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Abstract

Background: The function of a protein is determined by its native protein structure.
Among many protein prediction methods, the Hydrophobic-Polar (HP) model, an ab
initio method, simplifies the protein folding prediction process in order to reduce
the prediction complexity.

Results: In this study, the ions motion optimization (IMO) algorithm was combined
with the greedy algorithm (namely IMOG) and implemented to the HP model for
the protein folding prediction based on the 2D-triangular-lattice model. Prediction
results showed that the integration method IMOG provided a better prediction
efficiency in a HP model. Compared to others, our proposed method turned out as
superior in its prediction ability and resilience for most of the test sequences. The
efficiency of the proposed method was verified by the prediction results. The global
search capability and the ability to escape from the local best solution of IMO
combined with a local search (greedy algorithm) to the new algorithm IMOG greatly
improve the search for the best solution with reliable protein folding prediction.

Conclusion: Overall, the HP model integrated with IMO and a greedy algorithm as
IMOG provides an improved way of protein structure prediction of high stability,
high efficiency, and outstanding performance.

Keywords: Protein folding, Ion motion optimization, IMOG, Hydrophobic-polar (HP)
model, Global search, Local search

Background
Polypeptides consist of a maximum of 20 amino acids. The function of a given protein

is determined by the native structure or its polymer structure, which correlates with

particular protein functions [1]. The native three-dimensional structure of a protein

primarily depends on its amino acid sequence [2]. The development of a highly effi-

cient method for protein folding prediction is in high demand, particularly for protein

studies in biotechnology. Currently, several methods have been proposed for protein

structure prediction. Comparative modeling and fold recognition approaches com-

monly use a known protein structure database to train a model in order to classify an

unknown protein structure [2]. In contrast, the ab initio method provides a direct pre-

diction using the primary structure or amino acid sequence of a given protein.
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Based on the ab initio method, Dill has proposed the hydrophobic-polar protein folding

model (HP model) in 1985 which simulates protein folding based on amino acid sequences

under the lattice model [3]. In 2013, Bechini used a triangular lattice model for protein fold-

ing prediction by simplifying amino acids into hydrophobic (H) and polar (P) types [4]. The

predicted space in between the simulated folds is limited to the lattice model; the actual fold

space is discrete and the folding of the amino acid sequence follows a self-avoiding walk

along the lattice. However, for the protein structure prediction, it remains a challenge to

explore the possibility of an extremely large folding in order to obtain an optimal solution

for the nondeterministic polynomial-time-hard (NP-hard) problem [5].

Anfinsen’s dogma, following a thermodynamic hypothesis, assumes that the native

structure of globular proteins usually folds according to a unique, stable, and kinetically

accessible minimum of free energy [6]. The central structure of a globular protein usu-

ally contains hydrophobic (non-polar) amino acid compositions that produce hydro-

phobic attraction to avoid water molecules at the outside. This postulate was also

applied to the HP model-based protein structure prediction. To provide an example, if

two hydrophobic amino acids are closed together, a hydrophobic-hydrophobic (H-H)

interaction is generated. Once the strength of H-H interactions is increased, a more

stable structure is predicted. The HP model uses this property giving a negative value

for the adjacent hydrophobic amino acids interaction and calculating the number of

adjacent hydrophobic interactions [7]. When more adjacent hydrophobic amino acids

are present, the predicted structure is closer to the real structure representing optimal

protein folding. However, the development of an optimal algorithm for protein folding

prediction remains a challenge.

A 2D-triangle-lattice-model [8] is commonly used for 2D HP model of protein fold-

ing problem. It has six neighbors in the two dimension triangular lattice on each lattice.

When a triangle-lattice-model is embedded in the protein, it can be in topological con-

tact with each other. The vector obtained from the triangle lattice that is easier to

model a protein structure on the 2D-triangle-lattice-model [9]. The self-avoiding walk

for protein folding is the NP-hard problem and led to several heuristic and

meta-heuristic algorithms that were proposed to find best protein structure predictions.

