally, we generate a spatial decay matrix δ
p,q
d

based on channel locations in the EEG cap. A trial state matrix yi is also

calculated for each EEG trial. All the matrices computed for a single trial i are

passed as input to the SRI-EEG Network. We adopt a bidirectional LSTM as

the backbone network where the hidden states are updated in both the

forward and backward directions. Once the imputed values are obtained,

mean squared error is computed, and back-propagated for subsequent

iterations.

Additionally, we denote by yi the EEG state vector representing
the state of the i-th trial. It is a learned feature vector
using EEGNet (Lawhern et al., 2018), one of the state-of-
the-art EEG classifiers. EEGNet allows us to extract a state
feature vector to represent stimuli applied to subjects at trial i
(Section 3.4). The state feature vector is fed into our network
as supervised information together with the data matrix, mask
matrix, temporal decay matrix, and spatial decay matrix (defined
in Section 3.3). Figure 1 depicts all the input matrices.

3.2. Bidirectional LSTM for Time Series
Imputation
In this section, we briefly introduce unidirectional LSTMs, and
our backbone network which consists of a bidirectional LSTM
with input mask and temporal decay matrices. Following the
background information, we discuss the backbone structure’s
limitations and introduce our improvements.

3.2.1. Unidirectional LSTM
In a unidirectional LSTM, the hidden layer receives an input
vector xt , and predicts an output vector x̂t . At each timestamp
t, the hidden layer maintains a hidden state ht , and updates the
hidden state based on the current input xt and the previous
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hidden state ht−1. We formulate this procedure as:

ht = σh(Wxhxt +Whhht−1 + bh) (3)

where σh is the hidden layer’s activation function, Wxh is the
weight matrix from the input layer to the hidden layer, Whh is
the weight matrix between two temporally consecutive hidden
states, and bh is the hidden layer’s bias vector. Consequently, we
compute the output vector x̂t as:

x̂t = σx(Wxht + bx) (4)

where σx is the output layer’s activation function,Wx is the weight
matrix from the hidden layer to the output layer, and bx is the
output layer’s bias vector.

3.2.2. Unidirectional LSTM With Input Mask
The unidirectional LSTM takes continuous input without data
gaps to update hidden states progressively. However, for the
imputation task, where the input data matrix X i consists of both
artifacts and non-artifacts, the raw data cannot be fed into the
network to update the hidden states. The artifacts will induce
distracting features and thus introduce undetermined bias in the
imputation process. To resolve this issue, we leverage a mask
matrix M to filter out artifacts and pass only the valid data
into the network, similar to Cao et al. (2018) and Yoon et al.
(2018). Accordingly, the input matrix X i = {xd1 , x

d
2 , ..., x

d
t , ..., x

d
T}

is computed by:

xdt = md
t ⊙ xt + (1−md

t )⊙ x̂t (5)

where⊙ is element-wise multiplication.

3.2.3. Unidirectional LSTM With Input Mask and

Temporal Decay
Although the hidden states of LSTMs enable the modeling
of decayed influence along the time axis (i.e., distant values
have less impact than close ones), the length of effective time
window is automatically learned and thus not easily controllable
by hyper-parameter tuning. To address this limitation, we
utilize the defined temporal decay matrix δdt to control the
temporal influence on hidden state update, similar to Cao
et al. (2018). Specifically, the temporal decay factor βd

t is
computed by:

βd
t = exp{−max(0,Wβδdt + bβ )} (6)

where Wβ is the time gap’s weight matrix, and bβ is the bias
vector. Consequently, the hidden state is updated by applying an
element-wise multiplication between the previous hidden state
(at timestamp t − 1) and the current temporal decay factor (at
timestamp t):

ht = σh(Wxhxt +Whh[ht−1 ⊙ βt]+ bh) (7)

where βt represents the temporal decay factor at time t from all
the D channels.

3.2.4. Bidirectional LSTM With Input Mask and

Temporal Decay

We denote by
−→
h the hidden state sequence of the forward-

directional LSTM, and we iteratively update the sequence based
on inputs from timestamps 1 to T. Conversely, the backward-

direction LSTM updates the hidden state sequence
←−
h by taking

in reversed inputs from timestamps T to 1. Combining both the
forward and backward hidden states, we compute the estimated
values x̂t by:

x̂t = σ (Wforward
x

−→
ht + bforwardx , Wbackward

x

←−
ht + bbackwardx ) (8)

where σ is an average function to combine the forward
and backward hidden states. Wforward

x and bforwardx

are the forward-directional LSTM’s weight matrix and
bias vector from the hidden layer to the output layer,
respectively. It is similar for Wbackward

x and bbackwardx in the
backward-direction LSTM.

3.2.5. Our Improvements
Introducing the mask matrix and temporal decay into the
bidirectional LSTM proposed by prior work forms an effective
backbone network to impute multiple time series datasets
as evaluated by Yoon et al. (2017) and Cao et al. (2018).
Nevertheless, EEG is a special type of time series data with unique
characteristics such as spatial dependency between electrodes and
state-related global waveforms. For example, when a region of the
human brain is stimulated by a certain event, the imputation is
likely to benefit from assigning higher weights to the EEG signals
recorded on the scalp above that active brain region, e.g., all
electrodes above the motor cortex. Additionally, the imputation
performance can be potentially improved by capturing EEG
waveform patterns from EEG sequences in a different trial that
are temporally similar, i.e., in the same EEG state. Such EEG
state correlation introduces favorable inductive biases. We take
into account the aforementioned EEG properties and design
the imputation algorithm by exploring the channel/electrode
spatial correlations (Section 3.3), including EEG state modeling
(Section 3.4).

3.3. Learning the Spatial Correlations of
EEG Channels
As shown in Figure 2, the 32 electrodes are positioned on a
cap in a particular layout (the International 10-20 system). The
electrode topology presents varying proximity between different
pairs of electrodes. For example, when certain brain regions are
active, triggered by some stimuli (red regions in Figure 2), all
the electrodes within that region collect related signals. These
signals, thus, become important neighboring values to impute
contaminated channels affected by artifacts. To model the spatial
correlations between the electrodes, which prior work has not
extensively studied, we propose a novel spatial decay matrix
δ
p,q

d
. It consists of the Euclidean distance between any EEG

channel pair: p and q. We position the channels in a 3D
Euclidean coordinate system, and denote the coordinates of any
two channels as p = (px, py, pz) and q = (qx, qy, qz), respectively.
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FIGURE 2 | Topological map of a 32-channel EEG cap. (A) Shows the channel

distribution of a 32-electrode EEG cap (as used in the Bike dataset) with

channel names, nose, and right ear annotated. (B,C) Present an example of

cortex activity in 2D and 3D topographical maps, respectively. The red regions

signify active, while blueness stands for the opposite, and the gradual change

of colors are computed by linear interpolations between channel signals.

Accordingly, the distance between any EEG electrode pair is
calculated by:

δ
p,q

d
= ‖p− q‖ (9)

Similar to the temporal decay factor βt , we introduce a spatial
decay factor ηd to model the decay dependency between EEG
channel pairs as their distance increases:

ηd = exp{−max(0,Wηδd + bη)} (10)

where δd denotes the distances between any channel d and all the
remaining channels, Wη is the weight matrix, and bη is the bias
vector.

Combining the temporal and spatial decay factors with the
weight hyper-parameter λ ∈ [0, 1], we formulate the temporal-
spatial decay matrix as:

γt,d = βt + ληd (11)

We update the bidirectional LSTM’s hidden states by element-
wise multiplying the temporal-spatial decay matrix and the last

hidden state (forward and backward):

−→
ht = σh(W

forward
xh xt +Wforward

hh [ht−1 ⊙ γt,d]+ bforwardh )
←−
ht = σh(W

backward
xh xt +Wbackward

hh [ht+1 ⊙ γt,d]+ bbackwardh )

(12)

3.4. Modeling the State of EEG Trials
Studies on EEG classification (Lotte et al., 2007; Fazel-Rezai
et al., 2012; Lawhern et al., 2018) have demonstrated that
different stimuli applied to subjects during each trial can lead
to different features in the collected EEG data. These features
can be differentiated to enable classifying the EEG signals,
e.g., classifying ERPs. Motivated by these findings and to take
advantage of the recognizable features of EEG waveforms, we
utilize the state features to provide supervised information
on the EEG signal imputation task. Specifically, we obtain
the features learned from the state-of-the-art EEG classifier
EEGNet (Lawhern et al., 2018). We subsequently transform the
features into a 1-dimensional vector (state vector) to serve as
supervised information for our network’s input. More formally,
we denote the state of EEG trial i as yi, and concatenate yi with
the masked data matrix to pass them together into the network.

In summary, the update of hidden states considering
temporal-spatial decay and the EEG state is computed by:

−→
ht = σh(W

forward
xh (xt ⊕ yi)+Wforward

hh [ht−1 ⊙ γt,d]+ bforwardh )
←−
ht = σh(W

backward
xh (xt ⊕ yi)+Wbackward

hh [ht+1 ⊙ γt,d]+ bbackwardh )

(13)

where⊕ signifies concatenation.

3.5. Learning Objective
We train our model using the Mean Squared Error (MSE) loss in
the back-propagation process:

Lmse =
1

n
·

T
∑

t=1

(1−mt)(xt − x̂t)
2 (14)

where n denotes the total number of observations in each trial.
The MSE is calculated as an averaged sum of the difference
between the observed and imputed EEG values along the time
domain and across all EEG channels.