These include among others: genetic algorithm [10], branch and bound [11], replica ex-

change Monte Carlo [12], Evolutionary Monte Carlo [13], greedy-like-algorithm [14].

We use here an ions motion optimization (IMO) algorithm [15] as a heuristic algo-

rithm that is combined – as a novum – with a greedy algorithm for local search within

the 2D-triangle-lattice-model to optimize protein folding predictions of high stability,

high efficiency, and outstanding performance.

Methods
We develop here a novel algorithm (IMOG) which combines ions motion optimization

(IMO) algorithm [15] with a greedy algorithm as a local search strategy for predicting

protein folding reliably at high resolution. Details of our approach are described below.

Protein folding problem of a 2D-HP-model

The HP-model is a well-known process for protein folding simulation that simulates

the hydrophobic interaction between amino acid residues. All 20 amino acids are
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classified into two groups based on their hydrophobicity/hydrophilicity: H represents

hydrophobic/nonpolar residues and P represents hydrophilic/polar residues. Given N

amino acids residue sequences of a protein chain, S = {a1, a2,…, aN} ⊂ {H, P}. The energy

E of a chain conformation was proposed for comparing the stability of several predicted

protein structures [7]. The energy E of a chain conformation was defined to the num-

ber of H-H contacts h, i.e., E = − |ε| h, where |ε| is a positive constant. The units of

energy E is |ε|. For simplification, the energy E of protein conformation is calculated by

the following formula as described previously [9, 10]:

E ¼ Σi; jΔrij∈ij ð1Þ

where

∈ij ¼ �1:0; the pair of H and H residues
0:0; others

�
ð2Þ

and

Δrij ¼ 1; if ai andaj areadjacentbutdonot connect amino acids
0; others

�
ð3Þ

The 2D-HP protein folding problem can be formally defined as finding a conform-

ation of S with minimum energy. This has been proven to be a NP-hard problem.

Imo

The IMO algorithm has been recently introduced as a metaheuristic optimization tech-

nique and it is inspired by the motion of ions [15]. Each single ion in its particular pos-

ition provides a candidate for solving a particular optimization problem. The

movements of ions depend on the attraction or repulsion of ions, i.e., anion (negative

charged ion) and cation (positive charged ion). The attraction and repulsion forces

between anions and cations are utilized to move the position of ions around a feasible

search region. The forces are calculated as acceleration of ion motions. Anions move to-

wards a best fitness of cations and cations move towards a best fitness of anions. Two strat-

egies of ion motion for providing diversification and intensification, these are movements

in a liquid phase and a solid phase scenario, respectively. In this study, we implemented an

IMO as a heuristic algorithm to find the best HP model for protein folding simulation.

In the 2D-dimensional search space, assuming a population consists of N anions/cations

moving around. The ith anion and ith cation are represented by Ai = (ai1, ai2, …, aiD) and

Ci = (ci1, ci2, …, ciD) in their respective position. The populations of anions and cations are

initialized by a uniform random position A ∈ {A1, A2, ..., AN} and position C ∈ {C1, C2, ...,

CN}. Each position of an ion provides a candidate solution for a particular problem. When

the fitness of evaluation results is calculated, the global best solutions (Abest and Cbest)

and current individual worst solutions (Aworst and Cworst) are determined.

In the liquid phase strategy, the attraction forces are used for a search space [15], and

its computation is calculated from the distance between two ions (e.g., anion and cat-

ion), the measurement is defined as follows:

AFi; j ¼ 1

1þ e−0:1=ADi; j
ð4Þ
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CFi; j ¼ 1

1þ e−0:1=CDi; j
ð5Þ

where ADi, j = |Ai, j − Cbestj| is the distance between the current anion position and the

globally best cation position; CDi, j = |Ci, j −Abestj| is the distance between the current

cation position and the globally best anion position. AFi,j and CFi,j represent resultant

attraction forces of anions and cations, respectively.

According to formula (4) and (5), the position of anions and cations based on the

attraction force are updated as the following equations:

Ai; j ¼ Ai; j þ AFi; j � Cbest j−Ai; j
� � ð6Þ

Ci; j ¼ Ci; j þ CFi; j � Abest j−Ci; j
� � ð7Þ

In the solid phase strategy, when convergence has occurred or solid phase conditions

are satisfied, external forces are evaluated in order to escape entrapment in the local

optima, and the formula is described as follows:

if CbestFit≥CworstFit=2 and AbestFit≥AworstFit=2
if rand1ð Þ > 0:5
Ai ¼ Ai þΦ1 � Cbest−1ð Þ

else
Ai ¼ Ai þΦ1 � Cbest

end if
if rand2ð Þ > 0:5
Ci ¼ Ci þΦ2 � Abest−1ð Þ

else
Ci ¼ Ci þΦ2 � Abest

end if
if rand3ð Þ < 0:05

Re‐initializedAi and Ciwith random position
end if

end if

ð8Þ

where Φ1 and Φ2 are random numbers in the range of −1 to 1. rand1(), rand2() and

rand3() are random numbers in the range of 0 to 1. AworstFit and CworstFit are the

worst fitness solutions of anion and cation fits, respectively.

Greedy algorithm

The greedy algorithm is a simple and straightforward heuristic algorithm that makes a

current local optimal decision at each stage for global optimization [16]. It is easy to

implement and works efficiently depending on the problems although it may or may

not be the best approach for solving this task. In any case, it plays a useful role as a

optimization method according to its characteristics. Greedy algorithms are widely ap-

plied in bioinformatics tools such as among others DNA sequence alignment [16],

co-phylogeny reconstruction problem [17], detection of transient calcium signaling

[18], resolving the structure and dynamics of biological networks [19].

IMOG for 2D-HP-model

We implemented the IMO algorithm with a greedy algorithm as a local search strategy

for the 2D-HP-model protein folding problem as follows (including IMOG procedure,

encoding scheme, fitness function, and improved solid phase strategy):

Yang et al. BioData Mining  (2018) 11:17 Page 4 of 14



IMOG procedure

This study presents an improved IMO with a greedy algorithm to be implemented in a

2D-HP-model process. The flowchart of our proposed method is shown in Fig. 1, and

the detailed procedure of IMOG is described as follows:

Step 1) Initialize populations of ions (anions and cations) with random position, each

position of an ion is a candidate for the protein folding.

Step 2)Estimate the fitness of each ion using energy of the 2D-HP-model according to

the Eq. (9).

Step 3)Update the global best solution Abest and Cbest according to the fitness

calculation results.

Step 4)Calculate the force and update position of each ion according to the Eqs.

(4)–(7).

Step 5) If the solid phase condition was satisfied, the solid phase strategies were

executed.

Step 6)Repeat steps 2–5 until the stop criterion has been met. Consequently, the best

protein folding was obtained.

Fig. 1 Flowchart for developing an IMO algorithm
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Encoding scheme

In accordance with the previous description of problems, we utilized the integer IMO

to proceed with the analysis. The neighbors of vertex in the 2D-triangular-lattice model

in IMO are under anion/cation coding. Each position of anion/cation was designed in a

format as the amino acid directions of movement in protein folding, and this was de-

scribed as Ai = (di1, di2, …, diD) and Ci = (di1, di2, …, diD), respectively, where d ∈ {1, 2,

…, 6} represents six neighbors in the 2D-triangular-lattice-model (Fig. 2a). For example,

the IMO encoding the best solution for the sequence HHPPHPHPHPHPHP presents

as 4, 5, 6, 2, 6, 2, 1, 3, 2, 4, 3, 5, and 4 (Fig. 2b).