4. EEG DATASET

For evaluation, we use three publicly available datasets, namely
Bike, Kaggle7, and SMR8. The feature type, the number of
subjects and samples, and the number of trials per subject in all
three datasets are summarized in Table 1.

7https://www.kaggle.com/c/inria-bci-challenge
8http://bbci.de/competition/iv/
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TABLE 1 | Summary of the EEG datasets used in this study.

Dataset Feature

type

No. of

subjects

No. of

samples (K)

Trials per

subject

SMR Oscillatory 9 2.5 288

Kaggle ERP 26 8.8 340

Bike denoised_1 Hz ERP 11 66 128

Bike denoised_2 Hz ERP 8 48 64

Bike noisy_1 Hz ERP 11 66 512

Bike noisy_2 Hz ERP 8 48 256

4.1. Bike
The Bike dataset was introduced by Bullock et al. (2015) and
provides P300 event related potentials (ERPs). Twelve subjects
performed two different versions of three-stimuli oddball tasks
while seated on a stationary bike. Participants were asked to
respond to the target stimuli and ignore the remaining two types
of distracting stimuli. The stimuli were presented at different
rates: 1 Hz [200 ms stimulus presentation with 800 ms inter-
stimulus interval (ISI)], and 2 Hz (200 ms stimulus presentation
with 300 ms ISI). Participants completed the two-version tasks at
rest (sat on the bike but not pedaling), and during exercise (sat
on the bike and pedaling).

We followed the train-test split protocol and pre-processing
procedure used in Ding et al. (2019). We used both the 1
and 2 Hz datasets (pedaling or noisy, and not pedaling or
denoised). Specifically, the Noisy_1 Hz and Noisy_2 Hz datasets
are the “noisy” versions of the Bike dataset since pedaling
introduced a large amount of artifacts in the collected EEG
signals. Additionally, we analyzed “denoised” versions of the Bike
dataset, named Denoised_1 Hz and Denoised_2 Hz, where the
subjects were not pedaling during EEG collection. For the data
pre-processing, we applied a bandpass filter and kept the 1–40
Hz frequency band and lower the sampling rate from 512 to 128
Hz.

4.2. Kaggle
For the Kaggle dataset (Margaux et al., 2012), 26 participants
engaged in a P300 speller task. The system presented a random
sequence of flashing letters and numbers, arranged in a 6 × 6
grid, to elicit the P300 responses (Krusienski et al., 2008). The
goal of this task was to determine whether the displayed item
is the target item by analyzing recorded EEG signals. Following
the same pre-processing procedure as the Bike dataset, the EEG
signal was band-pass filtered to 1–40 Hz and down-sampled to
128 Hz. The training and testing sets were split as suggested in
the official release.

4.3. SMR
We use the BCI Competition IV Dataset 2A (Tangermann et al.,
2012) involving nine subjects for oscillatory EEG data analysis.
The SMR data consists of four classes of imagined movements of
left and right hands, feet and tongue. The EEG data was originally
recorded using 22 electrodes, sampled at 250 Hz and bandpass
filtered between 0.5 and 100 Hz (Schirrmeister et al., 2017). We

re-sampled the data to 128 Hz, and band-pass filtered it to 1–
40 Hz to keep consistent pre-processing setups. The training and
testing sets were split as in the official release.

5. EXPERIMENTAL SETUP

5.1. Evaluation Setup and Metrics
We train our imputation model using the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 0.001 and batch
size of 32. The weight λ between temporal and spatial decay
factors is set to 0.8 which was determined to be a suitable value
through experimentation. We adopt the early stopping strategy
by randomly selecting 15% of the training sets to form the
validation dataset. Training is stopped when the lowest validation
error is obtained. The training weights are saved for subsequent
evaluation on the testing sets.

We adopt two metrics for performance evaluation: mean
absolute error (MAE) and root mean squared error (RMSE).
We define Gi = {g1, g2, ..., gn} as the observed data matrix, and
P i = {p1, p2, ..., pn} as the corresponding imputed data matrix.
n is the total number of observations in each trial i. Accordingly,
the metrics are defined as:

MAE =
1

n

n
∑

k=1

|gk − pk| (15)

RMSE =

√

√

√

√

1

n

n
∑

k=1

(gk − pk)2 (16)

5.2. Baseline and Comparison Methods
We compare the proposed imputation model with the following
non-deep-learning algorithms: Mean, KNN, SoftImpute, and
ICA, and with two deep learning algorithms: MRNN and BRITS.
The non-deep-learning approaches compute comparatively fast
and are widely adopted as baselines in prior studies. The
deep-learning methods have achieved great improvements in
imputation performance on time series datasets allowing us
comparisons with the state-of-the-art.