Fitness function

Two hydrophobic amino acids xi and xj of the lattice positions pi and pj are respectively

indicated to have a H-H contact that is represented as contact(pi, pj) = − 1, otherwise

contact(pi, pj) = 0. The energy of the protein conformation is defined as the sum of its

H-H contacts. If S has an HP sequence, and P = p1, p2, ..., pn represents a valid con-

formation for S, the energy E(P) of P is defined as follows:

fitness ¼ Σn−2
i¼1Σ

n
j¼iþ2contact pi; pj

� �
ð9Þ

In the case of Fig. 3, the point p4 is not adjacent to p8, p9, p10 and p11 in the amino

acid chain but is adjacent in the 2D-model space, thus the fitness is calculated as − 4.

Consequently, (p3, p5), (p3, p11) and (p5, p8) are estimated as − 3, non-repetitively.

Taken together, the fitness as the energy is − 7.

Improved solid phase strategy

The original condition of solid phase (e.g., if CbestFit ≥ CworstFit / 2 AND AbestFit ≥
AworstFit / 2) is unsuitable for our problem. Therefore, we improve the solid phase

statement for the HP-model protein folding prediction. In order to enhance the optimal

Fig. 2 Example of a 2D-HP-model. a 2D triangular lattice model with six neighbors. b Illustration of best
solution in 2D-HP-model. The arrow with number indicates next direction of current amino acid. The red
dotted line is H-H contact
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solution, we add the local search method to this phase and pseudo-codes are provided

in the formula (10).

if CbestFitNum and AbestFitNumdo not change > SolidNum
if rand1 ð Þ > 0:5

Ai ¼ Ai þΦ1 � Cbest−1ð Þ
else

Ai ¼ Ai þΦ1 � Cbest
end if
if rand2ð Þ > 0:5
Ci ¼ Ci þΦ2 � Abest−1ð Þ

else
Ci ¼ Ci þΦ2 � Abest

end if
if rand3ð Þ < 0:05
Local search‐greedy algorithm

else
Re−initializedAi and Ciwith random position

end if
end if

ð10Þ

where CbestFitNum and AbestFitNum are the numbers for the global best solution of

cation/anion not yet changed. SolidNum is a parameter setting for how many times the

CbestFitNum and AbestFitNum were not yet changed.

In this study, the greedy algorithm is utilized for a local search that randomly selects

the point position of an anion/cation and to search six neighbors for their best solution.

In the sequence HHPPHPHPHPHPHP example, through the greedy algorithm the best

solution for the tenth point is 4. This is illustrated in Fig. 4.

Results
Data sets

In the current study, two benchmark data sets for the 2D HP model protein prediction

are used and the details are shown in Tables 1 and 2. These tables show the

Fig. 3 Illustration of the best fit obtained from the 2D-HP-model
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information of amino acid sequences including sequence number, length, sequence,

and optimal known energy values. The sequences are described as binary symbols

where 0 indicates the polar residues and 1 indicates the hydrophobic residues. The data

within parenthesis (…)i represent the i-fold duplicate of a subsequence. For example,

(010)2 represents the original information of data being 010010 (e.g., HPHHPH). Re-

cently, several approaches such as hybrid of hill climbing and genetic algorithm [9],

elite-based reproduction strategy-genetic algorithm (ERS-GA) [9], cached divide and

conquer evolutionary algorithm [20], co-evolution of memetic algorithms [21], hybrid

genetic algorithm (HGA) [22], and tabu search (TS) [23] have been proposed to predict

protein folding using benchmark data sets, through HP-model-based computation esti-

mates for protein structure prediction.

Parameter settings

The advantages of the IMOG algorithm is a fewer number of tuning parameters, only

population size (e.g., number of anion and cation) and iteration size. Here, we set 100

for the numbers of anions and cations and 2000 for the iteration size in this study.

Additionally, the mutation probability of a greedy algorithm for each point in the local

search is 0.25.