• Mean: Mean imputation replaces artifacts with the global
average along the time domain for each trial.
• KNN9: KNN uses the k-nearest neighbors to find similar

samples, and imputes the artifacts with weighted average of the
k neighbors.
• SoftImpute9: SoftImpute is a matrix completion based

technique that works by applying iterative soft thresholding of
SVD decompositions.
• ICA10: ICA decomposes the original signal into independent

components, and then removes the components consisting of
artifacts for denoising the signal. ICA is a popular EEG artifact
correction approach widely adopted by researchers.

9KNN and SoftImpute are implemented using the Fancy Impute package: https://

github.com/iskandr/fancyimpute.
10ICA is implemented using the Predictive Imputer package: https://github.

com/log0ymxm/predictive_imputer, and sklearn FastICA: https://scikit-learn.org/

stable/modules/generated/sklearn.decomposition.FastICA.html.
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• MRNN11(Yoon et al., 2017): MRNN is a bidirectional RNN
based algorithm, and treats the imputed values as constants
without modeling correlations between channels.
• BRITS (see textfootnote 11) (Cao et al., 2018): BRITS is an

extension of MRNN. It considers the correlations between
different imputed values.

5.3. Dataset Preparation
We evaluate our proposed method on two setups: (1) we detect
artifacts in EEGwith ICA andmanual inspection, and impute the
detected artifacts using our proposed imputationmethod, and (2)
we synthesize EEG artifacts by removing varying percentages of
the recorded EEG data, and impute the synthesized artifacts using
our proposed imputation method.

5.3.1. EEG Artifact Detection
We extract when and where the artifacts occur during EEG
recording via ICA (Winkler et al., 2011). Additionally, we detect
obvious missing values caused by bad channels using functions in
EEGLAB (Delorme and Makeig, 2004) by manually investigating
kurtosis in the channel and looking at how well each channel
correlates with the surrounding channels.

Although this setup needs manual effort to detect artifacts
in the recorded EEG signal, it lays a practical basis to evaluate
our network’s effectiveness. This setup also incurs complexity in
extracted artifacts, such as different artifact quantities across trials
and different artifact patterns caused by various sources of noise.

5.3.2. Synthesized EEG Artifacts
We synthesize EEG noise by randomly removing certain portions
of the observed data, and replacing the removed parts with
NaNs. The synthesized artifact rates in our experiment are:
2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20%. This setup offers controllable
artifact rates to compare our approach’s performance with other
imputation methods at fixed artifact rates. The artifact ratios
help to analyze an imputation method’s performance on varying
artifact rates (studied in Section 6.2).

The motivation for utilizing the synthesized artifacts is to
prevent the network from getting scoped by certain types of
artifacts, such as those caused by heart beats. This goal is achieved
by introducing randomness and increasing complexity of the
input data. Specifically, the synthesized artifacts may consist of
clean EEG, real artifacts or both. The synthesized random and
complex artifacts prevent the model from simply “remembering”
artifact patterns but failing to effectively capture the temporal
and spatial relationships between data points. By evaluating the
imputation methods based on the synthesized artifacts setup, we
aim to test the algorithm’s robustness and further boost EEG
usage for scenarios that introduce different artifact types. The
synthesized artifacts are obtained automatically, as opposed to
the manual effort in detecting real artifacts using ICA. This
setup is therefore, a step toward the potential goal of building
automatic EEG artifact correction pipelines where people can
detect real artifacts without heavily relying on human effort.
Following automatic artifact detection, our proposed imputation

11MRNN and BRITS are implemented based on the public BRITS repository:

https://github.com/caow13/BRITS.

algorithm can be applied in the artifact correction process to
generate denoised EEG signal.

6. RESULTS

6.1. Detected Artifacts Imputation
We qualitatively compare the observed EEG data and the
corresponding corrected EEG data output by our proposed
imputation method, shown in Figure 3. In the Bike-Denoised_1
Hz dataset, we randomly select EEG data collected by 10 out
of 32 channels from a random trial. This is done to avoid
crowding in the plots while still ensuring generality. Each channel
is plotted in a unique color. Marked by the boxes, signals
from timestamps 30–40 are detected as contaminated data. The
artifacts are visible as mostly extreme values in this time window.
After applying our proposed imputation method, as shown in the
right plot, the contaminated data has been corrected by taking
into account values from neighboring channels and timestamps,
and by considering the trial state feature. The imputed values
eliminate the waveforms consisting of extreme large or small
values to maintain the waveform trend as a whole.

We also conduct a quantitative study and Tables 2, 3 show
the detected EEG artifact imputation performance comparisons.
The results show great variance across different datasets as the
occurrence of detected artifacts differs considerably. The two
denoised Bike datasets present lower MAE and RMSE compared
with the corresponding noisy sets. For each dataset, we can see
an improvement in imputation performance from the top to the
bottom. Our method performs well on all three datasets and
achieves lower errors compared to the competing approaches in
general. Overall, the results demonstrate our proposed method’s
ability to correct real EEG artifacts.