Comparison of the best prediction

Table 3 shows a comparison of the best optimal solution obtained from approaches

taken from the HGA [22], TS [23], ERS-GA [9], HHGA [9], and our proposed IMOG

algorithms. Table 4 compares MMA [24] (Multimeme algorithms for protein structure

prediction) with our proposed IMOG approach for predicting results. These methods

were applied to eight and twenty amino acids sequence data sets, respectively, that were

independently run 30 times for each experiment. All methods can easily obtain the best

solution when the length is smaller than 20. However, our proposed method can even

obtain best solution when the length is smaller than 40. Table 3 shows the TS is better

than our proposed IMOG method for the sequence 7 and HHGA is better than ours

for the sequence 5. Nevertheless, IMOG obtains outstanding results for all eight

sequences, especially the longest one. Table 4 shows that IMOG can obtain the best

outcomes for all 20 sequences. In contrast, IMOG cannot obtain an optimal solution

when the sequence length is longer than 30. The results show that the IMOG method

proposed here predicts protein folding structure better than other available methods.

Fig. 4 Illustration of IMO with a local search by a greedy algorithm. The greedy algorithm is utilized for
local search that randomly selects the position point and searches the best fitness of six neighbors
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Comparsion of stability

Table 5 shows the comparison of the stability of algorithm outcome utilizing the opti-

mal results and means in 30 independent runs. The literature of MMA did not provide

the results for stability analysis, hence the outcome of IMOG was unable to compare

with MMA. The optimal results and means can be observed the ability of algorithm

finding best structure and the stability of algorithm. Table 5 shows that the mean of fit-

ness of IMOG is better than that of ERS-GA and HHGA in each sequence significantly

Table 1 First benchmark of amino acids sequences in HP model [9]

Sequence length E*1 Amino acids sequence*2

1 20 -15 (101001)20110(01)2

2 24 −17 1(100)21(001)51

3 25 −12 (001)2(100001)31

4 36 −24 0(0011)2(0)5(1)7(001100)2100

5 48 −43 001(0011)2(0)5(1)10(0)6(1100)2100(1)5

6 50 −41 1(10)4(1)4(0100)300(1000)210111(10)411

7 60 – 001110(1)8000(1)1001000(1)12(0)4(1)4011010

8 64 – (1)12(01)20(1100)2(1001)2(100)2(1100)2(10)2(1)12
*1E is the best energy [7] value in 2D HP model. E was defined to the number of H-H contacts h, i.e., E = − |ε| h, where |ε|
is a positive constant. The units of energy E is |ε|. For simplification, E is calculated by the following formula as described
previously [9, 10] as mentioned in formula (1) to (3)
*2 0 represents hydrophobic (H); 1 represents polarity (P) in amino acids sequence; (…)i represents i-fold repetitions of
the respective subsequence in data

Table 2 Second benchmark of amino acids sequences in HP model [21]

Sequence length E*1 Amino acids sequence*2

1 12 −11 1(10)51

2 14 −11 1100(10)5

3 14 −11 1(100)2(10)31

4 16 −11 110(100)41

5 16 −11 1(100)2(10)3010

6 17 −11 1(100)51

7 17 −17 1(11)711

8 20 − 17 1(100)2(10)3(01)31

9 20 −17 1(10)41(001)31

10 21 −17 1(100)2(10100)21011

11 21 −17 110(100)2(10)2(100)211

12 21 −17 1100(10)3(01)2(001)21

13 22 −17 1(100)2(10)3(010)2011

14 23 −25 11(10)9111

15 24 −17 1(100)711

16 24 −25 11(10)3(01)711

17 24 −25 11(10)4(01)611

18 30 −25 11(100)41(01001)200111

19 30 −25 11(100)3(10)2(01)2(001)311

20 37 −29 11(100)3(10)21(001)3(0)5(10)2111
*1E is the best energy value in 2D HP model. E is calculated by the following formula as described previously [9, 10] as
mentioned in formula (1) to (3)
*20 represents hydrophobic (H); 1 represents polarity (P) in amino acids sequence; (…)i represents i-fold repetitions of the
respective subsequence in data

Yang et al. BioData Mining  (2018) 11:17 Page 9 of 14



although the best fitness of HHGA is slightly better than IMOG. Consequently, the re-

sult indicates that the IMOG had a high quality in searching stability.