To measure imputation performance significance on data
reported in Table 2, we performed a Wilcoxon signed rank
test over all the imputed values averaged over 10 runs
on the Denoised-1 Hz, Denoised-2 Hz, Noisy-1 Hz, Noisy-
2Hz, Kaggle and SMR test sets. We report the full results
in Supplementary Tables 1–6 and Supplementary Figures 1–6.
Here we summarize the main findings.

Denoised_1Hz dataset.Absolute error for the imputed values
was significantly different for the compared imputation methods
as determined using the Friedman test, X 2

(6)
= 440.15, p <

0.0001, n= 1, 980. All pairwise differences between SRI-EEG and
the other methods were significant to at least a level of p < 0.001.
Exception is SRI-EEG vs ICA, which was significant to a level of
p < 0.05 instead.

Denoised_2 Hz dataset. Absolute error for the imputed
values was significantly different for the compared methods as
determined using the Friedman test, X 2

(6)
= 369.44, p < 0.0001,

n = 1, 980. All pairwise differences between SRI-EEG and the
other methods were significant to at least a level of p < 0.001.

Noisy_1 Hz dataset. Absolute error for the imputed values
was significantly different for the compared imputation methods
as determined using the Friedman test, X 2

(6)
= 656.41, p <

0.0001, n= 1, 980. All pairwise differences between SRI-EEG and
the other methods were significant to at least a level of p < 0.001.
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FIGURE 3 | Observed EEG data with artifacts (left) and the corrected EEG data with imputed values (right). The plots depict EEG waveforms recorded from ten

randomly selected channels (32 channels in total) in the Bike-Denoised_1Hz dataset. In the left figure, values in the rectangle are detected as signals with artifacts. The

right figure shows the corrected EEG signal with imputed values in the box. The extreme values caused by artifacts have been corrected by our proposed method,

SRI-EEG.

TABLE 2 | Imputation of detected artifacts as evaluated by MAE ± standard deviation.

Method Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2 Hz Kaggle SMR

Mean 20.585 ± 0.48 19.219 ± 0.88 80.499 ± 0.46 85.669 ± 0.70 17.070 ± 0.42 1.795 ± 0.24

KNN 17.599 ± 0.27 14.882 ± 0.31 73.415 ± 1.06 81.915 ± 1.02 15.422 ± 0.48 1.045 ± 0.29

SoftImpute 14.610 ± 2.56 13.576 ± 2.54 71.798 ± 3.44 78.643 ± 3.79 14.822 ± 2.89 0.761 ± 0.27

ICA 11.366 ± 1.45 10.675 ± 2.20 66.758 ± 4.70 76.018 ± 5.65 12.611 ± 1.24 0.634 ± 0.18

BRITS 10.603 ± 0.10 10.398 ± 0.13 57.359 ± 1.02 64.854 ± 1.04 11.363 ± 0.21 0.634 ± 0.04

MRNN 11.802 ± 0.17 10.156 ± 0.17 48.401 ± 1.13 52.461 ± 1.12 12.545 ± 0.24 0.733 ± 0.07

SRI-EEG 10.096 ± 0.15 8.522 ± 0.10 46.048 ± 0.94 48.091 ± 0.92 12.497 ± 0.17 0.457 ± 0.06

Lower is better and the best performance is in bold. Performance averaged over 24 runs on the entire test set.

TABLE 3 | Imputation of detected artifacts as evaluated by RMSE ± standard deviation.

Method Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2 Hz Kaggle SMR

Mean 22.936 ± 2.12 21.764 ± 3.76 127.083 ± 3.94 132.164 ± 3.59 77.368 ± 1.94 1.961 ± 0.26

KNN 21.829 ± 2.03 19.829 ± 2.08 119.225 ± 2.65 127.483 ± 3.12 73.746 ± 0.62 1.138 ± 0.35

SoftImpute 20.004 ± 1.85 18.643 ± 2.06 116.865 ± 2.15 122.271 ± 2.36 73.112 ± 1.75 0.896 ± 0.23

ICA 20.082 ± 1.91 15.261 ± 2.94 115.796 ± 2.76 119.766 ± 2.28 70.542 ± 1.49 0.805 ± 0.17

BRITS 19.786 ± 0.30 13.294 ± 0.32 117.366 ± 1.07 118.078 ± 1.07 68.309 ± 0.22 0.738 ± 0.05

MRNN 17.943 ± 0.33 13.142 ± 0.37 97.741 ± 1.12 95.164 ± 1.12 69.238 ± 0.22 0.827 ± 0.07

SRI-EEG 17.145 ± 0.24 12.204 ± 0.38 97.803 ± 0.92 94.281 ± 0.92 69.053 ± 0.17 0.724 ± 0.09

Lower is better and the best performance is in bold. Performance averaged over 24 runs on the entire test set.