Discussion
The IMO algorithm [15] is a population-based algorithm designed according to the

natural properties of ions. Its idea is to divide the ion population into negative and

positive charged ions (i.e., anions and cations). It is based on the fact that anions repel

anions but attract cations and cations repel cations but attracts anions. It is reported

that IMO is very competitive in solving challenging optimization problems [15]. More-

over, the greedy algorithm is also reported to improve local searches [25]. In computer

science, hybrid algorithms are commonly applied in solving optimization problems

[26–32]. Accordingly, we developed a novel algorithm that combines the IMO algo-

rithm [15] with a greedy algorithm we here name IMOG for protein folding prediction.

The key concept of our proposed IMOG algorithm is based on the characteristics of IMO

having global search capabilities while escaping from the local best solution. In addition,

the greedy algorithm is used in each update to strengthen its local search ability.

In this paper, two phases (liquid and solid) were designed for diverse and intense

search that can make sure convergence of the ions toward an optimum in the feasible

space and resolve local optima trap. Our proposed method has redundant extra param-

eters and it adapts itself automatically to search spaces. The obtained results indicate

that the integrated algorithm has a good search ability and stability. Compared with

other methods, the stability and search ability of our proposed method is better than

other methods for protein structure prediction for most of the test sequences.

The HP-model of protein structure prediction problem was developed as discrete

problem in folding space. In HP model, the amino acids were classified into hydropho-

bic and polar that keeps the prediction complexity down. Nevertheless, the whole pos-

sible combinations of protein folding prediction problem is still complex. Recently,

researchers assume that the simple optimization algorithms were hard to solve protein

folding structure prediction effectively [21]. Accordingly, many improved algorithms

were proposed to enhance ability of prediction in HP model problem, such as HHGA

[9]. The HHGA is an effective algorithm which combines genetic algorithm with a hill

climbing algorithm, it can solve longer amino acid sequence well performance.

Table 3 Comparison of algorithms studied here for optimal solutions

Sequence*1 SGA HGA TS ERS-GA HHGA IMOG

1 −11 −15 −15 −15 − 15 −15

2 −10 −13 −17 − 13 − 17 −17

3 − 10 − 10 − 12 −12 − 12 −12

4 − 16 −19 − 24 − 20 − 23 − 24

5 −26 −32 − 40 − 32 − 41 −40

6 −21 −23 NA −30 −38 −40

7 −40 − 46 − 70 − 55 − 66 − 67

8 − 33 −46 −50 − 47 − 63 − 69
*1Sequences from Table 1. Bold numbers indicate the best solution for the same test sequence
NA: not available; SGA: simple genetic algorithm; HGA: Hybrid Genetic Algorithm [22]; TS: tabu search [23]; ERS-GA: elite-
based reproduction strategy-genetic algorithm [9]; HHGA: hybrid of hill climbing and genetic algorithm [9]; IMOG: Ions
motion optimization with a greedy algorithm
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In this study, we implement an IMO with a greedy algorithm as local search for a

2D-HP model protein folding problem. The technical behavior (liquid phase strategy)

of IMO is similar to the particle swarm optimization (PSO) [33] algorithm but the

IMO had improved the “particle” to divide into two parts as anion and cation. The two

global superior solutions were utilized to search global optimal solutions. It also had a

mechanism to escape local optima through the solid phase strategy. We improved the

IMO in order to enhance seeking local optima by adding a greedy algorithm to the

solid phase strategy. Consequently, our proposed IMOG algorithm has several advan-

tages including low computational complexity, rapid convergence, a smaller number

of tuning parameters, avoidance of local optima and superior performance in searching

for global optima [15].