Exceptions are SRI-EEG vs MRNN and SRI-EEG vs BRITS, both
of which were non-significant (p > 0.05).

Noisy_2 Hz dataset. Absolute error for the imputed values
was significantly different for the compared imputation methods
as determined using the Friedman test, X 2

(6)
= 349.25, p <

0.0001, n= 1, 980. All pairwise differences between SRI-EEG and
the other methods were significant to at least a level of p < 0.001.

Kaggle dataset. Absolute error for the imputed values was
significantly different for the compared imputation methods as
determined using the Friedman test, X 2

(6)
= 2317.41, p < 0.0001,

n= 1, 980.
SMR dataset. Absolute error for the imputed values was

significantly different for the different compared methods as
determined using the Friedman test, X 2

(6)
= 1967.3, p < 0.0001,
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n = 1, 980. All pairwise differences between SRI-EEG and the
other methods were significant to at least a level of p < 0.001.

6.2. Synthesized Artifacts Imputation
6.2.1. Imputation With the Same Synthesized Artifact

Rate
Tables 4, 5 show the performance of different imputation
methods evaluated on all the datasets with 10% artifact rate.
Evidently, simply replacing artifacts with the mean of observed
data is highly inaccurate. KNN and SoftImpute perform much
better than simple averaging imputation. Using ICA to detect
and remove artifacts outperforms the aforementioned three
methods. In contrast, the two RNN based methods, BRITS
and MRNN, demonstrate significantly improved performance
compared to the non-deep-learning-based approaches. SRI-EEG
shows comparable performance to BRITS and MRNN.

6.2.2. Imputation With Varying Synthesized Artifact

Rates
On the Bike-Denoised_1Hz dataset, we evaluate the imputation
performance at various artifact rates. Figure 4 reveals the MAE
(left) and RMSE (right) using different imputation methods
at artifact rates from 2.5 to 20%. As is clear, the two errors
increase with increase in artifact rates. In particular, simple mean
imputation is very sensitive to artifacts, where the errors grow
rapidly as the number of artifacts increases. KNN, SoftImpute,
and ICA perform much better than the mean imputation. The
two RNN based methods (BRITS and MRNN) and our method
achieve further lower imputation errors than the non-RNN based
approaches at all artifact rates. This study demonstrates the
robustness of our model’s ability to handle varying proportions
of artifacts in the signal, and the effectiveness of deep-learning-
based methods in general to tackle the imputation problem at
different artifact rates.

6.3. Ablation Study
6.3.1. Influence of EEG Channel Spatial Dependency

and EEG Trial State
We perform an ablation study to evaluate the effectiveness
of including EEG state and channel spatial correlation as the
network input. As shown in Tables 6, 7, after removing either or
both the trial state supervision and spatial decay in SRI-EEG, the
imputation performance degenerates on all the datasets evaluated
by MAE and RMSE. Based on these results, both factors appear
to be important components contributing to our algorithm’s
performance demonstrating effectiveness for the EEG imputation
task compared to other methods.

6.4. Post-imputation Analysis
6.4.1. Goal
To evaluate SRI-EEG on a practical task, we conducted post-
imputation analysis in the form of an EEG classification problem.
Our aim was to analyze if our model can correct artifacts in
EEG and further boost the EEG classification performance. We
designed this study as an indirect reflection of the imputation
performance and a first step toward using imputation based EEG
artifact correction to support EEG-based applications.

6.4.2. Dataset and Metrics
We performed analysis on the Bike dataset, i.e., Denoised_1
Hz, Denoised_2 Hz, Noisy_1 Hz, and Noisy_2 Hz. The Bike
dataset consists of P300 ERPs from three-stimuli oddball
tasks (introduced in Section 4.1). Therefore, we conduct the
classification experiments to evaluate the three-class classification
performance.

We use precision, recall and F1 score as the classification
metrics:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2×
Precision× Recall

Precision+ Recall

(17)

where TP, FP, and FN stand for “true positive,” “false positive,”
and “false negative,” respectively.

6.4.3. Setup
We take the classification performance without imputation as
a baseline. Specifically, based on the recorded EEG data, i.e.,
no imputation applied, we perform baseline classification using
xDAWN+RG, which is a multi-class EEG classifier (Barachant
et al., 2011). Compared against this baseline, we classify the
imputed EEG data using BRITS, MRNN, and SRI-EEG as the
imputation methods, respectively.

6.4.4. Results and Analysis
We present the classification comparisons in Table 8 with the
best performance in bold. Higher precision and recall correspond
to better performance. We find that by classifying imputed EEG
signals, both the precision and recall are improved in general
on the denoised and noisy Bike sets compared with directly
classifying the raw data without artifact correction. Importantly,
compared with the two RNN-based imputation methods, SRI-
EEG achieves improved precision and recall on the classification
task evaluated on Denoised_1Hz and Denoised_2 Hz datasets.
Although the precision on Noisy_1 Hz and Noisy_2 Hz datasets
is less satisfactory than that using MRNN based post-imputation
analysis, the recall shows improved performance.

To measure any significance in performance based on data in
Table 8, we performed a McNemar’s test over all the classified
labels (1,200 labels) on the Denoised-1 Hz, Denoised-2 Hz,
Noisy-1 Hz, and Noisy-2 Hz test sets. McNemar’s test has been
proven to be a suitable and effective way to compare machine
learning classifiers (Dietterich, 1998). We report the full results
in Supplementary Tables 7–10. Here we summarize the main
findings.

(1) On the Denoised_1Hz dataset, all pairwise differences
between imputation with SRI-EEG and other methods were
significant to at least a level of p < 0.01. Exception is SRI-EEG vs
MRNN, which was significant to a level of p < 0.05 instead. (2)
On the Denoised_2 Hz dataset, all pairwise differences between
imputation with SRI-EEG and other methods were significant to
at least a level of p < 0.05. (3) On the Noisy_1Hz dataset, all
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TABLE 4 | Imputation of 10% synthesized artifacts as evaluated by MAE ± standard deviation.

Method Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2 Hz Kaggle SMR

Mean 22.198 ± 0.31 20.710 ± 0.66 75.448 ± 0.51 83.967 ± 0.58 18.638 ± 0.43 1.284 ± 0.14

KNN 17.305 ± 0.26 14.559 ± 0.48 71.093 ± 0.92 79.626 ± 0.96 16.886 ± 0.37 1.039 ± 0.21

SoftImpute 13.604 ± 1.54 13.026 ± 1.78 69.850 ± 1.82 77.839 ± 1.97 15.601 ± 1.19 0.838 ± 0.17

ICA 12.287 ± 0.79 11.495 ± 1.47 62.581 ± 1.20 75.032 ± 1.71 14.595 ± 1.39 0.796 ± 0.16

BRITS 11.859 ± 0.39 8.419 ± 0.39 56.348 ± 0.81 61.161 ± 0.95 12.940 ± 0.11 0.712 ± 0.04

MRNN 10.648 ± 0.33 8.244 ± 0.28 46.677 ± 0.75 50.870 ± 1.48 12.636 ± 0.10 0.724 ± 0.02

SRI-EEG 9.964 ± 0.42 7.796 ± 0.37 44.739 ± 0.68 43.184 ± 1.76 12.501 ± 0.10 0.698 ± 0.01

Lower is better and the best performance is in bold. Performance averaged over 24 runs on the entire test set.

TABLE 5 | Imputation of 10% synthesized artifacts as evaluated by RMSE ± standard deviation.

Method Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2 Hz Kaggle SMR

Mean 24.673 ± 3.72 22.447 ± 3.20 120.794 ± 3.86 131.776 ± 3.83 77.093 ± 1.68 1.386 ± 0.17

KNN 21.774 ± 1.62 19.335 ± 1.75 114.307 ± 1.93 124.389 ± 1.98 75.064 ± 0.52 1.274 ± 0.23

SoftImpute 20.791 ± 1.71 18.424 ± 1.87 112.380 ± 2.69 121.201 ± 2.85 74.314 ± 1.34 1.051 ± 0.16

ICA 20.482 ± 0.98 15.948 ± 1.62 113.583 ± 1.72 118.057 ± 2.15 72.794 ± 1.47 0.983 ± 0.20

BRITS 20.399 ± 0.77 13.474 ± 0.51 115.515 ± 2.08 116.477 ± 2.12 70.321 ± 1.13 0.911 ± 0.04

MRNN 18.539 ± 0.65 13.021 ± 0.62 96.492 ± 1.49 93.212 ± 1.86 72.594 ± 0.72 0.925 ± 0.03

SRI-EEG 17.267 ± 0.71 12.142 ± 0.45 91.074 ± 1.71 88.192 ± 1.70 69.985 ± 0.85 0.889 ± 0.01

Lower is better and the best performance is in bold. Performance averaged over 24 runs on the entire test set.

FIGURE 4 | Imputation performance of the different synthesized artifact rates on the Bike-Denoised_1Hz dataset. (Left) Performance evaluated by MAE. (Right)

Performance evaluated by RMSE. For both metrics, lower is better.

TABLE 6 | Ablation study of EEG state and channel spatial correlation in SRI-EEG on the three datasets with 10% artifact rate (MAE, lower is better and the best

performance is in bold).

Method Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2 Hz Kaggle SMR

SRI-EEG 9.964 7.796 44.739 43.184 12.501 0.698

SRI-EEG w/o State 10.120 8.586 47.646 49.790 12.808 0.758

SRI-EEG w/o Space 10.440 9.922 46.389 51.174 12.997 0.762

SRI-EEG w/o StateSpace 12.433 12.972 53.243 57.736 13.105 0.778
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TABLE 7 | Ablation study of EEG state and channel spatial correlation in SRI-EEG on the three datasets with 10% artifact rate (RMSE, lower is better and the best

performance is in bold).