Recently, several protein structure prediction systems were developed. For example,

Rosetta [34–36] and i-TASSER [37, 38] are sophisticated comprehensive software suites

for protein structure and function prediction. Structure prediction with Rosetta was

reported to be enhanced performance with an additional modeling, such as the com-

bined covalent-electrostatic model of hydrogen bonding [34]. The processing that

Table 4 Comparison of the best prediction results of IMO with MMA algorithm

Sequence*1 MMA IMOG Sequence*1 MMA IMOG

1 NA −11 11 −17 −17

2 −11 −11 12 −17 −17

3 −11 −11 13 −17 −17

4 −11 −11 14 −25 −25

5 −11 −11 15 −16 −17

6 −11 −11 16 −25 − 25

7 −17 −17 17 −25 −25

8 −17 −17 18 −24 −25

9 −17 −17 19 −24 −25

10 −17 −17 20 −26 −29
*1. Sequences from Table 2. Bold number indicates the best solution for the same test sequence
NA not available, MMA Multimeme Algorithm using the new mating strategy based on the contact map memory [24],
IMOG Ions motion optimization with greedy algorithm

Table 5 Comparison of the best solutions and stabilities with other algorithms

Sequence*1 E*2 ERS-GA HHGA IMOG

Best Mean Best Mean Best Mean

1 −15 −15 −12.50 −15 −14.73 − 15 − 14.73

2 − 17 − 13 −10.20 −17 −14.93 − 17 −14.93

3 − 12 − 12 − 8.47 − 12 − 11.57 −12 − 11.57

4 − 24 −20 − 16.17 −23 −21.27 − 23 −21.27

5 −43 −32 −28.13 −41 − 37.30 − 41 − 37.30

6 −41 − 30 − 25.30 −38 −34.10 − 38 −34.10

7 – −55 −49.43 − 66 − 61.83 − 66 −61.83

8 – −47 −42.37 −63 − 56.53 −63 −56.53
*1Sequences from Table 1. Bold number indicates the best solution for the same test sequence
*2E is the best energy value in 2D HP model. E is calculated by the following formula as described previously [9, 10] as
mentioned in formula (1) to (3)
ERS-GA elite-based reproduction strategy-genetic algorithm [9], HHGA hybrid of hill climbing and genetic algorithm [9];
IMOG Ions motion optimization with greedy algorithm
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generates protein structure and function predictions by i-TASSER is firstly retrieved

from protein data bank (PDB) library by Local Meta-Threading-Server (LOMETS) [39].

When LOMETS is unable to identify suitable template, i-TASSER will process the ab

initio modeling for protein structure and identify the low free energy states by

SPICKER [40]. It is possible that our proposed IMO may support the function of

SPICKER and i-TASSER by the calculation of energy mentioned in the current study. It

warrants further evaluating the performance that our proposed IMO algorithm com-

bines with Rosetta and i-TASSER for protein folding prediction in the future.

There are some limitations in the current study. The longest length of test sequence

is 64 amino acids and it has 664 possible combinations in 2D triangular lattice model

with six neighbors, showing superior to other test algorithms [9, 21–23]. However, the

performance of our proposed IMO algorithm is only based on 28 test data sets. It war-

rants further evaluating for more data sets and longer length of test protein sequences.

It is noted that our proposed IMO method is based on the relative energy. For precise

comparison, the absolute free energy for protein folding structure warrants further in-

vestigation in the future.

Conclusions
This study uses an ab initio technique (hydrophobic polar model) to predict protein

structures. This is one of the most commonly applied methods for protein structure

prediction. We propose and develop here a combination of the IMO with a greedy al-

gorithm for protein folding predictions assuming a hydrophobic polar model. Experi-

mental results show that our proposed IMOG method can reliably seek and find the

best solution among short sequences, and also effectively obtain satisfying results with

longer sequences. Taken together, these results demonstrate that the hybrid algorithm,

combining the IMO algorithm with a greedy algorithm provides a useful tool for pro-

tein folding predictions.
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