Method Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2Hz Kaggle SMR

SRI-EEG 17.267 12.142 91.074 88.192 69.985 0.889

SRI-EEG w/o State 18.717 13.280 96.787 91.841 70.917 0.943

SRI-EEG w/o Space 18.708 13.809 95.391 93.618 71.538 0.924

SRI-EEG w/o StateSpace 20.612 14.958 98.447 94.863 72.687 0.942

TABLE 8 | EEG classification performance comparison.

Method
Denoised_1 Hz Denoised_2 Hz Noisy_1 Hz Noisy_2 Hz

P R F1 P R F1 P R F1 P R F1

No Imputation + xDAWN+RG 52.32 70.52 60.07 49.33 67.59 57.03 54.40 74.16 62.76 46.93 64.70 54.40

BRITS + xDAWN+RG 52.36 71.28 60.37 50.92 68.76 58.51 55.50 75.91 64.12 39.16 64.89 48.84

MRNN + xDAWN+RG 52.24 71.31 60.30 51.32 68.78 58.78 56.44 76.93 65.11 47.95 66.57 55.75

SRI-EEG + xDAWN+RG 52.76 71.34 60.66 51.72 69.34 59.25 56.17 77.03 64.97 39.46 67.61 49.83

Precision %, Recall %, and F1 score % are reported. (Higher is better and the best performance is in bold).

pairwise differences between imputation with SRI-EEG and other
methods were significant to at least a level of p < 0.01. (4) On the
Noisy_2 Hz dataset, all pairwise differences between imputation
with SRI-EEG and other methods were significant to at least a
level of p < 0.01. Exception is SRI-EEG vs MRNN, which was
significant to a level of p < 0.05 instead.

In summary, this study demonstrates that applying
imputation for artifact correction can enable using EEG for
practical scenarios such as classification. Our proposed EEG
imputation technique can effectively recover EEG signals
through data imputation and help further improve the
post-imputation classification performance.

7. LIMITATIONS AND FUTURE WORK

From the assessments presented in Section 6.1, our method
achieves improved performance on imputing detected artifacts
and thus demonstrates potential for use in real EEG artifact
correction. However, in some scenarios when subjects perform
long-term body motions during EEG data collection, the artifacts
caused by muscle movements and cardiac activities can exist in
a long time window or for the entire trial. These long-range
artifacts significantly limit the availability of enough clean data
which is required for RNN based imputation approaches. We
can observe this issue from the experiments on synthesized
artifacts (Section 6.2.2): when the artifact rate reaches 17.5%
and beyond, the imputation error increases rapidly. Thus, RNN
based imputation methods rely on having enough valid signal
to predict/impute artifacts confidently. In future work, we plan
to tackle this limitation inherent to RNNs by exploring the use
of reconstruction based denoising approaches that can aid RNN
imputation.

We model the spatial dependency of EEG signals as 3D
distances between pairs of electrodes. This setup has been proven
effective to handle the linearly decayed influence on the EEG cap
across channels. This linear decay dependency holds under the

assumption that a single event/state is applied to the subject at
each EEG trial and the applied stimulus activates a specific region
of human brain. When multiple tasks are taken into account,
e.g., click the mouse when you see a certain letter on the screen,
multiple cortical regions (e.g., the motor cortex and the visual
cortex) are activated. In such cases, a simple distance based
decay model may fail to capture the complex spatial relationships
between electrodes placed above those cortical regions. Future
research should address this limitation by using EEG state to
support the modeling of EEG channel relationships knowing that
channel state and active brain regions are dependent. New work
could also explore dynamic capture and computation of electrode
relevance given different stimuli.

8. CONCLUSION

In this paper, we introduced an imputation supported artifact
removal algorithm to correct irregular and non-uniformly
distributed artifacts that ubiquitously exist in EEG signal
data. Our imputation approach enables automatic EEG artifact
correction with significantly reduced human effort compared to
other methods. Our method is based on a bidirectional LSTM
as the backbone network, which has been proven effective by
prior work, to learn the temporal dependencies in EEG signal.
Into this backbone, we introduce EEG trial state data and spatial
correlations between EEG electrodes as supervised information
to update the bidirectional hidden states. We evaluated our
proposed method via qualitative and quantitative analyses. From
the evaluations, we demonstrated that SRI-EEG can greatly
improve EEG imputation performance under multiple setups on
all the tested datasets. Furthermore, we examined our network
design with ablation studies and conducted post-imputation
analysis to discuss potential applications that can be supported
by imputation based EEG artifact correction. We believe that
imputation approaches can improve the effectiveness, robustness
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and generalization of EEG enabled BCI applications, and see our
approach as an important step toward that goal.
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